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1. Introductio:n 

In nuclear physics, the problem of treating states with 
positive energy on an equal footing with bound states, has for 
a long time drawn the attention of several authors/11. Here we 
are specially thinking of the single particle states used as 
basis in, e.g., shell model calculations or more approximate 
many body descriptions of nuclear structure. In such calculations, 
the continuum states must be included in order to have a complete 
expansion basis. The necessity of this has recently become more 
urgent, due to th~ g,owing interest in studying the giant reso
nances and other highly excited stat6s, where the continuum ad
mixtures are particularly important. Apart from the more con
ventional problem of single particle scattering, these states_ 
also play a direct role as final states or intermediate states 
in many nuclear reactions, like (d,p) processes, etc. 

The fact that the spectrum of positive energy states is con
tinuous, and the states not square integrable, gives rise to a 
number of proble~awhen these states are used as basis states in 
realistic calculations of the above-mentioned type. Therefore, 
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in such calculations, the single particle potential is often 
approximated by one, which has only a discrete spectrum, like the 
harmonic oscillator or the infinite square well, but the unphy
sical character of these potentials leads to complications con
nected with bad convergence of the expansion in certain regions 
of space. In general we can say that if a physical problem is 
solved by the method of expansion in a complete set, the conver
gence will be best if the basis functions, or at least some of 
them, are similar to the physical function, i.e.,if they are 
solutions of an equation of a similar type, with similar boun
dary conditions. 

A number of ways have been proposed to construct discrete 
sets of wave functions, which give uniform convergence of the 
expansion when certain conditions are fulfilled. The bases of 
Eisenbud and Wignerf21, however, share the property of unphysical 
boundary conditions with those mentioned above. The basis functi
ons of Kapur and Peierls/3/ and the Weinberg/4 , 5/ functions form 
complete sets for positive energies, and the Sturm-Liouville 
functions give absolute and uniform (or stronger than uniform) 
convereence for expansion of square integrable functions/G,7/. 

In contrast to the bound states these discrete sets present 
the inconvenience that they are energy-dependent. In reaction cal
culations, this may lead to some advantages, but in the solution 
of a physical problem by expansion in a complete set, it is de
sirable that only the expansion coefficients contain the energy 
dependence. 

A natural generalization of the discrete bound state solu
tions of the Schrodinger equation to positive (or rather complex) 
energy values was introduced by Gamow in the description of 

~-decay/B/. Like the bound states, these states have energies 
which correspond to poles of the S-matrix. A representation of 
the S-matrix by means of its poles was given by Peierls/9/. A 
theory of nuclear reactions, in which these poles are used for 
expansion of the reaction amplitudes, was developed by Humblet 
and Rosenfeld/101. 
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Since the Gamov functions (which in the following we shall 
call the resonance functions) are increasing exponentially with 
r, the usual definitions of normalization, orthogonality and 
completeness are not valid for these functions. This is, to our 
mind, the main reason why they have not become more widely used. 

Lately, a number of methods of normalization of the reso
nance wave functions were suggested, all of which , however, are 
equivalent to the method of ~el'dovich/11 -15/ (but for the antibound 
states some of these mathods are not valid). 

Recently, techniques for expansion of continuum wave fun
ctions over resonance functions were developed, using the analy
tic properties of Green's functions. But in this approach it is 
in general difficult to answer the question of convergence of 
this expansion. 

It is in this connection an important observation that in 
the study of the analytic properties of the S-matrix, and of its 
expansion in pole terms, the theorem of Mittag-Leffler/161 played 
a decisive role, guarantying that the series converges uniformly 
inside an arbitrary closed contour, which contains no poles. It 
is therefore tempting to use this theorem also for the expansion 
of the wave functions of the continuous spectrum, and of the 
Green's functions. 

We are here using the expressions obtained in this way for 
comparison with exact solutions in some concrete cases, following 
the work of Serdobolskij/171. In some of the works, where Gamow 
states are introduced, they are used in matrix elements, say, 
for calculation of transition amplitudes or expansion coefficients, 
involving integrations over all space. The exponential growth 
with r of these states is then neutralized by introduction of a 
regularization factor. Although in some cases, as,e.g.,with the 
normalization integral/11 1 this procedure is unambiguous, we shall 
here stick to the more conservative idea of using the resonant 
states as a basis for calculation of such matrix elements, where 

we need only the properties of the wave functions inside a finite 
radius, R. We, therefore, also, like many of the above-mentioned 
authors, only need to prove the expansion theorems we are going 
to use for this finite region. 
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II. The Mittag-Leffler expansion 

a) The Mittag-Leffler expansion (MLE) of the S-matrix 

We shall here, and in the following, assume that our single 
particle potential V(r) is spherical, identically zero for r > R, 
and has no singularities (except for a numerical example, where 
a g-function potential is used). These conditions are stronger 
than necessary to prove the theorems used in the following, but 
reasonable from the point of view that we are concerned with 
nuclear problems. The Coulomb potential, as met in atomic and 
molecular physics is hereby excluded, but the repulsiwe Coulomb 
force important for protons and ~-particles is treated below. 

With the above restrictions, the Jost functions fe (I<) are 
holomorphic in the whole k-plane. We shall further assume that 
they have only simple zeroes in the k-plane. In the Appendix we 
throw some light on this assumption. For .s'e(K')= f.f.t.)P (+t), we can r Je 
now prove that the function 

E c~> = pt ("-)- ~ ( ft cc. R.J \.t 
f - JUK t '/ (2.1) 

for a large closed contour in the k-plane, i.e. 1~:..1 >I kc.l , which 
does not come near to any pole, - it can be proved that such 
contours do exist, -we will have 

~ ( constant • I Ke I f>o , 

where P
0 

is a non-negative integer. For a potential, of which 
themt~derivative at r = R is different from 0, it can be proved 
that P0 ~ m + 2. 

