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1, INTRODUCTION

The complexity of the nuclear many-body sys-
tems may be considerably reduced by introducing
collective coordinates as, for example, in the random
phase approximation (RPA)/I/ Then a great deal of
the residual interaction between the nucleons is al-
ready included in the collective modes, However,
in such an approach one is faced with the over-
completeness of the basis involvins both single
particle and collective states and with the identity
of the nucleons appearing in the collective modes
as well as in the single particle degrees of freedom,
In ref./? a "Nuclear Field Theory" (NFT) has been
developed which treats correctly both the overcomple-
teness of the basis and the Pauli principle. The
relation of the field theoretical approach to the con-
ventional Feanman diagrammatic many-body pertur-
bation theory/3/ has been established in refs, /4.5/
by using partial summation techniques, i.e., by com-
paring the corresponding diagrams of the field and
the fermion treatment. However, the nuclear field Ha-
mlltoman has been derived only in a heuristic
way /2.6/ One introduces collective modes (e.g., in the
RPA) and adds to the full fermion Hamiltonian

H = Hsp + ch
the free phonon term

3 +
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Further, a coupling term is included
PV- %(A gc +Aaﬁcn)a aﬁ,

where the particle phonon vertices A" wg are calcu-

lated by taking matrix elements of the resndual in-

teraction H |, between the phonon state IO)

and the relevant fermlon state a aBiOz

aiz'(Ol“/i"‘aHm ' o 10. R
Then the NFT Hamiltonian reads

HNFT‘ H +H ph* HPV

Obviously, in the thus obtained Hartniltonian some
correlations are doubly counted, To remove this
double counting definite restrictions on the diagram-
matic perturbatlon treatment of H Thavo to be pos-
tulated 2/, Clearly, such a heuristic dcrivation of
the NPT, although it may prove correctly, is not
satisfactory from the theoretical point of view, Pre-
viously/? an attempt has been made to derive the
NEFT Hamiltonian Hypr via the canonical transforma-
tion method, However Hypr could be obtained there
only in the Jowest order perturbation theory. The
aim of the present paper is to give a rigorous, non-
perturbation theoretical derivation of the NFT Hamil-
tonian together with the correspondmg diagrammatic
rules via path integral methods /8.9/, Further we
want to study explicily the nuclear field treatment
for such systems which have undergone a phase
transition, e.g., into a superfluid ground state
(systems with spontaneous breaking of sy, /—nr7

have been considered in the NEFT in ref,’ "), To
avoid unnecessary complications we develop our
field theoretical approach for a schematic two-level
model which includes both pairing and particle-
hole forces/1V,The present paper has also a peda-
gogical aim, We want to demonstrate the powerful-
ness of path integral techniques in the study of
nuclear structure,




We start from the path integral representation
for the generating functicnal of the fermion Green
functions., The integrations over the fermion variab-
les can be performed by linearizing the (fer:nion)
residual interaction with the help of collective fields
describing the particle-particle and particle~hole
degrees of freedom, respectively. As a result, a new
effective action is obtained from which the equa-
tions of motion of the quasi-particle and collective
excitations follow. In particular, there arises a modi-
fied perturbation theory in form of a loop expansion,
Finally, by introducing new collective fields the
loop expansion will be converted into the NFT ex-
pansion,

We have orsanized the paper as follows, In
Sect, 2 the model is defined and the effcctive ac-
tion is derived., In Sect, 3 the single particle and
collective excitation spectra are discussed for dif-
ferent cases of phase transitions. The maodified per-
turbation expansion and the derivation of the NPT
. in the presence of phase transitions are presented
in Sect. 4. Some formulae and arguments neceded in
the text are presented in appendices,

2, MODEL AND METHOD

The model under consideration/11consists of N
fermions which are distributed over two single par-
ticle levels, each of degeneracy 20=N. The two
levels are separated by an energy ¢. A particle
state is chatacterized by quantum numbers (o, m),
where ¢ = *1 designates the upper and lower
levels, respectively, and m enumerates the dege-
nerate substates of each shell. The fermions inter-



W

act pairwise wvia monopole particle-hole (ph) and
particle-particle (pp) interactions*

