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I n t r o d u c t i o n 

A quasiparticle-phonon model which is the basis for a 
unique description of few-quaeiparticle components of the wave 
functions of complex nuclei at low, intermediate and high excita
tion energies is constructed within the semimicroscopic nuclear 
theory. The quasiparticle-phonon nuclear model develops from 
the description of the low-lying nuclear statee as quaoipartic-
le ' and one-phonon states by generalizing the phonons and 

•a/ quasiparticle-phonon interaction . The quasiparticle-phonon 
interaction ia important for the calculation of the energies 
and wave functions of nonrotational states in odd-A nuclei . 
The methods of description of the low-lying states of atomic 
nuclei have been generalized and applied to the study of the 

7/ state structure at intermediate and high excitation energies . 
a/ 

The analysis of ref. ' has shown that the excited states of 
atomic nuclei can uniquely be described. 

The quaeiparticle-phonon model is based on the following 7 9-11У assumptions * ': 
1) The two-quasiparticle and vibrational states are consi

dered to be the one-phonon states. 
2) The coupling of single-particle and collective motions 

is described as the quaeiparticle-phonon interaction. 
3) The main approximation is chosen so as to obtain the 

most correct description of few-quasiparticle components ra
ther than of the whole wave function. 

The wave functions of highly excited states of complex 
nuclei comprise several million of components. It ia very dif-
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ficult to find the wave function of each state. This is de-
12/ 

monstrated for light nuclei in ref. ' where the matrices of 
very high order have been diagonalized when calculating the 
energies and wave functions. The investigations within the ap-

•* 1—IS/ proaoh baaed on the operator form of the wave function 
have shown that such characteristics of highly excited states 
as the photoexcitation total cross sections, spectroscopic 
factors of the one-nucleon transfer reactions, neutron strength 
functions, partial radiative strength functions for direct 
transitions to the low-lying states and others are determined 
by the few-quasiparticle components of their wave functions. 
The problem is essentially siraplified if only few quasiparticle 
components of the wave functions are to be well described in a 
certain energy interval. In this case one should use different 
types of the strength functions. 

At present within the quasiparticle-phonon model the frag
mentation (distribution of strength) of one-quasiparticle, one-
phonon and quasiparticle plus phonon states over many nuclear 
levels can be calculated. This makes it poesible to study many 
nuclear processes and properties of complex nuclei in a wide 
range of excitation energies. 

In this review we present the general assumptions of the 
quaeiparticle-phonon model of complex ( middle and heavy) 
nuclei. For definiteness the formulae are given for deformed 
nuclei, though the judgment of the given material concerns 
also spherical nuclei. The main results of calculation of the 
properties of spherical and deformed nuclei will be given else
where. 
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1. The Hartree-Fock-BOBQlubov Variational Principle and the 
Semimicroscopic Description 

The Hurtree-Fock-liogolubov Variational Principle is ашопу 
the basic and widely used methods of solution of the many-body 
problem. Host of the equations which are solved in the nuclear 
theory are particular оавеа of the basic equations obtained 
within this method. The Hartree-Fock-Bcyolubov Method allows 
one to express higher correlation functions in terms of the 
lower ones. Ав a result the equation of motion can be written 
in a closed form. The main steps formulated in this section 
allow one to trace the procedure of solving the шапу-body nuc
lear problem. 

The Hamiltonian of the system is 

H- Z. TUf)a; ay -^1 G (f,,i ,фа;а^ он a,-, d) 
where f is the set of quantum numbers which describe the 
state of a nucleon. The creation and absorption operators of 
a nucleon CLf , a, fulfill the usual commutation relations 

a' a, * a, a' • 8, , 
T< *i h f, r,, ft , 

Further, 

and /f denotes the cbemical potential. 
We introduce the correlation function 

0f / f j j£>* <ia/t af\> (2) 
and the density function 

$> U,/J= ria;a/ti>. (?) 
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Here Ф(4,*0 -- 4>(.i*.iJ, 

/*(&,!*) - /(&*) * 
the expectation value is taken over an arbitrary state I > . 

Let us consider the amplitude Of in the Heieenberg rep
resentation where Ctj(t) depends explicitly on time. Now we 
introduce the functione Л (ft, tt) , ф {*,,tt) which depend 
on time. Prom the equation of motion it follows that 

(4) *"</;•*> =<ttaut>a,n),/*]i> 
at fi tt 

i*^'"--<**,,<*>%<*>,><Jl> . <5> 

Tlien we should write down the equations for<70,*(t)e£c<№,(tfcl,.«)l> 
and<lfl/tt>tytt'4frtl0£«>l> and express them in terms of the dis
tribution function of higher order and so on. One can pass to 
the closed system of approximate equations by means of an ap
proximation expressing higher correlation functions in terms 
of the lower ones. 

In the nuclear theory the Hartree-Fock-Bogolubov method 
is used to obtain approximate equations by expressing higher 
correlation functione in terms of the lower ones. For instance, 
the function <IOJ'fl̂ - Oj, ##'> can be expressed in terms of 
the functions p and Ф as follows: 

<Ia;; a;£ at>а/г)>-р(А\ 1г)рсfti /,)-
(6) 

-pu',, ЮР и;, л) • **(/;, мф(*, i,), 
in the Hartree approximation the r.h.s. containing only the 
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first term, V.A.Pock has added the second term which takes in
to account antisymmetrization and N.N.Bogolubov has introduced 
the third term which allows the description of the superconduc*-
tig pairing correlations» If one uses an approximation of the 
type (6) then equations (4),(5) become closed. These equations 
can symbolically be written as folows: 

i **(*•&= J$ (£,V, (7) 

In the stationary case they are 

tt (J., h)--o. 