Let us denote the poles of FR by kn• and the corresponding 
residue by r., • The MLE theorem then states that if the poles 
are ordered according to increasing (or non-decreasing) value of 

l kkl , the expansion 

~ IC.'f (y) - ll::. )p+f r. 
~(~~:)= .L.. or pt. (o) + L. "'"' _ ... _ (2.2) 

'f:O I h=f " - "-h 

P~f>o 
converges uniformly in the k-plane within any closed contour 
which does not contain poles. So, expressing S by (2.1) 

~ (k) = 1 +.ta .. (J.;(It.R.))- 1
• r;_r~:.) (2.3) 
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we have the different MLE of s. A MLE contains in general an 
entire function and a series of pole terms. This division is ho
wever not unique, it can be changed by a re-ordering of the expan
sion, as exemplified by the choice of p above. The conditions 
f ? Po > 0 are sufficient condi tiona, but not necessary; in the 

example of a 8-potential, given below, p = -1 gives a convergent 
series. 

The advantage of the presentation of the MLE given above is, 
that the entire function is given, for any value of p. The pole 
series itself will, of course, converge faster for lage p-values, 
as we shall see in some concrete examples below. It should be 
noted, that since Se<":)-1 .. ~0 0(KU+fJ (except for the case 
of a bound state at zero energy). that in general rfl. ( 0) f 0 
since h.;("-J?.) ==0(1<-e.) for K-7 0 • 

b) The MLE of the wave function 

In order to apply the expansion of the S-matrix obtained 
above, in the most direct way to the scattering states, let us 
introduce the function 

e-i:<«e .,.. (+-) y; ~ -K- he (ld~) 'fe (z). {2.4) 

So ~: satisfies the radial Schrodinger equation and for all 
IL {, R. , we have 

J~ Y. .... + (K~ _ e(e+ t) _ V(~ >) '£: 6-
J't. .. e '<::"- e 0 (2. 5) 

and for all 't. ~ R.. , we have 

I t- i 11£. 

yeer"" n,(a:~ e-~ ( jl (~rc) + te ('<)-fA; (n)) • 
.t< 

(2.6) 

where Jt 
functions 

The 

and h; are Riccatti-Bessel and Ricatti-Hankel 
of the first sort, defined as in ref./181. 
regular solution of the radial Schredinger equation 

occurs in the literature under different names, corresponding to 
different k-dependent normalizations. Our reason to introduce 
one more variant, our ~e& , will become clear in the following. 

Now, at the poles Kn of the S-matrix, also the wave functi
on has poles. Its residues must be wave functions, which satisfy 
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the same Schrodinger equation as Ye& (or yr('-) ), for K = K .. 

but for "c. > R. become proportional to h~ , so 

&n-,_ ( K- K.,) 'YeG-(1(, 't) =. c., 'f..,('<-) 
~ __,. K.., 

( 2. 7) 

(2 .8) 

where the ~h.(~<..,,'-) are solutions of the eigenvalue 
d~ lf) ) ;!. ere "f-f) ,. ) .., ( ) 0 d~z T.,(< +(1<.., -- -'(z:- - V1<-) r., L '"" 

problem 

'f~ (0) ""0 ( 2. Ba) 

-t- J ) /t-f t~ (K..R) -'f.(<.)/ ~ tr.., (R. K., n.e (K.,R.) (2.Bb) e J'<- ., '<-=R. . 

The constant C., must depend on the normalization of the Y' '$ 

These functions are identical to the bound states for Re(kn)=O, 
Im(kn) >o. For R.e.-(1<.~)=0, fm(K.,)< U they are antibound states 
and for complex k., values resonant states, among these the Gamow 
states for Re (1:.~) ) 0 

The normalization of these functions is naturally some gene
ralization of the normalization prescription for bound states. 
Keeping in mind, that we only want to use the properties of the 
wave functions for '<:. ~ R , we shall use the normalization 

R ~I 

\ J'L y:-~(<) + 'f'..~R.) [d- f.!5__~FJ )} :::; j. c2.9 > 
), " ~1<..., dt<. \ h~ (I< R) K.=k., 

e . 
This has, e.g., the advantage of giving the same 1. order expres-
sion for resonance energy changes in the continuum as in bound 
states. 

Now, the constant Cn is determined to be 
- i,__ve e ~ 

ch = - - t (R..) 
ZA::,., n (2.10) 

A detailed derivation of C., for the case e. "'0 is given 
below. Once the residues are given, the MLE of the function ~e& 
can be constructed 

f' . 1·) ~ r >~ ( ) 
6- ")" 1<' 1.JU' 1t )' ( K ) C., 'f'., 'l:. 

'fe(k,~)=~ i! re(o,l) t- t .• K., 1<--~ 
·~ 0 .,,, 

(2 .11 ) 

for p = e "" 0 , this series coincides, apart from the normali-
zation, with the formula of ref./171. 
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t. 

That the Yt can be represented by a liiLE is most easily 
shown by considering the relation between YF; and the Green 
function <.rre ~ f _.,.. - ---

G = -K- "1ft (K,'L<)/e('<,'t>)e ~ 

'Y!-eG-(K."t) =- G- '"{~<,'L,I() 
(//I<,'LC}R.) = h~~<.~ 

(2 .12) 

so. the expansion properties of ·y~ are given by those of G+, 
which we shall study in the next section. 

