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He R-MaTpiP-IHLIH o6ono1.fetiHblll nonxo.n K a -pacna.ay c¢epwleCKHX 

H.aep. I. OcHOBHbTe oco6eHHOCTH pacqera a -w11p11H c o6onoGeLJ:HbJM 

6a3uco:-.J noreHuuana Bynca-CaKCOHa 

C¢opMynH.poeaH o6onot.Ie'-IHLJH n:o.nxon K paccMorpeHU:IO 

OCHOB8HHbltf H8 11CTIOllb30B8HH.H HHTerpanbHOH clJopMy.llbi ,OJHI 

a -pacnana, 
a -umpHHbJ. OrrH-

lcaua M€T0.011Ka 11 rrpoeeneHbi pacqeTbJ a -unlpHH nn!ri: o6onot.Iet.Iuoro 6aauca 
c noreuuaanoM Bynca -CaKCOHa, Y'-H:!TbiBBIOllHie KOHet.IHbie pa3Mepbi a -qacTH-

llbi • .ilaHO KpHTH'-l8CK0€ o6Cy)Kll€HHe HCIIOllb30B8HHbiX paHee IlpH6llH:>K8HHti llJIR 

~
Oll06HbJX pacqeTOB. C ITOMOUlblO p8C't.JHT8HHb1X 6e3 CB060ilHhiX napaMeTpOB 

a -lllupuH npoBe.neHa KnaccH:¢H:K8UH~ a-rrepexoaoe. Yia ee aHallH3a cne.ayer, 
TO OCT8T01.1Hbl8 838H:MOJleilCTBH:51 rnaBHbiM o6pa30M OTBeTCTBeHHbl 38 cywecT-

OB8HHe pa3nH'l.IHbiX THTIOB a -nepexonos. 

Pa6ora BbJI10nHeHa B fla6oparopuu reoperuqecKofi ¢H3HKH OHfiJ.1. 

Coo5meHHe OobenHHeHHoro HHCTHTyTa llnepHbiX HccnenoBaHHA. lly5Ha 1978 

Fl-trman V.I. et al. E4- 11286 

Non-R-Matrix Shell Moclel Approach to a -Decay of 
Spherical Nuclei. I. Basic Features of a -Decay VVidth 
Calculations \Vith Woods-Saxon Shell Basis 

A shell model approa.ch to a -decay calculations for spherical 
nuclei based on the inteqral formula for a ~ecay \vidths is formula­
ted, Calculating the overlap integrals with Woocls-Saxon shell moclel 
basis and accounting for the finite size of the a -pa.rticle the 
earlier used approxirrlCltions are discussed. A nevv procedure for the 
classification of a -transitions is proposed. From this classification 
it follnv .. rs that the residual interactions are responsible for the 
existence of various ty-pes of a -transitions. 

The investigation has been performed at the Laboratory of 

Theoretical Physics, TINR. 
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1. Introduction 

This paper is the first one from a aerie of three papers 

(quated as refs. I 0 II and III) dedicated to a consistent ana­

lysis of '¥-decay transitions of heavy spherical nuclei. 

In refs. 1 •2 ) it was shown that the or -decay width of a 

spherical nucleus with mass number A can be expressed by the 

integral tormula 

r \/ ...d rv- ~.Aft· '/ jl? 71/.J;,"'I/ /, 2 
10( = 2/r L <::'vcz'iUL/ J ~A-.Y 1 ~- >, 

L (1) 

where the wave function 
.J;·Jfr. 

~- describes the decaying nucleus 

h:A-~ stands for the nuclear part of the in-

0( -particle and final nucleus and can be 

expressed by the sums of nucleon-nucleon potentials 

and the potential 

teraction between 

~ A A A 4 

~A-~= L I LV= L ~--I 0-I J{;. 
t=1j=F t.7j-=-f t.:;J=~ t.:;j:f 

(2) 

~·!';';· 

. [..{/ has the form 

J;·~:_ ) C fL /; LH. 
UL/ - L ~#~· J;:,.fJ2R) ~ ~ rY 

~'rH 

The final channel function 

(3) 
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Here the wave functions 
?!-Y~ ~ and ~ describe the internal 

motion of~ -~article and of the final nucleus,,while the quan­

tum number L is related to the orbital momentum of their re­

lative motion. The function J[ fR)in eq.(1) is expressed with 

the help of the regular coulombian function ~(RJas follows 

(7 {R) c- .f/?.; f: (RJjo 
t. YA--Q L " 