The explicit form of these functions is given in ref. , D /. The 
development of the Hartree-Fock-Bogolubov method became possible 
when N.H.Bogolubov introduced quaeiaveragee in the strict ma-

17/ thematical formulation . 
2. To pass to the following stage of transformations, 

from the set of quantum numbers У we exclude (5 = ± / so that 
the states } - fl<7 which differ by sign 6" will be conjugate 
with reepect to the operation of time reflection. For instance, 
6* can be the sign of the momentum projection onto the sym

metry axis. 
In fact for any type of the interaction between nucleons. 

one can find such a unitary linear transformation which trans-
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forme simultaneously the functions jo (/, i') and ф ii.f') to 
the diagonal and canonical form, respectively ,l.e., 

P а л - ре i) sit r . p (9) s b f . sff,0.. 
Then the functions r(e> and р(й) &?е bound by the condition 

pip- рг(?)*Ф*(рФ(9У>- do) 
In this representation the average value of the energy 

operator has the form 

<lni>'fiT'(f)-i£6(W;jy)p(n\p(*)-
~£г

6(?*>9'>9'-,9'+)Ф*(9)Ф(9'). 
< i i ) 

The main equations are 
(12) 

2[£(р-МФШ*-2р{?)]£6(}*1?->у'-1у<)ф(9')-0) 

N*2lp(}). ПЗ) 
9 

Here N is the number of protons and neutrono. Equation (12) 
contains the energies of the single-particle levels of an 
average field which are 

Within the microscopic method expressions of the type (14) 
are calculated on the basis of the experimental data on the 
nucleon-nucleon scattering. 

Therefore, from the general form of the potential describ
ing the interactione between nucleonsthere are extracted the 
average nuolear field and interactions resulting in supercon-
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ducting pairing correlations. It is postulated in the nuclear 
theory that the average nuclear field corresponds to such a 
representation when the density matrix jo (f,f) is diagonal for 
the ground states of even-even nuclei lying in the fi -stabi
lity zone. In this representation the residual forces are re
duced completely tc the interactions resulting in superconduct
ing pairing correlations. Therefore, other reBidual interactions 
should not be taken into account. 

The possibility of extraction of the average nuclear 
field is the reflection of the fundamental properties of the 
atomic nucleus but not a mathematical method. The extraction 
of the average nuclear field is possible, first, due to the 
Pauli principle, and second, to the relation of the Fermi sur
face momentum with the momentum of the repulsive core of the 
nucleoa-nucleon potential. 'Jh6 variety of properties of ato
mic nuclei is caused by the average field or nuclear shells. 
Therefore, nuclei should not be considered as different frag
ments of the nuclear matter, but one should study the structure 
of each nucleus. This is the difference, for instance, from a 
crystal where it is senseless to study the structure of crys
tals of one and the same type but of different sizes. 

It should be noted that the conditions of extraction of 
the average field may not be fulfilled for hypothetical super-
dense nuclear state and instead of a variety of nuclear pro
perties this state may contain nondistinguishable nuclei as 
pieces of the nuclear matter of different sizes. 

From formulae (9)-{14) we obtain the main equations of 
the theory of superconducing pairing correlations. It is as
sumed that the function B«J*tu-',Q-, Q'+ ) is independent of q. 

p 



(15) 

and й' and changes from nucleus to nucleus as A . These 
assumptions are justified, and the theory uses two constants 

Sfj and 6i determined from the experimental data on pair
ing energies. Now we introduce the functions V, and Щ 

then the condition(IO) has the form: 

and equations (12) and (13) are 

2£Elf)-*]U9tf-(Of-09*)GZUfPr'O. 

f * 
Let us introduce the correlation function 

C*6ZUfty m ) 

and after eiaple transformations we obtain 

il (17) 
2 ? ^Щщй\г 

ilSt-Li da) 

(19) 

3. There are two types of excited states (except for rota
tional ones), for one of which, quasiparticle excitations,the 
conditions (9) are fulfilled, and for the other, vibrational 
states, are not. 

It is Bhown la ref. ' that the vibrational states are 
connected with off-diagonal parts of the d-:aeity matrix. In 
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that paper the off-diagonal increments Sp{a(Tt у V ) , 8ф (fff, O'ff') 
have been introduced and equations have been obtained for then:» 

19/ In ref. •" the average field has explicitly been extracted 
and the equations reduced to the following form: 

5„ - „' -rn(V..(V ,C:> . - . (20) 

ui!=uAl\\, *&-»A:%*u 
(21) 

When studying the excited states of complex nuclei one 
should remember that the interaction 6 manifests itself in two 
channels. The collective effects related to the -]uadrupole, 
octupole and other vibrations of this type and to the giant 
multlpole resonances are generated by the interactions in the 
particle-hole channel which are denoted by G (?,.& i f/,f,') . 

The interactions in the particle-particle channel are denoted 
by 6 '9„9г >9t,9t) • T n e interactions of this type with the 
total moment eijual to zero generate superconducting pairing 
correlations. In some cases the interactions with the total 
moment different from zero are taken into account in t>.e perticle-
particle channel. The terms of eq.(20) comprising V.l des
cribe the interaction in the particle-hole channel. The terms 
comprising Й . describe the interactions in the particle-
particle channel. 
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fo derive equation (20) the interaction between quasipar-
ticlee is taken in the moet general way. It is shown in ret. °' 
that all equations in nonphenomenological theories which are 
ueed to describe nuclear vibrations are particular cases of 
equation (20). 

Note that equations analogous ' "i) have been obtained 
in ref. '. In ref. 9 ' equations J) h* \ been generalized for 
the севе of external field ano ,ed for d -iving equations of. 

21/ 22/ 
the theory of finite Fermi-eye terns '• In i • * equations of 
ret, ' have been derived from equations of the theory of fi
nite Fermi -ays tenia. 

4. A quasiparticle-phonon model is constructed within the 
eemimieroacopic nuclear theory. The average field and residual 
or effective interactions are not calculated within the semi-
iJcroooopic theories but are given in a definite form on the 
basit< of our knowledge about the nuclear structure. Therefore, 
relative quantities rather than absolute ones are calculated 
within the semimicroscapic theories. For instance, the excita
tion energies at not the total nuclear energies in trie ground 
•Mid excited states ere calculated. In particular thi change of 
the nuclear energy with increasing deformation parameter is 
calculated. 

There are many different variants of the semimicroscopic 
description. We use one of them. The main assumptions of the 
semimicroscopic description of the nuclear structure are as 
follows:23'' 

1} The Hartree-Fock-Bogolubov method is used for obtain
ing the closed uystem of equations for the density and corre
lation functions. This is the main approximation in the many-
body problem. 
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2) A representation, is ohoeen where the density matrix is 
diagonal and the correlation function has a canonical form. In 
this representation all interactions between nucleons in a nuc
leus are reduced to the average field and interactions result
ing in pairing. 

3) The average field is extracted, which ie described by 
the Jaxon-Woodo potential. It is postulated that the choice of 
an average field corresponds to the aforesaid representation 
for some doubly even nuclei lying in the / -stabxlity zone. 
She average field defines directly many nuclear properties 
and makes it possible for residual forces to appear. 