€ +
H= Hop+Hyy Hsp=—2—2 o3 A s
Hy, == 5(P"P+ PP)-p(A+ AD % (2.1)
where
+ + 4 + +
P = anmaaﬁa' A = ﬁa‘m,la m,—1° (2'2)
The operator a' (a_) creates (annihilates)

a particle in the state (o0,m) The state (v,m) is
related to the state (o,m) by time reversion. In the
ground state |0> the N fermions occupy the 2
substates of the lower shell and we have

. —at 0> =
ag,l0>=a_ _ {0> = 0. (2.3)
Absorbing the Hartree-Fock self-energy contribu~
tions arising from H,, into renormalized single par-
ticle energies ¢ = % (€ +2p +x) we may revrite the
Hamiltonian as

H=eSoara,—x:P P:oxi(Ara’)? (2.4)
mo

where the normal product {denoted by : : ) is
defined with respect to the Hartree-Fock ground
state {(2.3).

* As our system may undergo a phase transij-
tion to the superfluid ground state we should in-
clude in the Hamiltonian (2.1) a term -AN in order
to ensure conservation of the particle number N
in the average. However, it turns out that in the
considered model the chemical potential A may
always be set identical zero (see appendix C).



The generating functional for the fermion Green
function of the system is given by the following
path-integral

Zin,n+]=nfDaDa+expifdf{£f(t)+v;+a+ atpi, (2.5)
where

ff(t)='§’a;o(t)(i8t ~gda_ (O+x:P P:i+p:(a+A): (2.6)

is the Lagrangian corresponding to the Hamiltonian
of eq, (2.4) and N is an irrelevant ncrmalization
factor which is fixed by the requirement Z{0,0]=1.
The fermion operators a0 t ., a;w(t) and the ex-
ternal sources nma(t) are how considered as anti-
commuting (Grassman) variables, The integration
over the fermion variables in eq. (2.5) can be easily
carried out by linearizing the interaction terms with
the help of (real and complex) dynamical variables
(collective fields): Using the funational identities

. 2 . 1 .2
expifdtp(A+ A )% = ¢ [Ddexpifdtl - = d°(1) +
xpifctp /D dexpi, ™ (2.7)

+ O+ AN,

expifdtP P =c2fD‘I’D‘l‘+expi_[dt§—-i-—lll+(t)\l!(t)+ 2.9

+P W +¥ 0Py,

where ®&(1), ¥(f) are commuting {Bose) variables,
the generating functional Z{z,7 ] takes the form:

Zlng')= ﬂlthDh+fDd>]D vy x

xexpifatth’ (0G n()+Q h®+n* (D -
(2.9)

“Llermwe- Loetm.
K 4 .



Here we have, for convenience, introduced the
malrix notation

4 4

- (a ,a—
vy o ' me
4

m0=(77mn * = o ),

G lm:t.t) - G (m;t)8(t=t"),
[e/03 [ol¢2

h ).

(2.10)

_ ‘(i(i[ ~tre )5”0 ,+(1-5“" Jdd(t); Wy ([)50‘7;
Gm‘,;(m.t.) -

WIS i (9 4008 L ~(1=5_ ) d(.

Performing in eq, (2,9) the integration over the
fermionn variables vyields

Z1Q.Q 1=N_ D& /DYDY expilslowv'l-q'cal,  (2.11)

where the new effective action § depends only on
the collective variables ®,¥, and is given by

+

Sl v, Jdti——w W (1) - _:_m v -

P (2.12)
- iQur(ogG H(t, Hi.

The quantity G represents the Green function of
a fermion moving in the collective fields ®(t), ¥(t).
The explicit expression for G can be found in ap~
pendix A, The equations of motions of the collec-
tive fields follow by wvariation of §

io
Py () = —i2Qptrl( 0 4 YG(t, ¢ ”t’=l+0 , (2.13)



. 00 .
Y O(t)—. -xm-nl(l 0 YG(t, t) 1} t,
1-¢0 1y:

=t+0 ° (2.14)

Let us suppose that there exist nontrivial solutions
of egs. (2.13), (2.14). We may then formulate a mo-
dified pertarbation theory that uses the Green func-
tion G G(¢ ,y/ ,;/;)as unperturbed propagator, For
this pur‘po=e we oxpand the integrand of the gcene-
rating functional in cq. (2.11) around the solution “10(0'

@ (t)
«vm-w (t; 4 tl)(l) G =Py ) . (2.15)
‘I”(f)

This brings the third term of eq. (2.12) into the
form (the prime at @ () will be omitlted in the fol-

lowing)

- i fdtirlog G Xt t) = ~i€ fdttr(log G (L. t) +

(2.16)
+ %Lnlfk] .
where the term
S A Ll o w P S
L [® 1= ~i@fdetr] Gy ( o l} H(tD) (2.17)

represents a closed fermion loop emitting or absor--
bing n collective lines ®,¥. The bubble processes
given by the term L [¢] are, as usual, included
into the free action . '

* Matrix multiplication implies here integration
over intermediate times.