"" 
(4) 

since it is normalized to Jr -function in energy. The variable 

R stands for the distance between the centres of mass of 0( -

-particle and final nu;::::.eus. The value of l<.r is related to the 

(){ -decay energy Lf2, by the formula 1; =/~2~ /t" . The ope­

rator ~ guarantees the antisj~etrization over the coordinates 

of all A nucleons. The calculation of o( -widths based on 

formula (1) implies the use of some model 
.f·-¥t· ::>!/# ?h 

functions <:/t , 7j , ~at and for the 

representation for the 

potential UA-4- • 
The shell model for the initial and final nuclei has to be 

used as it was already done in the frame of the R-matrix theory 

of cr -decayJ,4). The potential ~~-~has to be taken consis­

tent with the same shell model. In section 2 of the present 

paper the shell model approach to 0( -decay width calculations 

based on formula (1) is described and its new features are ana­

lysed in comparison with the R-matrix formula. 

A recently developed methodS) has allowed us to calculate 

the ~-widths taking correctly into account t4e finite size6 ) 

of the o( -particle, when the Woods - Saxon shell model basis is 

used, as having a correct behaviour at the nuclear surface. In 

section J the properties of basic matrix elements occuring in 
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0( -decay widths calculations are presented,and the previous 

approximations used in similar calculations are discussed. 

Comparing the 0( -widths calculated for a large number of 

spherical nuclei in the frame of the independent particle shell 

model with the corresponding experimental widths, evidence is 

given for the influence of residual nucleon-nucleon interactions 

on ~-transition prob~bilities. This comparison also leads us 

to a classification of D( -transitions which is discussed in 

section 4. 

2. ~he shell model approach to the integral formula of 
0{ -decay widths 

The basic idea of the shell model is that the interaction 

in a system of A nucleons may be represented by the selfcon­

sistent field J{f~nd residual interactions 'Z{,ft.~~)Assuming that 

for heavy nuclei the potentials £{ and 2t.j· do not noticeably 

vary with the change of the mass number from A to A-4 , the 

interaction from eq.(2) may be rewritten as follows 

9 4 .tr A 

~A-It = L_ « + L_ ( ~i- t;;J + L. T z!ei 
t..=t /.. ='/== f £:; f tf-=-' 

The wave functions for the initial and final ·nuclei are 

and 

2/-J. .(~ 
,{. 

- L c J:,.V,·I {1/A{) +l't'/ 
I} A{ 

~ 'lK,--
1 = I 

~~ 

l#. L C ~ '/I r ~~J "~~ > , 

' 

5 

(5) 

(6) 

(7) 



PI/ 
where the constants C are the mixing coefficients for the 

pure configurations / ( PN) IH .> • Symbol P(H) denotes the 

state with total angular momentum 1p(~N) of the proton (neutron) 

system and symbols IM are the spins of the nucleus and its 

projection. 

Let us consider now only the first ~~o sums in formula (5) 

assuming that the third one leads to a renormalization of poten­

tials l{ r~,'} only: 

9 o/ 

~4-ft I l{' + I (2{-/- ~ J. (8) 

C- (.£; 
This is equivalent to the commonly adopted in the nuclear reac-

tion theory "diagonal" (over (A-4) variables of the core) 

approximation. After the genealogic expansion of function 
~~ 
~- (A~(1,2,J,4 + (A-4) ) and integration over the coordi-

nates of particles 5, ••• ,A, formula (1) for the «-decay widths 

J!lelds 

rs~ P-'f. L I L c!!A{c ~~ \ cttL Hz /2 
o( L /f?.N:/',11.. L lfl{lf~ IJ!i;L •(9) 

' , '/ 'I' lf'zft~ 

where the "geometrical factor" 

BAt.[ .............. ~ {...78 .&. Ll' j 
"'""'( = J.: J. L r '-~ , Gf!-NJ'-#..'1 !{· "'t· /' l cft2 jJif L <'}tllft>< ~J,f;!JA{> 

'f J., .X . r. ( 1 0) 
~- Ill, .Lc 

includes the fractional parentage coefficients4 ) <. 'j!f;., II fl" > :> 

< ~~~~II flit" / for separating the proton pair in 

the state e =(.,,t,/-1J~ep )J,~ with angular momentum j12 and 

the neutron pair in the state ~= (71.J~pJ?1f/tcf,y ).;tJf with mo-
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mentum J34• ~ne 9 j symbol yields the angular moment~~ selec­

tion rules. (The notation f=v'21-r1 was used). 