4) The excited states are defined as one-, two-, three-, 
and so on quasiparticle states. 

5? The low-lying vibrational states are connected with 
off-diagonal elements of the density matrix. To describe them 
the multipole-multipole and epin-multipole-spin-multipole forces 
are introduced. The mathematical treatment is baaed on different 
variants of the second quantization method developed by N.N.Bo-
golubov 4'. 

6) The rotational, quasiparticle and phonon excited states 
are related to each other by the CorioliB and quaai-particle-
phonon interaction. 

2. The Model Hamiltonian 

In the aemimicroscopic nuclear theory the Hamiltonian des
cribing different types of nuclear motions has the following 
form: 
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н = нт <#pait *Ttci *HW *//, *//аа <н'_ (22) 

Here Ha, is the average field of the neutron and proton eya-
teme, Hpa^ are the interactions resulting in superconduct
ing pairing correlations, Twf is the kinetic energy of rotation, 
Йсог is the Coriolie interaction describing the coupling of 
intrinsic motion and rotation, H a is the multiple-multJpole 
interaction, He^ is the spin-multipo.le-spin-multipole inte
raction, and H' are other interactione including, for instance, 
interaction of the Gamow-Teller type. 

To describe the states the structure of which is related 
to off-diagonal parts of the density matrix, we introduce resi
dual interactions. The central residual interaction ia 

VOvtD'V^ii,-?^'4*'") • ( 2 э ) 

*{VT (if .-*,/) *VT(r(i7.- ЪО^гЦ&'г»). 

We expand it in a aeries of spherical functions, and as a re
sult we obtain 

VOvv>.I/,(*,Wglj. tfY i / iM)%r/i(9i %)> ( 2 4 ) 

•** (25) 

Of a similar form are the expansions of the functions V£ and 
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* t e . Here 

Р%<*', Mi? >?,,,£( , р &f"^ > * Y * P i*.. '/• •>, ( 2 5 ' > 
where Zt , в± , <£ , «redetermine the position and the spin 
of a particle, and the functions Rt (Z,,tt) , Rs (!,,;,) de
scribe the radial dependence. Therefore, the moat general form 
of the central potential is given as series over multipoles 
and spin-multipoles. 

From the existence of the static quadrupole deformation 
in the rare-earth and actinide regions one may conclude that 
the quadrupole-quadrupole interactions are very important. The 
part of this interaction which is not reduced to the average 
field should describe the • interaction between quasiparticles. 
Thus, a part of the residual interaction can be approximated 
by the terms of the multipole-multipole and epin-multipole-
spin-multipole interactions. 

The radial part of the interaction is chosen in different 
ways. In order to obtain a simple eecular equation instead of 
the diagonalization of the matrix of higher order, one should 
take the functions Ry (Т.,!*) and Rs ft.,**) in a factorized 
form 

R% it,,zl)--aelf>»iz,)R<x!.)J 

The functions ^x(t,.Zt) and / ? s It,, Zt) are often chosen as 

Ял (*..**.)=,*"Vz£ } 
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fhe corresponding expansiona of the functions VI4l,- liD and 
YTs (11,-€г1) involve the constants Jf,' and Xg" , The neu
tron-neutron X„„ , proton-proton Жр? and neutron-proton Xn(, 

constants are connected with the isoscalar X, and isovector X, 

constants as follows: 
X-nn ' ^pp - X„ ^ X, ^ 

(27) 

The interaction (26) ̂ s especially strong when both particles 
are near the nuclear surface. At t >R* the corresponding 
single-particle matrix elements decrease rapidly with increas
ing 7 and the strength of the interaction weakens sharply. 
Inside the nucleus the interaction strength deoreasee gradually. 
Often when studying the coherent effects I, - tg y and the radial 
part is Rt =#' I . Thus, the interaction (26) has the 
largest strength near the nuclear surface. Therefore th« results 
of calculation (26) for the interaction of low-lying vibrational 

24/ states are close to those for the surface delta-interaction '. 
The results of calculation of the multJpole giant resonances 
are close to those with a new Skyrrae interaction '. 

The calculations of nuclear characteristics performed with 
different residual forces give similar results. This indicates 
the fact that owing to the eingle-particlt wave functions the 
detailed radial dependence does not manifest itself strongly 
in the calculation of matrix elements. It has been demonstrat-

27/ " 
ed in ref. ' that the two-particle transition density behaves 
as a filter leaving only certain Fourier components of the ef-
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fective foreев. It has also been shown there that the residual 
interactions used in a certain limited configurational space 
are almost the same if their Fourier-components are similar in 
a comparatively narrow region of momenta transferred. It can be 
concluded that the use of the radial dependence of residual 
forces in the form of eq,(26) is justified. There are no convinc
ing arguments in favour of another (quite definite) radial de
pendence. 

2. Now we pass to the construction of the Hamiltonian of 
the quasiparticle-phonon nuclear model. ThiB model is used for 
the calculation of few-quasiparticle components, of the wave fun
ctions of spherical and deformed complex nuclei at low, inter
mediate and high excitation energies. For the sake of defini-
teness we give formulae for the deformed nuclei, however they 
счп unambiguously be rewritten for spherical nuclei. 

AB is known, the rotational motion and its coupling with 
the quasiparticle and phonon excitations play an important ro
le in atomic nuclei. The rotations, especially with large an
gular momenta, are described in detail in refs. . In the 
quasiparticle-phonon model in many cases the coupling with ro
tation Is negleoted and rotation Itself is described phenomenologl-
oally. This Is due to the fact that the high-lying states with very 
large angular momenta are not considered. When studying the low-ly
ing states the coupling with rotation can be taken into account in 
every concrete case. In the statee with small momenta at in
termediate And high excitation energy the coupling with rota
tion does not result in a considerable redistribution of strength 
of the few-quasiparticle components of the wave functions. The
refore, we do not introduce explicitly the kinetic energy of 
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rotation and the Coriolie interaction into the model Hamilto-
nian; they can be added when necessary. 

To construct the general form of the model Hamiltonian, 
we use formulae from ref.' '» From tha Hamiltonian (22) we 
choose the necessary terms and write as 

where 

includes the interactions resulting in euperconducting pair
ing correlatione and those in the particle-particle channel 
with moment different from zero. 