S (@] = fari~ Lw*ow (- ol +L_(0). (2.18)
~ K 4p 2

free

Thus we have
si®)l=S,_ [®i+S [®;s [9]=3 L |®]. (2.19)
-~ free ~ int ~ int "~ p.q n =~

The free action may be cast into the form
Sy oo (9] = % fdat @) T ~ 1 1107, (2.20)
where the propagator of the collective field

T, t?) =<d>(1;)d>(1;’)>Sfe
~ T~ ree
is defined by the following 3x3 matrix (<..>gq o
denotes the functional average with the weight fac-
tor expiS )

free
T - -%l1+VEI' V. (2.21)
Here
4 0 0
\3: o 0 2« (2.22)
0 22 0

is the coupling matrix and B is a matrix whose ele-
ments are given by bubble graphs composed of
normal and/or anomalous Green’s functions, respec-
tively (for definitjons, see appendix B). The collec~
tive propagator T coincides with the two-channc!
scattering amplitude for particle-particle (pp) and par~
ticle~hole (ph) scattering in the ladder approximation,
This may easlily be recognized by rewritting eq,
{2.21) as an inhomogeneous Bethe-Salpeter equation

10



T --%V - VBT . (2.23)

The cquatlion of motion (Euler-Lagrangc Oqua_ltion)
for the frce collective field ® (1) follows by varia-
tion of the froc action {2,20):

D(1) - —\7 f dt‘l;(t.t')(_l_'(('). (2.2.)

It coincides with the homogeneous BS-equation,

3, THE EXTTIATION MODES

3.1. Single Particle Excitations

I this soction we want to solve the coupled
oquations (2, 13), (2.14), For siuplicity we corifine
ourselves to static =olutions ® . Usine the coxplicit
expressions for the Green ruﬁcuor. Gt given in
appendix A equations (2,13), (2,11) take the form

Fl k)

I
o -0 L w o
0 S 0" Yo (3.1)

(p =4Qp, «=0x),

where the quasi-particle energy E is diven by

o=y 2y d»» o ]2 (3.2

Now d)o, ¥, are easily recognized as energy gaps
arising from phase transitions in the ph and/for
pp-channels, respecctively, Depending on the va-
lues of the coupling corstants 5. & we may dis-
tmmush the following cases

1) Pse, K a

Q)O = ‘I‘o =0;
The static field configuration d) \l' =0 is
stable,

LA}



ii) p=E>c, x<BE,
(1’0;4 0. ‘|’0=0.

There exists a phase transition in the ph-chan-
nel, The field configuration (I)0=\l'0=0 becomes

unstable,
iii) ®k =€ >¢, P <E
- 1]
‘1’0-0. ‘10;4 0.

There ecxists a phase transition in the pp -channel
of superconducting type,
iv) K=p =E >«
2 2
(I"04 [t/lo[ > 0.
The system undergoes a simultaneous phase
transition in both channels.

In appendix D we show that these solutions rea-
lize @ minimun: of the collective action S[d|.

3.2, Collective Excitation Modes

Let us now discuss the boson excitation spect-
rum, The eigenfrequencies of the collective modes,
w,, are obtained by solving the homogeneous BS-
equation {2.24) which after Fourier transormation

vields the following eigenvalue equation

det{1 4+ Gé(m)] =0. (3.3)
where
Blw) = ———l—b (3.4)
w?-4E2

and the matrix b is defined as (cf, ap-
pendix B)

12



' 2 2 4,
82 +|¥ 13 -4

—4¥ @
p 0
) + +2 2 2 2
b- = —4‘]'04’0 —2‘l’0 AE +¢ +(1)G)
ST\ AL 2, (2, q)(;’-) _2\1"3

(3.5)

aq. (3.3) has the following rools:

. X
= 2\’E‘e 4 1
4K

({7 2\E(E-P:) .