The matrix element H~.;'"'L can be written in the fonn 

M~#.tL = j 4~L rRJ .fcRJ RdR , (11} 

where 
~ (R') - S: .rnf.-1. L,tt(.,..., ~ ~ ~ et.ttL - elf.., v,! YEN: ~, -t, ~3 ~ ~~ J .... 

"''"' 
~ ~" -¥ r(, t;, ~, ~J ~ ( i i 7 l) r. rJZ-J e:/;:;-"4 4,gdf?? H (12) . 

_,~.,LM 
Function iP ~4 represents the spatial part of tl• f 
wave function "~ our nucleon 

~~.., = [r e/;,~1~ ~-:J ~efi r.(j Jz [ .?J~/J//~;;~1-J~J l] < 13 ) 

Ll'-1 ' 

where indices 1,2 stand for the proton, while 3,4 for the 

neutron states. Functions ~·t.;t; are the one-particle functions 

of the shell model basis corresponding to a nuclear potential 

1{- (4.:) • The function cr.; is the spatial part of the internal 

0( -particle function c,;:. • The factor SC!fk' 

-r % r ~ 5*~ = 2 r2-J:,~ d1t.; ~Jz) {z- J;"'+-~~ d/J.?t-) x 

-"\ _...,. o'\ A -4rc;k+~ r.fr r-f f. ,/:. ~ J r<- ..1+ f{ ? ( ) 
j-t/~/s~~ (-1) { .~: -t';,fiz 1,h <;,of~ J 14 

is the result of' the transformation from the (jj) to (.f1 s) 

coupling scheme, of the antisymmetrization in the two particle 
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states tf-(~) and of the summation over the spin variables. The 

following spatial coordinates were used above 

~ -1 - ...... l= =-(A-~) 
("'1 Vi 1 

~ 1 _.._, 
']:: = - (ll -~+) r:t rz J 

~ .J.,-10~--
~ = 7 r~, +~ --1!J -~) 

R--'> -1 ...... ~ _.. I") = f (41 .,...~ -t-4.3 +-7' • ( 15) 

The factor yEl from eq.(11) is related to the replacement 

of integration variables {~} by { F:. 7 if'J. The method5) 

of separating the centre of mass motion of clusters in nuclei 

permits us to perform the integration in formula (11) with 

practically any form of functions ~~//r~nd ~ and of poten­

tials (8). 

However in this paper we shall use the conventional func­

tion J2; : 
/1/ /. ./~ ) % -j}(p/.,...F<-~r-F/) 
:.I..- ( f.,;> &_, r3J -=( ;::v e 

I=- 0. 4-.J4- /hz -Z 

(16) 

though it does not fit very well the form factor of electron 

scattering on the 4He nucleus?) •. For the possibility to work 

with an improved C( -particle function7 ) and for the effects 

which lead to using this functior. see ref.B) 

For some calculations (see paper rr*)it is useful to sepa­

rate in explicit form the dependence of matrix elements 

on quantum numbers j 12 and j 34 by means of an idea exposed 

by MangJ). 

* JINR, E4-11287, Dubna, 1978. 
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In this case we can write: 

t;sH==2x L I L cllyr'f ;;-t:~t;4LJi"'ri~li;. z 
L. If! M·P Jl /f7f{·/}Af '!. ~ ..... t;. L • 

• '-r~ (9') 

where 

G"'~~~ ~L- \ G?Att L S C e,/'.zjrz 
P,·l},. D " - L IJ·A{~'I*'' ~~ 0 0 0 i< 
l t lfNf ,jz j;J4 T. 