H» *M„(.n) +Hc(p) , (30) 

H.in)*zeiS)B(s,s)-,Hf(n)*H;(n), ( 3 0 . ) 

where (see page 207 in ref. ') 

H?in)-- f ^fl4V<S,S)-^(S,S)Jfys*Afs:sV VJAUs'.S")] , ( 3 1 ) 

T/e use the notation 
A wi„vs.v o r i^i"J& (32> 

18 



Here Ulg. ia the quasiparticle creation operator, the single-
particle state is specified by the quantim numburs: for neu
tron S (Г , for proton rer and for both systems <jc- , С - t i 

The interactions in the particle-particle channel with 
moment different from zero are 

fl^.fr<f»l/vl^'>^e^-

The multiple-multipole interactions have the form 

/V j£ Е((»."^:Л)/СГ»)%""^№^<«;' (36) 
u * A /in' ^ 

where 

Here 
*ltf? В («'if. 

(37) 

in contrast with ref. ' we do not distinguish between matrix 
elements / ^(4.?') and f'^iif, f ) 

The epin-multipole-sjin-multiple interaction ha» the 
form 

(38) 
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7р"> т^шЪ(ф£Ыт^«,т^Р)>г^и.ц.&й\, 

where 

тег 

Неге 

jJ(S,S')*Eo^3 ^ L(J. or £J-l^Js,<r_ (40-) 

3. Ore-Phonon States 

1, Let us consider the one-phonon states generated by 
the multipole-iuultipole forces in the particle-hole channel, 
bet ua take a part of the model Harailtonian 

H0 - Zti»B(9.4)+Hf+Hf, (41) 
where Ha is a part of H9 (36) without terms describing the 
quasiparticle-phonon interactions. 

Now we introduce the phonon creation operator 

' "*'Я9 >-f,«M99 ) \ 
(42) 

where t - %}l L , I being the s t a t e nir >er « i t h given If- , Af

t e r simple t r r a fo rma t iona '^ше ob ta in H# i n the form 

K-l}tK*w>-**M"'>\. 

H№*Zt<f)B(f9)~ 
9 
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where ^ = j ?̂, -^J, ^ &ffl = ̂  - </ff. , and the matrix element 
У f Qt)')=f ^(of) does not depend on * . 

The wave function of the one-phouon state is 

(44) 

where the wave function of the ground state T„ of doubly-
even nucleus is the phonon vacuum 

i ' (44 •) 
The normalization condition (44) is 

Following ref. ' the energies out of the oa«-phonon states 
with fixed values of fy or К are found using the variati
onal principle 

*\<***иК>-Щ$*п.»Ь-*1}=°- ив) 
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Ав a result we obtain the secular equation 

C*'.'-V.">X+CP> (xTOxU-* 
«o. 

which coincides with (ЬИЭ4) in ret. ^. Here 

(47) 

(48) 

where 

7* /•< , riss* (4B«) 

(48" > 

(4a"«) 

6fs)^f(S)-X„. it is seen from eq.(4B«) that for ty*0 r fi'S'i 
coincides with/ (SS'b 

Equation (47) can be written as follor-ч 

#*>= Xi'^tX V»-X W<'-*WW-*J*!X %0, (47-) 
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Note, that the influence of the constant x , on the 
first one-phonon states has been investigated in ref. . It 
has been shown there that the introduction of X\ results in 
«normalisation of the constant X 0 but the state structure 
is not essentially changed. 

To find the functions gA. and « ^ , we use the norma
lization condition (45) and after cumbersome calculations ob-
tain32/ 

h v N y t Ь fttrZ-c»»* ' U 9 ) 

t^' . j x ui \ /(W:'fUj , c„ zp i ( 4 9 1 ) 

where 

(50) 

"-С i t { ' " ( • Л » - ^ ' tCnt*£*fr;-wJj " (50') 

The expressione for »/s and fc^s are of an analogous form 
after the substitution of Cf , ^ , 3",' and tf by the cor
responding quantities for neutrons C„ , — , /f„ , V„ ; / 

Here 

У/ V S V ( » I . / , I ' I 2 V , . ' _£f_ i Яш) 

(510 
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the expression for \^(р)1в analogous to (51*). If the isoveo-
tor component of forces is absent (й?,м=0) then 4^ «1 and all 
the expressions (49)-(51*) have the form given in aeotion 8 of 
ref. , and the secular equation is 

/ - * . " s X ^ t ) = 0. (47*) 

2 . When cons ide r ing the sp in -mul t ipo le phonons, we иве 

the Harailtonian i n the form 

- J £, №+х£)[£0№&#*!ЖмДг&ь* (52) 

In this case the secular equation is 

J£'JC(SW $\pf-u-*i??xt-4r&*)*o, C53) 

where 

(/"<«'></£•)%(«'> 5 ( " ' - 2 f s - «',»«-«? 
(54) 

(54') 

The expressions for a*j , И*', and T/ are derived from (49), 
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(49*) and (51) by substituting Uff'. and ffff)by Un and /sfff>, 
and Uf is derived from (50) by substituting X Cn) by «SVi) and 
X (p) by $ (p). 

If we take into account the multipole-multipole and epin-
multipole-spin-multipole forces simultaneously in the particle-
hole channel for A = S , then for X,' * x£\ о we have the 
following expressions 

where 

wt i*99^(19WirU;M (56) 

3. Let us consider the one-phonon states when the multj.-
pole-multipole forces are taken into account in the particle-
particle and particle-hole channel simultaneously. We intro
duce the phonon operators, and if G( - 6> (")- Gt(p) -Q(pn) we write 
the corresponding part of the Hamiltonian (34) in the form 

H>;- f< | \ltf*mff*»Mp*w^*$f): ( 5 7 ) 

•Qt'Qt • 

If the multiplle-multipole forces are taken into consi
deration in the particle-particle and particle-hole channel 
simultaneously, then the secular equation is 
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«У. *Л' ( ' • » . / М^"Й *V 
X? м("-± /V 

where 
?*•. 

1-N»F ^ W C ' J b ^ м«' >»< £*'?.&)-< 

(5Ь) 

(59) 

(590 

(59") 

(60) 

Equation (5Ь) can easily be derived from eq.(20) by substitut
ing 6 and G by the expressions from H9 (43) and Hpp (57). 
The analogous expressions have been obtained in r e t . ' for 
spherical nuclei. 