It should be noted, that the advantage of presenting the 
scattering wave function as a sum of energy-independent functions, 
multiplied with energy-dependent coefficients is shared by all the 
MLE with different P• The choice of f is to a large degree a matter 

· of convenience, since already for f' =- i , the expansion wi 11 

often be convergent , but it means, that the convergence can be 
improved, at the cost of enlarging the number of functions ~~(~l) 

These are found as solutions with the proper boundary condi
tions of differential equations, derived from the Schrodinger 
equation. The equations for i. = 0 and <= f are, e.g., both 

~oz. 1.rG- (<) e(e•t) ) G- r;) 
Tc..l- re_ (o,<) - ( -'<:.~ 1- V('t.) lfe (o, t) :::::: U (2 .1)) 

and the boundary conditions 
& (0) G- (f)-Ye (o,o) = ¥e (u,o) -0 (2.13a) 

iue 1, ,s-- <o) ....., ) R.. 
e-x- re (O,R.) = !-'~~_ (o + ZC:t (2.1Jb) 

iiie 1,r& (1) • , 2.. " 
ez- Ie (o,R.) = R. f·ll.. (o) + i.f( oe 0 (2.13c) 

c. The MLE of the Green function. Completeness relation 

The MLE of the Green function was considered by several 
authors/13 •23/. 

The simplest way to obtain such an expansion is presumably 
to start with the general expression for the radial equation Green 
function a+ 

+ "' 'f.., h) 'f ... ('l.') 
G-e (I<,'!..' "t.') =. t:..-., ~ K 2. - v "- + 

n(b...,n<f) ""' It-

•- 'l.r
1

( ' ) ~+( , ') _!_(.11<' r.e K,~ .r.e l<,'l. (2.14) 
+rr_LK' t<~-J<' 

( J< ~ "" K.. +- .:.y • f- 0) . 
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The integral may be calculated, using theorem, by closing 
the contour in the lower half 'plane for such terms where that 
integral becomes small and in the upper half plane (counter 
clockwise) for the other terms, each time using a large contour, 
that does not come near to any pole. That such contours exist, 
was already mentioned above. 

Now the contributions from the poles with positive imagina
ry k-value will partly cancel the bound state part of G-~· and 
the contribution from K .,_ ( J' 7 () +) vanishes, leaving US with 

., t- ) "\"" 
Cre(K,~,'t' = ~ 

11 (olf_ rol..s) 

If., ( '1..) 'f'n ( 'L' ) 

Z K.., (K- K.,) 
( 't, 't.' <. R._) 

(2. 15) 

where the "(·., ('-) are the resonance functions, with the same 
normalization which was introduced earlier. We see that the Green 
function, for the case considered, has a MLE with p=-1. The 
same must therefore be the case for ·Y!: ( "L "' fZ_) 

Furthermore, ae was pointed out by Homo, the Green function 
for t<.-> o..o must behave ae l:,'(~~ ?..') t- 0 ( 1<C 3 ) • From this one 
concludes 

l')' 
T L.. 'f., ('t) ~., (L') ~ t;' (<-- 'L 1

) 
.... ("t,'z'(i() 

(2. 16) 

and 

L 'f..,('t)\f..,(~)/K., = Q. (2.17) 
"' The first equation can be stated as an overcompletenees relation. 

Note, that the presence of the factor 1/2is not merely a question 
of normalization, since it appears with the bound states also, 
where, for large values of R, this plays no role. The second 
relation of course also indicates very high degree of linear de
pendence among the 'f.., •e. 

The fact, that we have completeness only within a limited 
volume, may seem a drawback, but it is related to the large dif
ficulties encountered, if one wants to use the ~'s as expan
sion basis in all space. The regularization method tries to over
come these difficulties, but if the inner product of two state 
vectors is defined with that method, the linear dependence {2.17) 
ie conserved , but the completeness is lost, even at the point 
where it ie most needed, as seen from the following example, with 
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e. =0. For ~ > R_ 

r(t<,'l.)= ~~~I(($(K)ei.IC'l_ e.-iK"L) (2.18) 

. LK..("L-Il.) 
'f"'(~)=-'f.,(IZ)e · (2. 19) 

So for the regularized overlap integral between 'Iff ... and 'f., 

we get 
......0 £'t.-2. ern f y<'--('t) lf,...('t) e- c/"t- : 

€. ... 0 <J 

R. H•·o;.)R. T 
= J Yc;('t) ¥'., (~) d'L + ''I~,(~)~< K. f.. (S(r<.)ei(t<..+~<)'l.- e'(k r)'t )ch. = 

I( <c~-.:.)lt{$(o:.)e'r"--.. "-JR. <f~<..-o::>l!.j (2.20) 
=J~(2.)~('t)J'L-'f.,(l{)e2.iK Hoc..+t<) - ~(K..-KI = 

0 

R. 

= 5 Y ... ('L) If,. ("t.)d't. T 'e .. (({)[ ... ~ 1<. 
S(~<)ez.•"'R_f 1 1 j-
"'-'-"'"ac..:c.=-K---'- + :Z.K <a::.. .. ") - ;z. r < "~- tc. > -

0 

R. -· .., 1 =J')_f- .. { ... )'f.,('t)c.('t.. + v .. (R..)L::. ... I( Y ... r~t.)- 1<!-K'-., 
but this is zero, accourding to (2.28) below. 