1

-2y B, 3
“a 4E
where
ol 2,y 2 N T 4
xa'l ~|p(( 4[!0. )‘h(( +lo)l,

+ 2y [pte 2y {‘I'0§2) +xe 2y Q’g)lz -4pKPE%, (x3'1<’.0):

In deperdence on the different possibilities of phase

transitions discussed in Sect, 3.1 we get the fol-
lowing cigenfrequencies:

) v, =2velc-p) (surtace vibration)

«

o =wg=2elc-%) (pairing vibration),
ii) w = 2i¢ |,

w, = 0J3=2\/E(E —;5_) ,

13



iii) @ =2VEE-§),
wy = 0,
= 2w

w

3 ol

iv) w1=mg=0,

2 2
w g = 2\/(DO+ |‘|'0| .

Case i) provides us just with the well-known RPA
modes (phonons) describing surface and pairing
vibrations of a system with a normal ground state,
Note that, if p>¢ andfor %>¢, the frequencies w,
hecome imaginary leading to an cxponential blow-up
of the wave function (e7p'—- «). The probability

t-»> >
for a phase transition of the system into a new
ground state containing Cooper pairs and/or par-
ticle-hole pairs thus infinitely increcases and the
normal ground state becomes unstable. We find this
picture consistent with the simutancous appearance
of the gap in the single particle energy if , -« t
andfor & >¢, Case ii) corresponds to a phase tran- }
sition in the ph-channel. The frequency of the ;
surface phonons is now twice the value of the gap I
[®,]. Note, that the phase transition in the ph -
channel diminishes the ratio «/E (/E < &7¢)
characterizing the collectivity of the pairing phonons,
Thus, a phase-transition in the ph~channel takes
away collectivity from the pp -channel, Similar re-
sults hold also for a phase transition in the pp -
channel (case iii)). However, there appears now
a zero frequency solution w=0 (Goldstone boson)
corresponding to a zero-energy azimuthal motion in
the complex ¥ plane: |¥,|?®-=R2, As it is well
known such a solution indicates a spontaneous
breakdown of a symmetry in the new ground state
(in the present case: violation of the particle number
conservation). In the case iv), finally, we observe
a phase transition in both ph- and pp-channels

14



what leads to zero-energy azimuthal motions on the
sphere (Df] + {‘l’ol ?=R?

1, MODIFIED PERTURBATION EXPANSIONS

4,1, Loop Expansion

We are now able to formulate a modified pertur-
bation iheory that uses the collective propagator T
given by eq. {(2.21) and the "quasi-particle" propaga-
tor Gy (cf, appendix A) as the 'free" propagutors
of the theory, For this purpose, it is convenient to
introdduce a source term ijd into the exponent of
ed. {2.11) and to write theé Generating functional as

+ o . 5 + )
zZlQ.qQ I~W3exp1[Sint[-——-——_13j+]—Q G((Bﬁ*iajtml\(
. . 1
x [DPexpilS p,, [g)] v $| i=

Then the ¢ integral is Gaussian and can be per-
formed yielding

z2[Q.Q" 1 = N expils [-—-J -a*Go +-———)Q]
4 151 ~0 181 (4 1)

Yexp—-é—_] T_]]J .

Using the identity

F(=12-)000 = G(-1-)Fye™ | .
where F, G are any two functions the generating
functional can, finally, be cast in the form

id S & [

— T  —j—cP_ + M) ==
2 ot ~0

Z[Q,Q+ 123.(48 6M aM e SN BNY
(4.2
. + +
xexpliSim (&1) + Q@GN +N Q¥M=0 .
N=N+=



Eq. {1.2) expresses in a compact way the Feyn-
man rules of the loop expansion discussed. In this
expansion G(® +M) and S (M) are given by open
and closed fermion lines, respoctlvo]y, which emit
or absorb collective lines to be contracled wilth the
collective propagator T {cf, figure). Nole that in
this picture all fermion loops of the type of a self-
energy correction are absent, There remain only
the fermion loops of 8, which represent effective
¢"  -inleractions of the colleclive firlds, Such in-
tepration terms lead to anharmonic effects in the
collective excitation spectrum,

It is worth remarking that the phonon frequencies
and the gap values contain only the scaled coup-
ling constants - Q«k, 5:4(2,, which are considered
to be fixed, If we take into account the fact that
the residium of the collective propacator at the
pole « = w, contains a f[actor (1 (seo eqgs. (4.5),
{4.9)) we find that the effective coupling constant
of the particle-phonon vertex is of order Q7'
Further, for ecach closed fermion loop there is an
additional & factor arising from the trace over the
index m.Thus, we get a perturbation expansion in
_SIT’ which for sufficiently large values of the
level degeneracy Q (or, equivalently, the fermion
number N=2Q ) converges much bctter than the ori-
ginal perturbation expansion in the interaction
strensth’s « and p .