MeAttL 

X c ~t'yj3lf 
ooo 

C fozfi~ L 
0 0 0 

c .ft~J.n /)~4/J~ clf"Zfi•L 
oooLooo ogd"' 

,( s ii ~~H<~ 
~Ak ~J-~, .,.,Y4 L 

However, further it is convenient to work with the 

pl'evious foi'IllB of the matrix elements 11e~L (11). 

(10•) 

( 11 •) 

Since or -decay is a phenomenon which depends strongly 

on the surface properties of the nueleus 1•3), the asymptotic 

behaviour of the self consistent field and of the shell l!lodel 

functions may be important here. Below we shall use the Woods -

Saxon potentials10>. 
t{rA,J == y;i / (I+~({ ~c-- ~J/,q,)) 

n _ A. A~ (17) 
/'1..4 - /C,_L 

Henceforth one uses functions ~-~Of' which are the solutions 

of SchrSdinger equation containing the nuclear potential (17) and 

a corresponding spin-orbit part. 
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Let us discuss some properties of the residual interaction 

~ij which is important for describing the 0( -decay phenomenon. 

It is known9) that the interactionZ{jtransforms into the free par­

ticle interaction~j when the centre of mass of a pair (i,j) mo­

ves away from the centre of the nucleus. 

In principle the functions (6) and (7) have been cal­

culated with the same residual interactions ~c?· which appear 

in the potential (8). First such calculations using the finite­

size interactions 'ZJ,/ have been done in ref. 11 ) for the Oc' -

decay of some spherical nuclei in the vicinity of the 208Pb nuc­

leus. 

In paper
12

) it was shown that the contribution to the va­

lues of o( -widths of the second sum of the potential (8) with 

the parametrization11 ) for the density-dependent interaction 

Z13· does not exceed 30%. Thus we shall calculate ~ -decay 

widths using formulae (9) - (15) under approximation 

-?-

~A-It I ~~A,) 
(18) 

L=~ 

Now let us return to the form (11) of the matrix element 

H~lfkL • While the function {" (.R} grows rapidly with increas­

ing radius R , the function ~~L(-o/decreases outside the nuc­

leus (for R # RA), since it contains one particle functions 

~-t"~t.f~) and potentials /{14J. Hence, the integrand in formula 

(11) will have a sharp maximum in the vicinity of the nuclear 

surface and this maximum will determine the value of the matrix 

11 1) ~AWL . 
element C~i~L • The value R = Rc for which this maxl-

mum occurs may be considered,getting some analogy with the case 

10 
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of the R-matrix theory1>>, as an effective channel radius. It 

is clear that in this case the "channel radius" is not an ar-

bitrary parameter as in the R-matrix theory, but it is defined 

automatically. These considerations are also true when residual 

interactions in the potential lt A-It {8) are taken into account~) 

It should be noted that the more deep analogy with the R- mat­

rix theory can be got under some approximations (see section 3), 

since in the frame of the present theory, the amplitude of the 

probability for the ~ -particle preformation which is propor­

tional to the function £¥.-x;L(.o/, depends on nuclear structure and 

on concrete form of the potential Vo.-A-ft, i.e.,on the dynamics 

of the c( -decay process. 

J. The investigation of the matrix elements /tfe,~t~,t L 

In calculating the matrix elements M;;.,AttL as defined by 

formulae (11)- {14) and (16) we used the results for the 

four particle overlap integral, ref.S) generalized here for 

the inclusion of potential (18). First we have to fix the 

parameters of shell model potential (17). As it can be seen 

from table 1 the influence of different choices of phenomeno-
14-16) logical sets of shell model parameters on the values 

of matrix elements Me4L and consequently of o( -decay 

widths is not essential. Throughout this paper the parameters 

from rer. 14 ) are used. 

In order to understand qualitatively the properties of mat­

rix elements M{~ L the following form6 ) of fun ction 

is useful 

6'o oL {R} = J/(R) Vi.+:: L (R} . 
""....... ., 41 (19) 
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-Here the dependence of potential (18} on variables .[ f,· f is 

neglected, i.e., 
/;1 

(20) 
~A-~ (R) ~ L i{ (R) 

L=f 

V{R}. 