4. Fnonon Description 

1. The secular equation, determining the energies of one-
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phonon states with fixed К ( K**0* ), for the raultipolc— 
multipole forces is the following: 

ш^ trt,r>U$ft(ff) ( 6 1 ) 

For each solution ^ of eq.(61) the wave function has the 
form (44). The number of roots of this eqjation is equal to the 
number of two-quasiparticle states with the same values of К 

in the neutron and proton system. The energise of two- quasipar-
ticle statee are the poles of eq.(61). If the root u, is far 
from the corresponding pole, then the state is collective. An 
the root approaches the pole the state becomes the two-quasipar
ticle one. In many cases the roots ш с are rather close to the 
poles £ (f(f) , and the states are weakly collectivized. 

In the secular eq.(61) the interaction between quasipar
ticles in the particle-hole channel is taken into account. If 

•f. is the partrole state and f' is the hole state, then 
(II,,, ) 2. 0,5 3 in many cases ( U ' ) 2 being approximately 
equal to unity. If both single-particle states f and <j' are 
either particle or hole states, the quantitites (U.'.'.')2 are very 
small and such states appear as purely two-quasiparticle sta
tes. These statee do not in fact influence the collective pro
perties of nuclei. To take these statee into account, one should 
introduce interactions in the particle-particle channel. 

Thus, the roots of the secular equation (61) and the corres
ponding one-phonon wave functions describe the whole system of 
states with given К . They involve the collective, weakly 
collective and two-quaeiparticle states. 

The secular equation of the type (61) is widely used for 
the calculation of energies of the first quadrupole and octupo-
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le collective states. The isoecalar constants X are fixed 
by the requirement for the calculated and experimental values 
of the first state energies to be close to each other. In de
formed nuclei one and the яагае constant is used for the descrip
tion of onc-phonon states of all nuclei in each zone of A •**'. 
The study of the low-lying states allows one to fix the рагаше-
tern of the Saxon-Woods potential, the pairing constants, .he 
iaoscalar constants of the quadrupole-quadrupole X0 and oc-
tupole-octupole x't interactions. The isovector constants Je,'" 

are determined from the isovector resonance energies. One and 
the same ratio*, /X\" is used for a large group of deformed 
and spherical nuclei. 

2. The definition of puonons is generalized within the 
quasiparticle-phonon model. The collective and weakly collec
tive as well as two-quasiparticle states are described by 
means of phonons. This generalization is performed along two 
lines: the first one implies the calculation of all (not only 
the first) roots of Becular equations of the type (61) and 
their wave functions are treated as the one-phonon functions, 
tne second one means the description of the one-phonon states 
with any values of A* in deformed nuclei and any / in 
spherical nuclei, the multipole-multipole and spln-multipole-
врхп-multipole force i with any X and S including large multi-
polarities are introduced. All states with fixed Кж and / * 
can easily be treated as the one-phonon ones if the constants 

X.' and x\ in eq.(47) or the constants Xec and J^" 

in eq.(53) are fixed. In dc/ormed nuclei it is unnecessary to 
take -nto account interactions in the particle-particle chan.-
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nel except for the description of states with К = 0* . In sphe
rical nuclei for the description of 0 + and some 2 + states 
one should take into account the interactions ш the particle-
particle channel and therefore solve a secular equation of 
the type (58) (see ref.33''). 

The иве of equations of the type (47) and (53) and of 
the wave functions (44) for the description of states in defor
med nuclei with К =1 ,3+,4 ,5 ,..• and 4~,5~,6~,... and in 
spherical nuclei with the corresponding values of /* requi
res the introduction of new constants Х.'л> , •#,'" , XjJ' and 

Xs, • These constants are fixed rather arbitrary-"'. This 
arbitrariness io due to the fact that nonrotational etatee of 
high multipolar!ty are poorly studied experimentally. Are 
there strongly collectivized states of high multipolarity? 
This question is still open. It should be noted that if there 
exist such states, they can hardly be observed experimental
ly. Obviously, there is an upper limit for the constants X,' 

and яао , In even-even nuclei there are many low-lying 
states with К от Г equal to 1+,3*,4-,..., and the choice 
of Xc and Xfc is limited since these states should not 
lower very much. 

When studying the states with high multipolarity one 
should take into account that besides maximum at energy where 
the poles corresponding to the matrix element» with i* iff 

dominate, there should exist maxima at lower energies with 
the poles corresponding to the matrix element» with Atf^- •» • 
Рог instance, the low-lying octupole resonance» with the energy 
5-10 HeV have been detected3 ' in some spherical and deformed 
nuclei, the matrix elements with &N «1 dominating in their 
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wave functions. It is Interesting that the calculations per
formed in refs. '••' ' without any fitting have confirmed the 
existence of the low-lying octupole resonances in spherical 
and deformed nuclei. 

For deformed nuclei one ehould remember that the multipo-
le-multipole interactions with large A describe phoncns not 
only with X-K but alno with К<!• X . Therefore the phonine 
with fixed К are determined by the multipole-multipole for
ces with Х- К , K+Z . K*dt ,... . The constants Xr for 
large X ehould be chosen as to prevent a strong change of 
states with K< X which are determined by the interaction 
witl: smaller multipolarity X . For instance, when studying 
the К c2 + statee one ma./ also take into account the multi
pole-multipole forces with X =4,G,... . The constants 3Cr , 

X'c" , . . . should be taken such that the energy and structure 
of the first K* »2 + states determined by the forces with X »2 
Bhould not be changed strongly. There is no experimental infor
mation concerning the influence on the one-phonon states of 
forces with different X . It may be assumed that due to the 
arbitrariness in introduction of interactions in nuclei the 
states with fixed К are studied on the basis of the multipo
le-multipole (spin-raultipols-epin-multipole; forces with the 
only value X , Whan calculating quantities of the type 8 {££) 

one should take into account the transitions to the rotatio
nal states with J- X and K^ X since they give the coherent 
contribution. 

If the multipole and spin-multipole forces are taken in
to account simultaneously, then the secular equation has a 
more complex form (55). The study has shown that the epin-mul-
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tipole forces slightly influence the first quadrupole and oc-
tupole states in deformed and especially spherical nuclei. The 
spin-multipole forces have not been experimentally detected 
in these states. Since the choice of interaction is arbitrary, 
it is unnecessary to take into account the multipole and spin-
multipole forcee simultaneously when calculating the one-pho-
non states. 