4,2, Nuclear Field Theory

In the following we shall prove the equivalence
between the modified perturbation expansion (4.2)
atd the perturbation expansion of the nuclear Field
Theory (NFT) , To this end we rewrite the collec~
tive propagator as

T = 12v +T (4.3)



=

+

(c)

a) Diagrammatic representalion of the expansion
of the single particle GF in terms of the collective
fields &P, Y(1). A full line stands for the "free"
GF GOTG(‘DO,‘I‘O,‘I’;)-The collective fields ¢t and ¥(t)
are represented by a wavy line and a double line
arrowed, respectively., b) Some typical loop graphs
of order 1/Q arising in the cxpansion of expisi L
c) Characteristic diagrams contributing to the total
single particle GF,
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where *

T =k'DK, K=-Jd_-u'ybv (4.4)
c \;2 .
1 0 0
w82
- 1.5
D = 0 S 0 (4.5)
(02_(1)2
2
0 0 1
2 2

) T

Here U denotes the orthogonal matrix built up from

the eigensolutions @  of the homogencous BS-equa-

tion (2.24) written here in the more symmotric form:
[w® ~4E2+ bVyDbld =0, (n=123

" - (4.6)

U =(q~’1 ’Tz"y -

In the above discussed loop expansion {see eq.
(4.2)) the fermion fields are completely removed
from the theory. Our aim is, however, to obtain an
effective Lagrangian involving both fermion and col-
lective fields. For this purpose, we express expiS;
in egs. (2.11), (2.19) again by an integral over fer-
mion variables, This yields
. 190
_1i=21Li[i— 5}7]

z1Q,0") = N e fD® [DaDa* x

(a.7)
x expifdtih’ Gg'h + Q" h + h*Q +

+g® T Gy el

0

*The square root of the matrix b is defined as

usual by b =w‘\/6diag W, whereW is the orthogo-
nal matrix diagonalizing b. The letter "t" denotes
transposed quantities,




with

After performing the P integration we get

2
-3 L oy
+ i=1 i gt +
zlq.Q 1 =T e 1 fDaDa" «
L) A (4'8)
x:expij'dtiffw%j‘Vj+-;—jLVP+Q+h N
+h Q- LG+ PYKREIDIKG+P)
g Lt L ~ =0
where
+ - tA
£, =16 +.}Tgvg (4.9)

is the Lagrangjan of the fermions., In order to linea-
rize the last term in the exponent of eq. (4.8) we
may how, in analogy to eq. (2.7), introduce a ngw
collective field ¢(t) the propagator of which is D
(cf. eq. (4.5)). This vields
2
-iZ e 31571
zle.¢"1=Ne I" fpéfDaDa* x

. _l_.[‘. .ti t
xexplfdtffNFT +4lVl+L(2E’+K ?)+

+@'h +ntal
i=0

or equivalently,
2 A
3L Avped 2
+ - i=] i 2 - i 5]‘
Z2lg,g71=Te i /D¢ DaDat x

19



oyl ) t ot itk vyt B
'XDU(]”«&NFTFQ h+h'Q +j'K Y (1,10)

whiere

U U (1.,11)
NPT [ b PV

&1
is just the offoctive Lagrangian of the Nuclear
Field Theory, It comprises besidoes the fall fer-
mion Lacrangian £, (defined by cq. (L9 or in the
absonce of phase transilions by og, (2,6)) a free

. bl . .
bosony Lassiranisian b b and an inleraction parl ‘S)PV

L T L (1.12)
¢ s PR G. (1.13)

respoctively, The expression P appeascvhus in the ar-
sument of LiLul ineq.1.10) is obtained fromP by rep-
lacing the variahles a, 2" by the functional derivatives

S . . . .
— —-é—— K is recognized as the particle~vib-

oy i

ra!’ion verto{\'. The functional derivation of the NIMT-
lagrangian given above yields simudthncously the
corresponding graphical rules for a dicgrammatic
perturbation theory bases on this Lagrangian: The
factor in front of the integrals in eq. (1.10) elimi-
nates the bubble diagrams from the NFT-cexpansion,
This completes our proof of equivalence between the
usual fermion treatment, the loop cxpansion and the
NBT treatment for a system with phase transitions*

*Duer to the condition j-g the generating func-
tional (4.10) describes bostns appearing only in
intermediate states. A natura! generalization of
eq. (4.10) including external boson states is ob-
tained by rejecting the requirement j =0.