The above defined function ~A/ L(R) is proportional to the 
~"' 

amplitude of the probability for the o( -particle preformation, 

as it is stated by the R-matrix theory of D( -decay)). 

In tables 2 and 3 the values of ratio 

Ll - (M. -H:~ 
e~~.t L - e.v,.,L ~" ..... 4-L ) / M~li/L (21) 

are given for the various types of configuration f;, 4 L 
In the calculation of matrix elements M iAk L the approxi­

mation (20) is used. One may notice that the values of Ll?A-.(,L 

are small except for some levels (4s1/2, 3d5/2, 2g9/2} far from 

the Fermi surface of heavy nuclei. But the contribution of these 
-,/. I/1'1,· 

states to the wave function ~ ,formula (6), and con-
rS/'1 

sequently to 0( -decay widths let ,eq. (9) is not significant. 
rr.SM 

So, the approximation (20) changes the widths I"" not more 

than by 30%,and this fact justifies in some sense the use of 

alpha-nucleus potential as a function of R only.The dependence of 

matrix elements H~.V.L on the configurations f;.,~L can 

be understood through the dependence of function ~~L on 

the same quantum numbers {~L • The latter is mainly res­

ponslllle for the variation of the "channel radius" 

which determines the values of matrix elements H,CAtrL (see 

tables 2 and 3). Let us note that the values H~~L increase 

12 
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strongly from the case when (n1 -lt;!t) .:=. (:n2 ~ j:z) and 

(?1J ~ ;;h} =:= ('11-,lyj"} to the case when the above configura­

tions are different. Now we examine the approximations used 

previously in calculating the o( -decay widths. The "point 

0( -particle approximation"17 ) consists in taking 

__.., --=t -=;. --=:,. ~ 

-1, =-A-l = ~.J :=A~ = R {22) 

in formulae (12) and {13). In this case the factorization {20) 
<::>/, /l,-•• f 

takes place automatically and the functions ~~L ( R) are ob-

tained without integration over coordinates f ~ y . As it 
f>,.,;.j 

can be seen from fig.1 the functions ~""'L (A!!.) differ from 

functions ~~l(RJboth in the form and in the amplitude.Henceforth 
... ~ Po,<...f 

the matrix elements MP.rMtL are also different from the exact 

values of 1"1 P.rNtL In order to make the point approximation 

useful the correcting factor 

B - [M I R..:..X ]
2 

C ACt L - e4L 1'1 f:tAftL (23} 

has been introduced17,G). A convenient interpolating formula 

fitting the dependence of factors B (Jtf{.,L on quantum numbers 

ni, ~i' ji has been found 17 •6 } using a harmonic oscillator 

shell model basis. Let us study the factors B~tf(,L in the frame­

work of Woods -Saxon shell model. In figs. 2, J and 4 

typical values of factors 23~~Lare plotted (point connected 

with solid lines) together with the families of the dotted lines 

resulting from interpolating formulae of the same type as in 

refs. 17,6). We tried to choose the parameters of these formulae 

for fitting as properly as possible the dependence of factors 

13 
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Fig. 1. Functions ~K.IL (R.j for the 212Po ~ucleus with configu­

ration ~~L =[(Mo/:lj_/(.Z:J~{J.,~.The solid line stands 

for the function ~~L ( R) , the dashed one, for the 
tlr H.O.(. ') 

function Y'~Af.tL R and dotted, for the function 
Jb",f 

~K.eL (R). The ordinate for the latter is given on the 

right-hand side. 
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--· 
--· -· -· 

1.0 

oLL~~~~~~-~~--~~ 
3._ 3p'" 24,. Zj .. 2g,JI 1h .. "• l,rf.,1J 

Fig. 2. The dependence of the correcting :factors 8/Jt~O :for 

219 ~ ')2 the Po nucleus on proton pair states ~ = {11.,c.,)f 0 

for different neutron pair states N~ is represc:nted 
2 

by the following symbols: X - ~ = (3p"'A) o ; 

0- .!Vol= {2/Sj'<.)o:t. .I .d - A4 =- (.<.$/9/z)o2 ; 
2 

'\7 _ ~ = ( f i'f:;2 )
0

2 and~-~= (1,;~~)0 

connected by continuous lines. The dashed lines labelled 

with the corresponding symbols represent the results 

obtained with the interpolating formula described in 

the text. 