The expression for the Green function, g~ven above, may also, 
using {2.17), be written in a number of other ways, which may be 

useful in different contexts 

G +-- :!.. '\' 'f?.(~)'f..(~) + ..L 'V ~ ~('t) 'f.('t.') 
- l.. t:,. K .. - t<t 2. ~ 1<., K>-- K,: {2.21 ) 

Here, the first term, which is even in ~, represents the real 
part of the Green function, whereas the second , odd, term repre
sents the imaginary part of G+ {for real K ). Another interes

ting fol'!Jula is 

G +-- L. 'f~ ('t) 'f.. ('t') ~ '5"' 1 'f .. (t.) 'f .. <~·) 
- "" K'-- K,... + T c.,. "t: K + K.. • {2.22) 

Here, the first term contains the poles, whereas the second term 
is regular at the pointe K~ K.., • For a sufficiently narrow 
resonance, i.e.,if K.,==~+t.)',. , that I)' .. \ is sufficiently 
small, the pole term gives the usual resonance expression forle+ 

y'~-= 
~ ('t) 'f .. (R.) (2.2)) 

K~- (ac~ -¥.!"-2.<z.,y..) 

II 



d. The relations between Y 17
(K,"L) and 'e, (~) normalization 

In this section, we shall for simplicity consider the caae 
of e =0 only. 

We shall, for this case, derive some usefull relations 
between Y'"" and 't".., 

For e =0, we have, for'?..>/!.. 

~<>-("' ) - ei.KR..( ..e<n.Kz. + ~ e.:"~) 
,t. - K ~<I( (2.24) 

~ YG.(K,?.)t,_ = iK. 'l_fr'""(tc,~) + f (2.24a) 

'f., (>t-) -=- 'e.,(~) e <-J<" (~- R.) 
(2.25) 

Y&(~<.,o)"' ~ (o) = 0 
(2.25a) 

Further 
Now Y,;. and 'P ... satisfy, respectively, the Schrodinger equa-
tiona 

and 

dL 'J::G- + (o~::.'-- V)Y.._ ""0 
c/2'-

dl.. ;z_ 
h_i. 'f?, + (I(;~ - v) "f., = 0 • 

(2 .26) 

(2 .27) 
Multiplying the first equation by Y~ and the second by f:& , 
subtracting and integrating from 0 to H, we get 

" -(1<~ K::) J '£,;,'P.,d"L-+- i.(K.,-k)<.tf~(.t')~(l!_) ~ 'f..(e._) (2.28) 
Q 

now 

C.,4'..,('t.) =:'LV:> (".J:r"(K,'t.)):.8_m (<t:.-~) 'f:' 6 {.t;'l)) 
VI It(.-)"'-. (2.29) 

so R_ 

2K~ C., j 'f.,~ d1.. 
0 

+ <-~ .. ~'-(R) =- 'P.,(R..) 
(2.30) 

or, since 

c...= 'P., (R.) 
z K. ... (2.31) 

~ ~ s 'f.,~(~) d"L + ~ If.. (10:') :::: f (2.32) 
0 2. K.., 

If instead, we take another residuum, res (Y,.o(,"Ll) we obtain ... 
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R 

\ 'f._(t.)'t'..., ('L) rh:... +- l 
l) 

'f~ (R) 'f.., (fl.) 
K~ +- K...., ;;;:,. E""'""" 

( 2. )) ) 

e. Charged particles 

In the case of charged particles, the solutions for "lc-.~ 
do not have the same simple form as for neutrons. ·.~e shall still 
assume that the nuclear potential is 0 for r > R. 

In the place of the Riccati-Hankel function, we must then 
introduce the Whittaker functions,~ , so that (2.6) is replaced 

by 
-k rre 

\CG-(c) = ~-.- \N::'. C'+-L (-Zi.Kf?..)x 
(I Z<K '?t 2. · 

( 
(<) ) " Se (t:) W.z."''i r-z•~::t.) - W:z, e·t (z..:,•t.) 

(2. 34) 

Here, ZtZ .. ~ 7 = -K- ' (2.35) 
where :E'1e , Z1-e are the charges of the projectile and the 
fixed scatterer and f1 their reduced mass. 

The solutions of the radial equation which continue IA(:,.'l 
and W"<z_ do then correspond to the usual f. and £_ , respectively. 
The natural generalization of the usual way of finding the singu
lar! ties of Se ( K) , is to look. at the integral equation, satisfied 

by£_ 
(0) R. 

f_(t,<t)"' f_ (~<,'t) +- }Jf B(e,~::,~.f) V(y)f_ (~<:,~) (2. )6) 

where the Green function B is given by 
1 ( (o) (o\ (o) (o) ) 

/?>(l,K, C., f)==- 2iK. f_(K,'~) f_+(".f)- L ("','t) L (~<,~) (2. 37) 

Ne are free in choosing V(f) and i_(o) • Since the singulari

ty at r=O of the point charge Coulomb potential does not occur for 
realistic charge distributions, the simplest choice is perhaps 
to say, that V is the total potential, nuclear and electrostatic, 
inside R, and that £:) therefore are the combination of the 

Riccati-Hankel functions, e.g. 
M - J+ L = o._(IC.), +a+r~>, 

c~~R..). 
(2. )8) 

Note, that in spite of our boundary conditions being different 
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from those of de Alfaro and Regge/t9/, B is identical to the one 
of ref .119/. 