20
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5, SUMMARY AND CONCLUSIONS

In the present paper we have applied path in-
tegral techniques to the nuclear many-body system,
Within a schematic model different kinds of many-
body effects, as, e.g., phase transitions and related
phenomena, have been studied. Moreover, the con-
sidered model reveals some interesting features
concerning the mutual interplay between different
kinds of collective excitation modes in the casc of
phase transitions,

By using the path integral method we could
derive modified perturbation theories (the closed
loop expansion, the NFT expansion) which show
equivalence to the usual Feynman diagrammatic
many-body perturbation theory, but which use
another expansion parameter (the inverse of the ef-
fective shell desceneracy © ), and may therefore
faster converge., Especially, we have derived the
NFT-Lagrangian in the presence of phase transi-
tions in a non-perturbation theoretical way, The
corresponding graphical rules of the Nuclear Field
Theory naturally comes out,

The investigations performed in the present
paper show the powerfulness of functional methods
in the study of nuclear structure phenomena, In
a further publication these techniques are used for
investigating some interesting effects of the mutual
interweaving of single particle and collective deg-
rees of freedom in spherical nuclei,

APPENDIX A
The Single Particle Green Function

In this appendix some formulae for the Green
functions used in the text are collected. For gene-
rality, we consider a Hamiltonian H’=H - AN where
N=3 ata is the particle number operator,

mo
The Lagrange parameter A (the chemical potential)

21
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has been as usual introduced to guarantee the
conservation of N in the average. Let us introduce
the following operators and Green functions (e, =e7 A)

GTl=00, F e, )8(t-t",

o Yt o4t Me Fi€s (1=t7)
1fli(t,t ) =2 ot(t-t")e . (A1)
Ci:l (L) =G0 e )B(t-1t),

iCi_(t,t') = ~iG1k (t 1),

where ((t) is the step function. By definition, we

have
fde(:l)(t, DG )(X.t‘) =8(t—-t").
For convenience, we rewrite the inverse Green

function defined by eq. (2.10) as
GZI (t,t7) W()S(t~1t)

G Hm:t,t) = (A2)
vrmse-t) ¢ e

with
G M.t DSt -t
-1 +
G, (t.t) = } (A3)
R T O (P N B (R %)
- =1
- G, (¢, ¢’ -0 —t* (Aa4)
Gbl(t.t') _ L ) t)é(t-t”

WS-t G t.t7)
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hwerting the matrix operator G—l yields

G (t,t9) G (t,t)
N A

Gm:t,t) = (A5)

GA(t,t') G (ft,t)

where the normal and anomalous Green functions
are defined by *

= ] * -1
GN —Ga(l IGh‘I‘ Ga) ,

S _‘+ -1
Gy=6G,a-¥Y G¥Gcy .

+ + -1 (A6)
G,=-G¥'c (1-¥G ¥ G,)

+ -1
GA=-Ga‘l’Gb(1—‘l’ Ga‘l’Gb) ,

with

G.(1-0G ¢G)"' -G &G_(1-9G ¢G_)7!
G - * -t * * (A7)
-1 -1
-G_®G,(1-0G_9C ) G_(1-9G ¢G)

G,(1-9G9G)™!  G,8G_(1-9G,eG_)"}

G, = (A8)
o e ~ oc vl e 5 ae vl
G_0G,(1-0C_6G )™ G_(1-9G 0G )

*Matrix multiplication implies here integration
over intermediate times,
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The Green [unclions for stalic field configurations
BV may now easily be calculatled from egs.
{(A6-A1), With the abbreviation r =t-t* we oblain
for the normal (irecen function the expression

ot -
A =iEyN7T A =iEy7
G (0= ~il0MlaEy)e N +aEjde N |-

A= AExT A 4 iEyT (A9)
-0t a=E e +a(-E)e It o

-
where the malrix  alow)  is given by

(erra R )(-»2—12—1{2)—31’63)\; —~'|’0((.1 :»1 %-HE)'?A‘O/\(! rie ; )
il(m) f(r;)
28 R B 42 2 4
(D= T=RTY s l=e 32D A lesme W=~ R Yy
4] - - H] - i 0

with
5 =2
[+ 2F1,:(E)'\2—EA oo . N
f((n) -
—op Rt -2 -1 i
[ e "'E/\(L/\ E A )l . 9] +E
and .
2 42 (2
R+ ¥, %, . (A10)

pt om i 1
Ej =vive2 ®27 0% o i .