/3~L on quantum numbers ni' fi' j i • Unsuccess of our 

fitting proves that it is impossible to obtain a useful inter­

polati~g formula for the correcting factor .B~4·L 

Up to now almost all calculations on 0( -decay have been 

perfonned using the harmonical oscillator(H.O.)shell basis. As 
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-tog.e 
s.o r-..--..---.-----.---. Fig. ). The same as in fig. 2 

for the 174Pt nucleus with the 

following symbols: 
4.0 

2.0 

-<> 

_o 
....... 

)( - ~ =: ( 3 ?Yz ) ~ 
o-~ = (3d!ft)0

2
,· 

0 - ~ = (2{7/2)o2 

<i- ~ = (.Zqg_/. )2 cr 7.2. o J 

v - (-{~!1ft ) ~ = ~ .I 

0- ~ = (fito/-<)
0
-t. 

1.0 '-"';:.._~_.J...-.. _ ___. ___ _.____J 

3s,. z,., 2d,. 2,,. 19111 1h., l,t!,+1) 

-lo9,.8 ~ 

3.0 

2.0 

1.0 

0 ____j 
4s..Jp.,. 3ds• 2f~ 2t;;. 2h;,11 1t..,. "J-

1,11,•11 

Fig. 4. The dependence of the correcting factors Bec_~o for 

the 239Th nucleus on neutron configurations ~=(17_,/,;,;j)0-: 
Proton configurations are labelled with the following 

symbols: x - Pat= ( 3 5~):, _," 

'"' - (3PJ/.)-l. · 0 - ~ = f</sp_); J o _ ro( - 1 /"2 o J 

n - (-f ~9/- } z. V - P., :=. (1' z"-(3~): 
A - rot. - 7:G o J "" 7"' • 
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the H.O. shell model functions differ within the surface region 