It may be confirmed that to find the energies of the one-
phonon states it is sufficient to solve equations of the type 
(47) and (53) and sometimes (50) instead of solving the secu
lar equation (20). 

3. The construction of the model Hamxltoman is very arbit
rary. The arbitrariness is due to the form of the average field 
potential as well as to that of the residual forces. There
fore, we may introduce some limitations to the description of 
one-phonon states. Further, some of these limitations can be 
removed due to the availability of the corresponding experi
mental data or theoretical considerations. 

low let us formulate the following rules for the descrip
tion of one-phonon states with fixed К in deformed nuclei 
and Iя in spherica.1. nuclei. 

1} To find the energies the following equations are sol
ved: 

a) The secular equations (47) with the multipole-multipole 
forces with the minimal values of X . 

b) The secular equations (53) with the epin-multipole-
spin-multipole forces with the minimal values of f> if the 
multipole forcee do not exist or they are of higher multipola-
rity. 
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2) The forces of different multipolarities or multipole 
arid spin-multipole forces are not taken into account simulta
neously, 

3) In deformed nuclei when calculating the О (fc/CJ values, 
spectroscopic factors and other functions, the transitions to 
the rotational states are calculated, i.e.,to all the status 
with 1-Х and different values of К . 

4) The interaction in the particle-hole channel Ls taken 
into account. The Interaction in particle-particle channel is 
taken into account in the calculation of: a) the 0 + states in 
all nuclei, b) the 2 + states in individual spherical nuclei 
(equation of the type (50)). 

5) The isoscalar constants 3f„ for £*4 are determined 
from the first state energy, and for X 4? 4 they are taken so 
small as to prevent the lowering and strong collectiveness of 
the first states . The ratio of X, /X„ is determined: 
a) from the position of the corresponding isovector resonance, 
b) from the phenomenological estimates.. 

In some cases the secular equations can be complicated in 
order to exclude the spurious states. 

The good agreement of the calculated density of nuclear 
19/ states with the experimental data at the neutron binding 

energy Qn justifies the completeness of the phonon space. 

5. The 'juaalparticle-Phonon Interaction 

1. In the quasi particle-phonon nuclear model all two-qua-
siparticle and vibrational states are given in terms of the 
phonon operators. If there is no interaction between phononSj 
the whole set of nonrotational states of even-even nucleus is 
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written as a series of one-phonon states, a series of two-pho-
non states and a series of /7 -phonon states. The set of non-
rotational states of odd-A nucleus is given as a series of 
one-quasiparticle states, a series of quaaiparticle plus pho
non states, a series of quasiparticle plus two-phonon states, 
and so on. The nonrotational states of odd-odd nuclei comprise 
a series of states with proton and neutron quasiparticles 
which then are added by one, t.vc uua more phonons. Such a pic
ture of excited Btates has been used in ref. ' for the calcu
lation of the density of excited states at different excitation 
energies up to the neutron binding energy Bn >and the good 
agreement with experiment has been obtained. 

The set of noninteracting quasiparticlee and phonons gives 
a wrong picture of nuclear excited states. 

The correct wave functions of nuclear excited states are 
written as superpositions of components with different number 
of phonons. The wave function components which differ by one 
phonon are related by the interaction of quasiparticles with 
phonons. If phonons are fixed, the corresponding parte of the 
multipole-multipole and spin-iuultipole-spin-multipole forces 
which describe the quaslparticle-phonon interactions are uniqu
ely determined. If the secular equations for phonons are sol
ved, all model parameters turn out to be fixed. The larger 
the quasiparticle-phonon interaction connecting, for instance, 
the one-quasiparticle and quasiparticle plus phonon states 
the stronger a phonon is collectivized. 

The quasiparticle-pbonon interaction has the following 
advantages as compared to other types of effective interac
tions: 
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1) A conoistent description of quaoiparticle and phonon 
states and th^ir coupling. 

2) Л unique choice of thu form and constants of the in
teraction. 

3) Applicability for the description at low, intermediate 
and high excitation energies. 

2. The Haniltoriian of the multipole-multipole interaction 
Hn (36) comprises, besides a part entering into (43) which 
is used for the calculation of one-phonon states, the terms 
containing the operators of the form 

whjch are rjsponsible for the description of the quasiparticle-
phonon interaction. We denote the corresponding part of the 
HaruLltonian (36) by Hv, and write as follows: 

(62) 
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si' 

bet us transform Ht'f. taking into account the fact that 
the one-phonon energies are determined from the solutions of 
secular equations (47) and their wave functions are expressed 
through Q* and Щ„, ±n the form of (49')-(!31'). An a re
sult, we obtain 

where 

^„."^:3£-/W>. 
(64) 

rzlf»*ifertif'<rz->t 

'* and 'JB being defined by eqe.(51) and (50). 
For the spin-mult-pole interaction, to the Hamiltonjan 

H„. (52) one should add a part corresponding to the qua-
sipartide-phonon interaction in the form 
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1 ^ I S S 

(65) 

>Lriln(p>[mxx)(Q\*Qiy(Q*rQt)&(iV)]}) 

where 

• *s / И ? 

(66) 

f y t

s <?PJS* 

For the multipole-multipole forces with non-zero moment 
of the particle-particle channel for the isoscalar interaction 
the corresponding part of the Hamiltonian is 

(67) 

The model Hamilton! r*i taking into account the secular 
equations for phonona is the following: 
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ftc„.«„'-Vx 
м q * г 7 Y t l h £'(ss-)-ui/ 

. i c 

Here 

^ ; . i s e 4 u a l to/^j.fn) a n d / \ r , ГА>, 
Л<5 i s equal to / Г £ f n ) and /T ' f <-/>; . 

With additional consideration of interactions in the 
particle-particle channel with moment different from zero, 
the Hamiltonian (68) should be added by the terras (57) and (67) 
transformed in accordance with the secular equation (58). 

6. The S.VBtem of Basic Equations and Solutions 

To obtain the basic equations of the model with thv Ha
miltonian (68), we use the variational principle. Let us con-
aider first odd-mass deformed nuclei. The wave function of a 
nucleus with an odd number of neutrons can be represented in 
the form of expansion 
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where ¥i is the wave function of the ground state of an 
even-even nucleus which has one nucleon less, determined by 
formula (44J, and я is the number of an excited state with 
given K* , f * ft , G *<jt<ti i - K/tl . 