It is therefore estimated , e.g.,by 

11.1 '5 + i:'t.. r e., f. ( 'l- -e .. f_ 
IBI ( c ((+/Kif) f+fk/~) 

From (2.36) and (2.38} we must also have 

f_(~)"" a_ f __ (~) + o+f_+('l:.), 

( C== I...('<)) 
(2.39) 

(2.40) 

where f __ (fil.) = l-.- (R.) , etc., so that we can solve the Vol terra 
equation (2.36) for f __ and f-+ separately 

f_±('l:.)= J./('t..) + faf B(y)V(J)£_+ (.f). 
~ - (2.41) 

From this we find 0 using a restricted V and repeating the argu
mentation of ref./161 or 1191 that f_~ have no other singula
rities than the behaviour as (r<'l:.ff for K'l:.~ 0 • The problem of 
the analytic structure is then reduced to finding a~(~), i.e., 
to the well known determination of the proton transmission coef
ficient/201. In this problem the centrifugal barrier is of minor 
importance, and we shall only look at e = 0 • So we have 

:t:.R. :..;o:R.. W.: ( ~· n) a .. e +- ~:t_ e == -.:t_,f -,.,,"'<. 

·,__/.a'e~"( a e-<-:()~-~·a::w' .L (-2.:..-;:f?.) L"'~' ~ - - « -,f.,z.. 

or, introducing .a =- - i 1::. R... 

W' =: e_- ~ .Z, ~ y ( f + i~ 
1 

,t I ,t i!) 

W 1
:::: (--t+i+z.;'>w 

1 -z 
a:t = 2 e + (IN:;: z W') 

- v',. f-
Y 

fim ~'-
z-+ o 'l:' -

Y(f'-<t.~,J...?:) 

¥U .. ,t. ~ ,~ ~) 
f- (.t.i')-~ {'(~)/f'(-..) + 0( ~(l)) 

~2r1 r·c1>f,,<ci_J + o (f) 

-== I- (f.2r 1 
-t- O('i &J (?:)) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

("--=1-+i'?_) 

so\V
1
=W(f+ O(.t~(ll)) ("l--to). So, the a's have no other 

singular point than k•O, where ~ has an essential singulari,y, 
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since it behaves as 

)
- -1 

\AI= (I'( 1- <~) {2.46) 
(or in the general case as (f'(f'tf-'-7_))-f ). So, the Jost 
function 

.£ (K) = f_ (t<,o) 
(2.47) 

will contain this factor 

.f_("-)= fv(K)/r(eu- <~) (2.48) 
but fv(K) is holomorphic. 

Consequently, also Scan be written as 

Sv= Se t'(e+t-•'l> 
f'((•f+it) 

where sv is meromorphic. Equation 
sion for S with a potential which 
range parts. 

(2.49) 

(2.49) is the general expres
containes both Coulomb and finite 

G-(c) / '( . ,-2. Both terms in Ye will contain the- factor I e t f+<i) , 
but 

Y/:(v) = {l(eH .. <'l__)J:l. Ye~(-:) 
(2.50) 

is obviously meromorphic, as also the similar expression for the 
Green function. Por those expressions, we can then construct 
different MLE, with convergence properties practicaly identical to 
those of the proceeding section. 

III. Structure problems 

The resonance functions may be a convenient tool for calcu
lation of cross sections,e.g.,of particle transfer. 

Another, and perhaps more important application is to 
nuclear structure calculations for such cases, where continuum 
admixtures play an essential role. Such calculations are often 
conveniently performed in other discrete basis sets, like the 
Sturmian or oscillator functions. However, when the total energy 
of the system is above some particle emission threshold these 
bases are seriously insufficient. 

We shall therefore here study the use of the resonance 
functions in nuclear structure problem, looking at two cases, 
which are each representative of a large class of such problems. 

IS 

li!l 

i'li'il 

-1,1 ,, 

I 

1.1~ .. -1 ~~I 
1

;11[11 

,II 
ill, 
111'' 

illll 

II 



In both cases, we shall stick to the simplest possible mo
del of at most one particle being in a continuum state. 

In this system, in principle, all energy values above a 
threshold energy are eigenvalues, and we shall in the first case 
only be concerned with finding the wave function. Let us for sim
plicity assume, that the other degrees of freedom are represented 
by one particle, which is different from the one with the thre
shold, so that no antisymmetrization effects occur, and that when 
the one particle is in the continuum, only one state of the other 
is, for energetical reasons, important. Futher, we shall assu~e 
zero angular momentum. So, using the Feshbach projection formalism, 
we write our wave function 

V=Q.'¥"+-P'/: (3.1) 

where, in this simple case 

p 1£ ~ 'fk.o ('L-t.) r d I( c.( I() "f ,._ (I<' '1.-t) 
v 

(3.2) 

q 'f "= L c., 'f.,_ ('l.,, 't.d. o.J > 
We shall furth;r assume Hpp ( = PH P) and HQQ. ( ~ q II q) to be diago
nal. The first means, that the 'Y'{K)are optical model wave functi
ons, with the important part of the residual interaction 

<. 'f~o <~~) I V'W> ('I.,, '1:-t) 1 't'ao ( ~ .. ) > included in the optical poten-
tial V(<-•) • The second assumption means, that the functions 

'e,, ('L,, 't._) are obtained as normalized eigenvectors in a 
.usual bound state shell model calculation. We shall for simplicity 
assumt that the energy scale is so, that E=O for k=O, particle 2 in 
the state Y'w 

So we have 

(._ Y •(K~ ~,) '6o ('1-.,_) f HpP I Yt-(K, ~,) 'fio (~,) > "",~£ (K) &'(1< K') (Jt0 

< h I H~~ t m > = E., il'....., • (3.5) 