""'~ /1.0. from the Woods - Saxon ones, the functiO!;s ._,....F,;J(,L ( R) a rd. 

~~~f (~) ~iffer mainly within the same region, as it can 

be seen from fig.1. 

The founded difference between the functions c;b,eAkt(..e/and 
,,,H.o. 
~e~L can influence the value of the correction connected 

with the antisymmetrization in the final channels, as obtained 

in ref. 18). 

As it follows from the calculations the number of nodes N 

of function Z/---'t~L (!<) satisfies the same conditions as in the 

case of function 2./- /l.t:J. (R} : 
~#.,-L 

( 2n,·-r~·) =- 2AI+L 
4 

L- (24) 
L:f 

#.tJ/; 
The values of ratio 1'1/'J!,f ff.eA!L depend on configuration 

..,.:;,- "'"' 
/?r!I{L (see table 4) so that the ratios of corresponding 

theoretical 0( -decay widths calculated without. configuration 

mixing vary from 6 to JO. 

Also from the results presented in table 4 it is easy to 

evaluate the limitations of the so-called ·~brid approximation'p) 

when the matrix elements )f'~L are calculated with H.O. one­

particle wave functions and the potentials t{·{4,1 are of the 

Woods - Saxon type. We can conclude that this approximation6) 

can pretend only to a qualitative description of c( -decay phe-

nomena. 

4. On the classification of o( -transi tiona 

We investigate the experimental Q( -widths in terms of 

ot -energy iniependent ratios1•6 ) 
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K~ 
r ~/ ;- ./'vre 

<J( ..-
(25) 

Here the theoretical width 
;:; l"""t! 
~ is defined by formula (9) 

accounting only for the main configurations i and f in the 

C I?-Atc!.f~ c'~ ~0 ' initial and final states (i.e.,when = C C[,~d.l-/.>· 

The values of the ratio K~ were calculated for a large 

number of even-even, odd-A and odd-odd spherical nuclei and plot­

ted against the neutron number N in fig.5. The experimental 

o( -widths (;"''are taken from refs. 19-21 ). The consistency of 

a simultaneous analysis of the whole set of ratios A'~ is gua­

ranteed by the absence of the free parameters in calculation 
,-.frr~ 

of o( -widths / c( • 

The minimal values R~ in fig.5 correspond to the unfa-

voured 0( -tr-ansitions, for example, too.:' -decay of the ground 

state of the 210Bi nucleus and of the isomeric states of the 
212Po and 210Bi nuclei. It is important to note that the wave 

functions of initial and final states for these transitions 

are known. Owing to the fact that the configuration mixing is 
r. f'V"*' 

small, the values. of the widths « turn out to be a good 
,-.SM 

approximation for the widths /d (9) (see for more de-

tails paper II). Thus the difference between the theoretical 

and experimental cV -widths ( K~x 102 ) is mainly caused by 

the limitations of the above formulated shell model approach 

for the integral formula of IX -widths. The maximal values of 

/(hf correspond to the nwuerous group of o< -transi tiona con­

sisting from the ground state - ground state transitions in 

even-even nuclei and from the "strong" o( -transi tior.s (with 

the hindrance factors20 ) less than 5) of odd-A and odd-cdd nuc-
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lei. For such transitions the initial and final states have, or 

may be assumed to have the same spin. The configurations i
0
,f

0 

are chosen following the filling of the levels of the Woods - Sa­

xon shell model potential10>. The values of~~ for this 

group of A( -transitions are of about 104-105 and are situated 

in a narrow band not wider than 0.6 in logKexp• 

The difference between the values of }(~ for the favoured 

and unfavour-ed o( -transitions has to be considered as a pheno­

menological indication to the contribution of the configuration 

mixing into the absolute values of o( -widths. This is a unique 

possibility to explain the above-mentioned difference in the 

framework of our shell model approach to o( -decay. As it can be 

seen from fig.5 the effect of configuration mixing on favoured 

a( -transitions is practically independent of the number of 

nucleons outside the closed shell core.(Compare,for example, the 

values ~~ for the chain of polonium isotopes, Z = 84, with 

the corresponding chains of Ra, Rn, etc.). 

It is appropriate to notethat the jump in values of logKexp 

(see fig. 5) near to N = 126 shows that it is impossible in the 