Following the accepted procedure we find the average value HM 

over the state (69), and on the basis of the variational prin
ciple obtain a chain of coupled equations. In ret. ' it has 
been shown that this chain of equations is equivalent to that 
for the corresponding Green functions. The cut-off of a chain 
for the wave functions (69) corresponds to the cut-off of equa
tions for the Green functions. 

The system of equations with the wave function (69) invol
ving all the terms up to the quasiparticle plus three phonon 
terms is given in refe.^' ' and studied in refe.* ~*̂ '. The 
corresponding equation»for spherical nuclei have been derived 
in ref. 4 4 /. 

Let us describe the multipole and epin-nultlpole interac
tions. To this end we introduce the following notation*''i 

Г 
'if 

' fq' for the multipole interactions 

*• I ... for the apin-multipole interactions 
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fr-
iltiii,- rnJi,b] for the multipole 

interactions 
(7D 

.J. Г nttsJ! + rl'Sr( X t o T t n e »pin-multipole 
« i 4 "«• '»fa °''e' ' - interactions 

The wave function of an odd-N nucleus is given in the 
form 

with the normalization condition 
Ш) 

(73) 

The expectation value /jL (68) over the s ta te (72) has thi. 
i'orm 

<Z P{6) Ve")2*2L rt/ CC Df-2Z Г)в Dffe"t 

where the fundamental poles are denoted by 

Using the variational principle 

wc obtain the following system of equations: 

(74) 

(75) 

(76) 

(77) 

39 



Bow we introduce the notation 

«4-t > f t w . u + L PWt„ ( 7 9 ) 

and rewrite equation (76) as 

The 3ecular equation has the form 

<76') 

The rank of the determinant is equal to the number of the 
quusiparticle plus phonon components in the wave function (72) 
If one takes rather a large space of single-partielo states, 
the rank of this determinant is of an order of 10 -1G . It 
has been shown in ref. ' that the determinant of the system 
of equations (76) can be represented as follows: 

П(Р(1Нг'-Щ)*'-$-щ^ -f T i ^ - f T ^ N ' ( b 0 , ) 

where the coefficients ,4 S , Д. and 4 S , which are the sum* 
of determinants of different ranks, are independent of b. 

Therefore, the secular equation 

comprises the poles of the first order onlr* 
The above system of equations is used to study the 

fragmentation of singlo-particle states (see refe. ' ' ) • 
To study the fragmentation of an individual single-particle 

40 



s ta te Sj, , we transform i t by introducing the following 

functions: 

~ Л" 71" с 
CfrJj- Da*-4- / Г \ _ £ _ 

where if f S„ . The system of uquations (76),(77) and (7b) 
can be rewritten as (see rcf. ') 

(B1) 

(02) 

(рц»лЛ°-уз*ъп

го. (84) 

The normalisation condition of the wave function (72) is 
rewritten as follows: 

Equation 

where 

corresponds to eq.(76). 

(83') 

(79') 

Let ue denote the determinant of the system (831) by в(ь>Л 

The relation 
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(СУ 
0 ?*.<*) 

1-К (85) 

is strictly fulfilled. 
The solution of equation (83') has the form 

} ' 0(S..?) ' (86) 
where 6L(s,jk) ie obtained from 0(&t;h) by substituting 
the column » bj free terms (83'). Let us substitute (ъб) 
into (81) and after transformations we have 

£(0*SrFi fts.,4) 
"u-l r4, Гч„ 

(87) 

where /V is the number of states 4 . How we calculate 
the determinant and rearrange the terms. So, we 
have 

%S4)-<w-i) -mky (87') 

Let us find the function Cg and substitute (86) into (82) 
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We calculate the determinant, rearrange the terms, and then 
obtain 

c--s ttts)?„)ecs.-,u 
or4 

rb 

It.'Xi.ty.W — Pfj.J-K-Ks.y.f.) (88) 

Let us give formulae for a simplified case when the wave func
tion has the form 

and Itf normalization is 

In this case the equations can be written as 

(Р13)-1„)Ъ°-ЕГЪ!)С'1--0. 

(90) 

(91) 

They can be rewritten as 

where 

(ec«-*„)C:-Z««:>Cj = *, 

г г 

(92) 

(921) 
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The secular equation has the form 

8(1n)^ctetll8SsU(s)-l)-K(ss)H:0 . (93) 
The rank of this determinant equals the number of one-quaeipar— 
ticle components in the first sum in (89). Рог deformed nuclei 
10-15 terms and for spherical 1-3 are sufficient. 

Now we extract the state S. and write the equations as 

f "*>-*„> c j - E T S / 5 ; = 0, o 5 ) 

(p(p-vSn

rzrifc^r4) об) 
(c-y**/* !<?;>*•! ( 3 ; / . (97) 

я 

Equations (95) and (96)can be rewritten as 

The solution of this equation can be written in the form 

(95') 

5 0 S. (9И) 
where fls> is the determinant of the system (95') and S , ( S ) 
is obtained from it by substituting the column S by the r.h. 
side of eq.(95') t 

7«.<*>=тг • ( 9 9 ) 
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•1С 

taken into account, then the wave function is represented as 

Vn «'><*№**}»№№> doc) 
and the secular equation and expression for ( Cs )*• have the 
form 

(С"Уг-- f+1 - ГЧ - . do.-) 

In order to find the energies of the states described by 
the wave function (72), one should diagonalize the matrix of 
a very high rank (80). Mathematically, this problem is very 
complex. The approximate methods of solution of equations of 
the type (80) have been studied in refs. ~4-3'. The approxima
tions have been found, which describe satisfactorily the largest 
components of the wave functions (72). For intermediate and 
high excitation energies, the few-quaeiparticle components, 
we are interested in, compose a small part in the normaliza
tion (73) and are poorly described. Therefore, the methods of 
approximate solutions of equations of the type (80) developed 
in refs. ' cannot be used to study the fragmentation of 
single-particle states. 