Analogously, we find for the anomalous Green func-
tion
a -iE;r A —iE;r
G () - HWOBEDe » +bEe ) -
A o A A (A1)
A AENT . iEST
~H-r)b(-E,)e +b(-E,)e H,
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where
. 0)2—(3—R2; 2‘1’0)\
b( ) =f(w)
20 A ; w2-¢2_-R2
0 +

The Green functions satisfy the following symwmetry
relations

G () ==G_(~1),

A N (A12)
+

G, (/¥ =G,/

For completeness, we quote also the corresponding
expressions for A=0 used in the text

Gy (1) - =il a®e”E _ond-Ee' | (A13)

G, - ¥ 1ombE e —onbepe'™ 1,

where now

tE v ¢, -

A 1 0
a( tE) = + —
2E

A 1 1 0
b(* E)y- t—
2K 0 1

APPENDIX B
Definition of the Matrix é

The elements of the "bubble" matrug B (cf. eq.
(2.21)) are defined as follows, B—-1—2-A with

(z t7) —trlc (t t’)G (t ) + G (t t’)c (t t) -
—[G At t’)G (t5t) +G At t )G A5 00,
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At = tl‘[GN(t,t’)aA(t’,t) —GA(t,t')(:} N(t’,t)i,
A6t = ol , (1,096 (¢ -EN(t.t')éA(t',t)L

Ay (tt”) = trléA(t,t')GN(t',t)- éN(t.t')G A(t',m,
Apo(tt?) = triG,(Lt)G,(t, 0, (B1)
Agl(tt) = tr{aN(t.t’)GN(t',t)L

Ay (tt) = tr{&N(t,t‘)_GA(t ’,t)—éA(t,t')aN(t’,t)l,
A1) = tr{G N(t.t’)EN(t',t)l,

A o’ = - o ~ ’
33(t,t ) trIGA(t,t )G A(t NIRR

where we have used the short notation
G (t,t) =G (t,t)L,!
f - 0 1 )
190
APPENDIX C
Calculation of the Chemical Potential

etc.

In this appendix we prove that the chemical po-
tential may be fixed to the value A =0 for static
field solutions. The chemical potential is determi-
ned by the requirement

N = <N> ’
av
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where the average number is given by

<N> =<Xa a =
av ma maJ mo av
IR N NP A (cy)
mo &y (t') 5r;+ (t) n=n"-0
t'=t +0

Using for the generating functional Ziy,;*] the
representation (2,11) we find after differentiation

N

]

<-i2tr G (t-t"=-0)> =
N av
ils +s, |
fD(.l,)e free int (-)20uG N(‘O)
]

"D(l,elfsfrae"-s int

it

CD0uG (- 0)[m @

Inserting (A9) into (C2) we obtain, finally

2,02 -\ /€242 + A
Nozor1- L M EHPEoA 1 VeEBRBF LA oy
E? 2 E
A A
Obviously, for ¥, £0,the requirement N =20 can be

fulfilled only for /\ 0(see eq. (A.10)). For ¥,=0
eq. {C3) is independent of A, so we may ~hoose
again A=0. This proves our statement,

APPENDIX D
Stability Condition

A necessary and sufficient condition for the
static gap solutions ¢ _, ¥ presented in Sect, 3.1
realize a minimum of t?fle collective action S[<D]
is
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3 2
525. 3 25 Ab G AD =
=180, 60, P4 ! 1
3 A, (DY)
=-const £ T “(w=0Ad Ad >0.
ij=1 i 0i 0j

By diagonalizing the quadratic form (D1) one finds
that the eigenvalues p, of the inverse propagator
T Yw=0) are all non-positive (n,<0) with at least
one u _#0. Thus, 8%8>0 is guaranteed.
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