framework of a simple WoodS- Saxon shell model to explain the re­

lative widths in.this region. This conclusion is in contradiction 

with the affirmation from ref. 22 ) where a harmonical oscillator 

basis is used for the relative ~ -widths calculation. 

We have not included into our analysis the values of ratios 

k'~ for lead neutrondeficient isotopes as having a different 

behaviour from the trans5. tiona of other even-even nuclei. Namely, 

when the number of neutrons diminishes, the values K""'f' for 

light Pb isotopes falls down from t~e band of favoured or -tran-

sitions (fig.5). We intend to consider this phenomenon elsewhere. 
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Fig. 5. Th€ dependence of enhancement coefficients Kexp 

on neutron number N • On the abscise the neutron 

shell configurations are indicated. 

Let us note now that for the two lightest isotopes of Pb 

giving the largest difference from the general tendency of va­

lues }(~ the experimental data21 ) are only preliminary. In 

fig. 5 the ratios K~ are also shown for the a( -decay of 

nuclei with N = 125,127 of neutrons, and of some odd-mass Bi iso­

topes. We classify them as semifavoured 0( -transitions using 

the fact that their values KtZA<f' are situated between the va-

lues Ke.r' belonging to the favoured and unfavoured transitions 

Thus, the three groups of v- transitions cari be distingui­

shed in terms of the values of ~~ : favoured, semifavoured 

and unfavoured. The explanation of the splitting between these 
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three groups, related to the different influence of residual 

interactions on each ty~e of o( -transitions shall be given 

in papers II and III. 

Table 1 • 

The dependence of matrix elements ~.-(kL &n the shell model 
parameters. Calculations are performed for the 212Po nucleus 
(Q =11.87 MeV). 

M 
~ ~ L 

{-~L 

14) 16} 15) 

(I~~)D2 (2psa): 0 0,716(-7) 0,540(-7) 0,960(-7) 

I!iftJ! (2~-rzf;; 0 0,188(-6) o, 194(-6) 0,255(-6) 

_O_jp2); 12g~)/ 0 0, 501 (-6) 0,827(-6) 0,61.3(-6) 

cibt (2:t.!JZ),2 0 o, 167(-6) 0,144(-6) 0,2.31(-6) 

(/h ?§): C-z:;~J: 0 0,202(-6) 0,222(-6) 0,28.3(-6) 

(-?4~): {2f!:yi)f 0 0,.375(-7) 0,414(-7) 0,5.39(-7) 

(!-49A): @,j:h_); 8 0,696(-9) 0,785(-9) 1,01 (-9) 

(-f,{$); (-f,j~): 16 0,177(-11) 0,147(-11) 0,177(-11) 

~~712kj_~2~-~~ 16 
0,642(-11) 0,845(-11) 0,94.3(-11) 

21 



_Table 2 

The results obtained for the nucleus 212Po, Q =l1.87 MeV 
and configuration ~~L =[f.,,/,jr)o< (.2?~}0<.]0 

n,!,;~ .6&-v.tL /MP.I.Nd.L I Re.K.t.f. 
c_ h't /1/{.k'-.L (Rc_J/ 

2 s ~<- 2,8 0.14(-6) 7,2 0.15(-2) 

3 sy.z 12,1 0.33(-6} 7,6 0.20(-2) 

4 syz 25,4 0.65(-6) 8,2 0.18(-2) 

1p1/z -2,8 0.71(-7) 1,0 0.10(-2) 

2 /'"1-'l- 6,4 0.18(-6) 7,3 0.17(-2) 

3 P1z 19,3 0.50(-6) 7,85 0.57(-6) 

1jJ:Jjz -2~5 0.12(-6) 7,0 0.17(-2) 

2f'Y<. 7,0 0.28(-6) 7,) 0.26(-2) 

3 P.Y:<- 19. 1 0.68{-6) 7,85 0.29{-2) 

1 ols;.z 1,03 0.19(-6) 7,1 0.24(-2) 

2 d% 11,3 0.43{-6) 7,5 0.29(-2) 

3 do/.'1.- 35,3 0.13{-5) 8,2 0.28(-2) 

1 /s;_z. 3,0 0.17(-6) 7,1 0.20(-2) 

2 !SA. 16,8 0.50(-6) 7,7 0.24(-2) 

1 j9Jz 8,3 0.30(-6) 7,3 0.26(-2) 

2;}% 24,3 0.72(-6) 7,9 0.26(-2) 

1{* 11,9 0.20(-6) 7,4 0.14(-2) 
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Table 3 

The results obtained for the nucleus 212Po, Q o( = 11 • 87 MeV • 

I 

L Ll~~L I Hl'-t¥aiL I /?. P-<~L c /m I >t{N..L (~/'~I 

pel~ L =I (1-t_£1/<)/ (2,Jgp_J/~ 

0 12,4 2.42(-8),-- 7,4 0.24(-3} 
4 12,4 4.26(-9) 7,5 0.10{-3) 
8 13,2 4.76(-10) 7,5 0.84(-4) 

12 14,5 2.41(-11) 7,6 0.95(-4) 
16 16,4 8.15(-13) 7,7 0.17(-3) 

~~L =f/1{~ 2/~s (2:J-o/< -j,·_,0}a~ 

0 10.0 1.31(-7) 7,4 0.13(-2) 

4 9,6 2.30(-8) 7,45 0.51{-3) 
8 10,6 2.55{-9) 7,50 0.46(-3) 

12 12,8 1.28(-10) 7,6 0.51(-3) 
16 13,7 4.30(-12) 7,7 0.92(-3) 
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Table 4 

1..,-tfi.P/ z 
The dependence of ra

2
tio l'le-t-L 1\lfe,tfkJ.. 011 t{"1~~nnd 

~ =(~ l;jJ)o • The results are obtained for the 
210 Po nucleus, Q"<' = 5.:33 MeV. 

i 

~ e{ 
1 ;j-t.Jh I i "/z 1?#;/z 3jJ_% -Y~; 

3f.y2- ).56 J.62 2.56 2.46 2.86 

4z."-tM_ ).65 ).68 J-44 J.J5 ).60 

2/'~ ).80 4. 36 ).02 2.88 3.34 

3d~z ).69 4.20 ).00 2.86 ). 18 

2d3,Z ).89 4.36 ).18 ).08 J-44 

~L~ 
4.85 5.25 4.17 ).86 4.22 

---- -
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