The projection operator P will in our case contain a 
projection operator 

/l ~ 'f?-o ('L,_) } 'fL: (C.~) d 't~ {3.6) 

We can now from the Schrodinger equation get the usual set 
of coupled equations 

1.6 

I 

l 

(Hpp -£)PY = Hp"QY 

( 

( tt .. ,.- E..) Qy =: HQP py 

(Hpq o, PH~ , Hap=; QHP). 
The first equation has the solution 

PY = G;H,.,.Qy +;K,~, 

(3. 7) 

(3.8) 

(3. 9) 

where G-; is the Green function for particle 1, 
the optical model Hamiltonian, contained in ~PP 

corresponding to 
(in general multi-

plied At_ ) , 'Jp is a solution of 

( 1-/pp - £. ) 'p ~ 0 ' q !p "" 0 

It therefore obviously must have the form 

7P = ~'(K)'f'~or~a) Y:~'(K(E),'l-,). 

(3.10) 

(3.11) 

The expression for P~ is now inserted in the second equation, 
to obtain 

(HQq- E)Qy f- Hqp&~ f/pt< ~"?/( + Hqp Jp '=- 0 · (3.12) 

We may now use the expressions (3. 3) for W'l': and (3. 11 ) for Jp 
multiply with 'fn-, ( '1:.. 1, 't~) from the left, and integrate over 't 1 , 

'-:t to obtain 

~ e., [ ( E"- E) <f.. .... t- J s J'-,J"l.J.. ~ .... H'IP G-: (E) Hi'G. 'f.,] 1-

+C.'(I<.))Jd>t,ch . ._\f.., H61P'f2o(~~)'~-f{K(E) 1 'L 1 ) ::= 0 (3.13) 

- L. c.., [(Ek-El~)il • .., + M .. ,.,nq] +c.'("')N...,(k) =-0. ... 

This equation, which is not an eigenvalue equation, since 
any E (I<) in an allowed region gives solution, determines the C.'s 

up to a common normalization factor. 
We see that the Green function G~(E) , and the scattering 

state ~+(K) both enter in this expression, respectively in M 
and N, multiplied with the residual interactions Hpq_ and HGlP 

and integrated with bound state wave functions. Now, these latter 
go rapidly to zero with increasing 't.1 and ~:l , and the residual 
interactions are of finite range. We can therefore, with any 
desired accuracy replace the infinite integrals in M and N with 

integrals up to R, where R is of nuclear dimensions. 
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When this is done, we can introduce the MLE of G t~M)and Y,.. ,. 
G-i- (K) ::;. L. 

p " 

'P~ (t,) If .. ( ~n 
2. K., ( K - 1(.,) 

+-G ")' y (K.,"t;) = - C-. 
'f ... ('t,)'P., (R.) 

~ Kk( K- K..,) 
"' 

0.14) 

(3.15) 

The easiest way to solve the system of equation thus obtained is 
presumably the following, suggested by Fano/211. 

The matrix (E~-E(K))6~.., +M .. ..,(I<) is diagonalized by an 
energy dependent transformation, which carries our equation over 
into 

so 

Ct'(K)(E_,..(I()-E(~c.)) + c'(~<)~(k)=O (3.16) 

el"' (~<)-:: c '(K.) Af (K.) 

E.(~<) - Er (K) (J .17) 

The main part of the calculation is the diagonalization, which 
should be performed for all values of K. It is in this respect 
a great advantage, that our~~~ and Af~have the simple forms 

~ 1 rl1.r'~ 
M.,...., = L Z.K(K.-~) J jJ..,_,o/,_~ 'P..,("l,,~)f-ft.~Pifzo{-;.,)\f~('t,) • /R_ ~ 0 • (3.18) 

" ~ ~ ch,c(t~ ~0 ('t~) 'e~ (~,) HPQ IP, ('l,, 'ta.) 

(the '€.., (-c,, 'l..t ) are of course also of the form ~ 4::~. ~ (>,) ~. (2~)) 
Ct~a_ I 

N., (k) =-r 
e 

~(!?) e·'"R. 1 f 
--:2--:----7-:--:-,,--c) J ) d~, d'l._ 'f..,(~,lo_) H,.p'f.0 (?~) 'Pe(?,) • (3.19) 

e o o 

In calculation of the normalization constant it is not so 
advantageous to use the MLE. 

We shall here, for our total wave function Y(EC~:.), t,, ~z) 
use the same normalization as for '1£1-(lt .. ,"t.,) , i.e.,we shall divi-
de the coefficients with A, calculated from 

TT.h,ch.~ Y(E(~<>)Y(E(K.'l) = "fo(K·K') /AI' 
0 0 

- l'-= \ d K" C.,l tt..") c. ..... ( k. ") + z.. I c., I 2-. 
0 ~ 

(3.20) 
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here 00 c"""' ')f-

CI({I(") = !f= jJz, ~b~ ·v(~<","-,)'P..o('~,)P¥ 

<""""-' " :::.;;. ~! d?.-,d?..L ry<- {I<':'L,)'f~o(c,) G-:(k) l-Ie& Q 'If: +-
o 0 

+ ~I (1<::) !)' ( K _KIt) 

here, we shall use 

G-1-
p ;,.T 

J(-

dK' Yf-(1<', ~,) y+ (K', 'l;} . 
K+2. - k';t 

* If, what in general will be the case , H PG = H 6l p 

c: .. (K")"' /-K"')_ L C..,/\/:(~;:)+ c'C")~'(tc·-r-") 
"" 

and our normalization constant is determined by 

f~'(K-K 1 ) lA/" = )dK" / C
1
(1<) ~(K-Icfl) -/· 

+ -:1--,,,_ r c., tv.:r.,_ Jl-rc·r~tcrK~-K.~') t-
,<.,_ - K WI__, '1 

+--f--... >'C:.,/V,..(~<')] +-L c,("-)~(K') 
lc.' -1<· ~ ., 

'l- ''"/'~ .!Y.()/2_ = I e' I 6 ( K - K') + i(K>- "-~ c.... N,.. K ¢(" - "'1) 

so 

I I'- :c I ' 12_ -rr I '>' 1(- I :L f) = if e_ (K) + 2_-;(:L {_, C:.., /11.., (K) • .., 

(3. 21 ) 

(3.22) 

(3. 24) 

(3.25) 

(3.26) 

The qualitative picture, obtained in this way, bas been 
discussed many times. The cross section of, e.g.,elastic scat
tering, will, due to the residual interactions, get a large 
number of narrow resonances. Averaging over an energy interval, 
which is larger than these widths, one gets again back a cross 
section corresponding to the 'C-~, however with somewhat larger 
single particle resonance widths. 

A different situation is met, if the residual interaction 
has matrix elements mainly to such states, where the other deg
rees of freedom - in the above model represented by the particle 
2-, takes up a small amount of the energy only. This will often 
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be the case with collective degrees of freedom, In such cases, 
the assumption of only one continuum must be given up, but on 
the other hand, the admixture of discrete states will be large 
only, when these states, as well as the total energy lies near 
the particle emission threshold, 

As an extreme, but not unrealistic example one can think 
of the coupling of the single particle states to a static deformed 
field, as treated in ref,/221, 

In such cases, the main effect of the residual interaction 
can be described as the shift of positions and widths of reso-
nances, 

was 
A method to calculate these shifts in perturbation theory 

given in ref,/23/, 
The starting point here is the Dyson relation between G~ 

and a+, pertaining to the unperturbed and the perturbed poten
tial, respectively 

G ,_ = G: +- G--:: 1-1' G ~---. (3.27) 

where 11' is the perturbation, Assuming again, that the perturba
tion is active inside H only, we can again introduce MLE for both 
a+ and a~. Equating the residues at K ~ K, , one gets 

~ 

'f., = L: 
"" 

'f'..:: J 'f_:: H' If" d<t: 
v 

(3,28) 
Z K~ (K.,-- K~) 

If we put 
H' .>..u 

- " \ i. l<(i.) K., - ,e_. /\ n 
'"'0 

'f'., ~ Z2 Xi.Y:il 
i-::.a " 

(3. 29) 

and equate the coefficients of each power of ~ , one gets a per-
turbation series for wave functions and energies, 

It should be noted, however, that there is no term by term 
correspondence between these series, and the usual perturbation 
series, even when we look at the contributions from bound state 
residua only. This is due to the nonorthogonality of the reso
nance functions, Only the 1, order corrections in the energy 
are in agreement, If an exact diagonalization in a truncated 
space is preferred , a similar problem is met, The equation 
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(~(-- E.)Y.t ., ( Ho t-H'--F.) Z:, C.,'fn = 0 
't-(lo.n<. h 

(3. 30) 

leads, e,g. 1 to a matrix eigenvalue equation, when multiplied by 
N independent functions and integrated over all angles and over 
r from 0 to R, 

Due to the non-orthogonality, E will appear with nondiago
nal terms as well as diagonal between two bound states, its non 
diagor,al contributions will be small, so that such eigenvectors 
which consist mainly of bound state components must resemble the 
usual ones. In general the non-diagonal terms are, however large, 
The non-orthogonality is not merely a calculational inconveniency, 
but also leads to a freedom in the choice of the set of equations, 
satisfied by the eigenvectGrs. A natural choice seems to be to 
assume that a certain basis t1 = '1, ... l"ltJ is sufficient for the 
expansion of Y , and that the same basis functions are used for 
the matrix < t'l, 1 HI n., > • It should be noted, that states with 
different f. -values are trivially orthogonal, and that therefore 
in the approximation of one pole for each e-value in the expan
sion, no problem of the type mentioned arises/221, 

The ambiguity in the choice of a truncated problem, is con
nec~d with the well-known absence of minimum principles for 
scattering states. However, stationarity principles do exist, and 
a better starting point for the truncation is obtained when we 
start from a stationary expression, and make a truncation of that 
expression, Now, the expression (3 ,27) above can just be obtained 
from the variation of an expression for 

G- t- - G-~ = c.: HI G-. 

2(G.->I'G+-- • G-"H'G;- G- 1 H'{;.~+- G--"1-!'G;H'G-')=-U, {J,J1) 

where the variation is in the paramvters of a+, 
Since the expression is stationary, a small change in these 

parameters, like a truncation with sufficiently many terms must 
lead to an expression, which ia near to the true one, ~iaking 

now our variation with such a truncated expression, we obtain 
the equation 

tV ... 

L.' c., 'f., =. L. 
"' .., 

tJ 
'f'.., . ~ 'f..,H'(&~ .. If .. )d~ 0.32) 
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or, defining \f.., = '4',.,/.r.z.::, c..,= ..rK: ~ 
IJ ~ 

")' ~ ~ "' ~""' ~ ~ I ( ~ ~ ~ \ 
f-. c ... 'f- ~ L-. ~ ( K _" , ; If ... H L.. c .. 'f' ... 1 drc. 
n, .... ""-) ""-

(3. 33) 

Equating the coefficients of ~~ we get 

(I<- Kn-.) c:, = L. c:-... <. Iii .. ~ HI if'... > (3. 34) 

which is obviously an eigenvalue problem of the usual type, 
though non-Hermitian (but symmetric), In general, the overcomple
teness of the ~'s must mean, that the leaving out, from the 
truncated basis of some of the functions is less dangerous than 
with the usual expansion methods, In practice, looking for reso
nances in G+ we can exclude from our basis all such components 

which, if they were large, would lead to a non-resonant behaviour, 
i.e,, the antibound functions, the functions with negative Re(Kn) 
and the functions with r >) K 4 

In conclusion , it should be noticed, that numerical inves
tigations of the MLE of the $-matrix are nearly absent in the 
literature (see though, the article by Weidenmuller/24/),and for 

the wave functions, such investigations were never carried out, 
In a forthcoming paper, as an illustration of the general results 
obtained above, we shall discuss numerical investigations for 
some simple potentials. 

A p p e n d i x 

It is easy to prove that the real poles are single, but 
somewhat more complicated to exlude multiple complex poles. 

This is in the literature often done by arguing that such 
poles are a very rare phenomenon, which will only be seen for 
particular potentials. 

This argumentation seems in need of a firmer, quantitative 
basis, which we shall here attempt to construct. 

For all potentials with parameters, which can be varied in 
such a way that the poles are moving, the complex poles will 
become real by meeting pairwise at 0, fort* 0 , or on the 

negative imaginary K.-axis, for e ~ 0 • These double poles, 
which can be avoided by a slight change of the parameters of the 
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potentials, are , for the potentials of relevance in nuclear 

physics, essentially the only ones. 
The resonance condition (2,8) will lead to a multiple re

sonance if 

d [ ~ 'f ... (1.)J I -
d1< 'f..,('t) ..,_~R. K~k.,-

,+t 
_!}__ ,- k ~' (~<R)] • 
Jr<. L h .. (" ~) 1< ~ "" 

(A1) 

In this case, the normalization condition (2.9) 
filled, since (A1) leads to the identity 

cannot be ful-

R ~ h+'r 
( '('l. cl + -e .. (R) [-L ( k , K R) )] 
~ " 'l. Z.l<., aK ~~(d~) 1<~ k., 

o. 

Let us now consider a square well 

then 

with 

V(~) ~ 0 

v ('t) =--If., 

fo<. 

fo"L 
~'>R 

•q R.. 

'P = c.ovvd .. jt (K) 

If K :::. ( Kz. + v.. ) l. • 

The resonance condition (2.8) is now 

R =- 1 

(A1a) 

(A2) 

(A3a) 

(A3b) 

k j'< [en_(h;(K))l_ =/~ d~£[&(J.t(K))] (A4) 
r<-1<., n ~=K(K,) 

and the condition (A1) that it is a multiple pole, is 

or 

<~:_ {1< £ (en ( h;(K) )~ "~"" = 2_ { K ft (Cn (jr (K)))L,.,, (A5 > 
(K= 1'\'(Kl) 

K ;1<: {fA_,( J,;(K))) -f- t (fA(h:(K>)) =:: 

c.1._ • K dl< cl ( · ) 
=k cJK2. (ffrr{jtOO)) + -;:- dK K. dK em <Je UO) (A6) 

K=-K(~<) I<.=K,..,. 

Now, we can use the Riccatti-Bessel equation, satisfied by 
-r 

Z= h( and 2 = jt 

~;4 (e,..,(:Hf))) +-(a~ (e-., (Ns>J))(= 
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and 

K cU< = 1 
I( dK 

(seen from (A3b}) 
to transform this into 

[ 
ere•r) - c1 ( o +- ]~ 

1< - ~ - 1 - L c/1( '<h) ( 1-.,. c •q)) 

i!~~t) 1- f -t- {jK ( ~ (je ( KJ))/'] t-

+ ~- (~ ( t,+- (t))) 
d1< e ~ ;K ( ~ ( j e ( K )) ) 

or, using (A4) 

0 

V., [ d l- ( +- J ere,,) J [ {) +- J]. -K,_ j---; & t-.e(Kl) + ~- k d1< t.m(he{t)) 

or 

.:L ( ~ (<f.,))/ =- I< del ( ~ ( h/ (t:J)) I = [ - e 
d<-t '<--~1 I( {K.~K.., (l+1 

(AS) 

(A9) 

K"K(•) 

I<~"" 

(A10) 

(A 11 ) 

which could not be fulfilled for a complex 
~1 ~ 

pole, since,e.g., 

1- L- cJ__ 0 _ 1- = _ (1 .:LI <e .. I ell.. 
rn dl V>-J (<f..,) 2=-f " I - < 0 (A 12) 

for a real potential. 

Now with the normalization (2.9), the shift of a pole po
sition, ~E., for a small change of the potential, 1;lv is given 
by the usual perturbation expression 

PE .. "' J 'f,.l_ ~V elY: 
(cf. eq. (3.29)). 

(A13) 

This perturbation approach, which presupposes that the poles 
are single, will converge and lead to a new potential with non
degenerate eigenvalues , provided I bE,. I is smaller than I Eh- EJ I 
for all Ej 

In nuclear physics, the \Voods-Saxon potential is the most 
used. This is strictly speaking different from zero for all r-va
lues. For the present purpose it is, however, completely legiti
mate to replace it by zero outside R, pr~vided this is chosen well 
beyond the nuclear radius. 
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This potential will also, for all practical applications, 
deviate from a square well by a ~V which fulfills the above 

requirement. 
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