To study the fragmentations of single-particle states and 
to calculate the neutron strength functions and spectroscopic 
factors of the one-nucleon transfer reactions, we propose the 
following approximate approach consisting cf four steps. 
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The firBt step; 
The wave function is taken in the form of (89) and the 

solution for the secular equation (93) ie found. This problem 
46—48/ в̂ very simple, and it has been eolved in refs. . Prom 

all the states ) in (80) the selection rules choose the set 
of states «' the number of which is two orders less than the 
total number of the states * . 
The second step; 

We select the set of states в' the number of which is 
equal to the total number of solutions of equation (93) minus 
the number of one-quasiparticle components in the first term 
(89). Уог each solution £ corresponding to the pole fiff'i 

we find the quantities (C£) 

The third step; 
From the set of states } ' we select such a set of states 

o* for which the corresponding quantities (С£)г are larger 
than the definite value of СI . If one takes C, - 0,002 

then the number of states a" is 15-20. 
x'he fourth steps 

In the determinant (80) we take only the set of states 
a' and then diagonalize them. Thus we find the state energies 

and quantities f C£ ) . This problem can be eolved at compu
ter for many nuclei, since one aould diagonalize the matrices 
of the rank from 10 to 100. 

2. Let us consider an even-even deformed nucleus. The mo
del Bamiltonian (68) can be rewritten as follows] 
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»м'^ы*в*а* -

*{ г 1г£\#шщ*а±) <а\*йь)тю) ° 0 1' 

The wave function can be represented, as the expansion 

Mow we find the average value HM over the etate (102) and 
using the variational principle obtain a chain of coupled 
equations. The case when the wave function takes into account 
the terms comprising one, two, three and four phonons and neg
lects those comprising more than four phonons has beun investi
gated ~n ref. . In this paper the system of basic equations 
has been obtained and the method of their solution has been 
proposed. Formulae for spherical uuclei have been derived in 
r e f . W . 

Let us study in detail the problem with a simple wave 
function, which la taken in the form 

Vj^lz *;та;^1Р;1Ь(у)а;х}У., (,оэ> 
Its normalization condition is 
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UR?w¥*i(p;.ixry=t. (юз-) 
Wow we find the average value H M (101) over the Btate (103) 

(104) 

where to. , = <-*Л * cJ* 

for the iaultipole-multipole mteractiou the explicit form of 
" , L ^>< > ^s given by formula (9.75) in ref. ' . 

Using the variational principle 

&№1кж)Нм¥(*к;Ш1Ч';(к'№(кж>)-1]}'0, (106) 

we derive the system of basic equations 

^-VV-ZVt^P^O, (Ю7) 
(u}i.tAn)Pt"t-ZUlit(t)K^O , ( 1 0 7 I J 

^i-\n)*:-ZKw*i-s°. 
where 

(108) 

(108«) 

48 



Therefore the secular equation has the form 

в(1 „ycteill(oJt -j jS u , -Klt.a- 0, ( 1 0 a ; 

the rank of the determinant bcint; equal to the гшыЬиГ of one-
pnonon etateo j.n the first sum in (103)« 

Us-ing the norraalizatioti condition for the wave function, 
wo derive the following expresoions for its coefficients: 

• = ~ 7 7 ^ < 1 1 0 J 
• ' N 

p" - IT ЦЧЛ**>Н. 

where M,-- is the minor of determinant (109), 

« ' ^ +fe.lt ̂ W 4 „ " ) ' <tto-> 
Let ue rewrite equation (108) as 

3 . ( ^ J 7 u )*-.-*„- * i . i , - 1 *",.£' # " = 0 , ( 1 0 8 " } 

luJrb„)*rZ.Ku.RL:*Ki.i' . doe-") 

I t can easily be shown that 

^ - - т г 1 » ( 1 0 9 , ) 

(111) 
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<Br.>-'-T!J(2.<i->j 
J - t . ' " " " 

where the determinant Мц, is obtained from the Dimor Mi ± 

by substituting the 1 -th column by a column of free terms 
(10b>). 

It is not very difficult to solve the system (109) and to 
find the functions R" and P. . . For a limited number of 
states i and t, tt i n deformed nuclei this problem has been 
Bolved in ref. '• Por spherical nuclei this problem has been 

17/ 
solved in ref. which also gjvee the reduced probabilities 
ВкЕЛ) of excitation of the giant multipole resonances. The 
E1 radiative strength functions for semimatjic nuclei have been 
calculated in ref. ' . 

If only one one-phonon state, is taken into account in eq. 
(103), the wave function has the form 

The secular equation and expression for(R"CfyL))1 have the form 

"«. V g E (j t ' < t - t n " > (иг 1 ) 

3. The wave functions (72) and (103) have the tense con
taining the product of two phonon creation operators. Since 
the phonon operators are constructed from the product of qua-
siparticle operators satisfying the ferminn commutation rela-
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tions, one can observe a certain violation of the Pauli prin
ciple in the productions in two phonon operators. The problem 
of exclusion the terms violating the Pauli principle has been 

c-i м uc / studied in many papers, for instance in refs. J' • . Let us 
show that within the quasiparticle-phonon model the problem 
can be formulated so as to avoid the violation of the Pauli 
principle. 

The mathematical method is demonstrated for the case 
when the wave functions have not more than two phonons. We 
introduce the operators of "true" bosons 6''J.y ', 6(9,9') sa
tisfying the commutation relations 

and the condition 

*(ш--«(о;. ( 1 1 3 > ) 

Using the exact commutation relations, we express the operators 
A"(gq') aad ff(g f) by the boson operators as follows: 

hri itlt 

where *-"--g-> Ц--& 

We introduce the phonon operators 

9 9')\ 
(115) l-i&{46 *'•»-£•'*«•*>) 
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(116' ) 

and express the operators of multipole moment (37) by them. 
For the sake of simplicity we take the Hamiltonian ai 

H'M - ^£(9>B(q,fi-^xs.t>fy('>)Q¥<n)*Q;Mvwt/l(p)* ( 1 1 6 ) 

where Qj» (n) is defined by formula (37). Taking into account 
the secular equation (47) we obtain the Uamiltonian, expressed -
by new phononsfy) in the following form 

, , and Vttt' compri;*» the sum of pro
ductions of matrix elements and functions ty. , and f.f, , 

rfe take the wave function as (112) and the average value 
HM- over this state is 

(117) 

Using the variational principle, we obtain the following sys
tem of equations: 
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When we take bosons instead of quasibosons we are led to the 
second term ,n eq.(llfc'). If it is neglected end substituted 
into (11U), we obtain the secular equation (112'). 

Now we extract the coherent terms in eq.(llo') and then 
rewrite this equation as follows: 

In the first approximation when incoherent terms are neglec
ted In eq.(119) the use of bosons instead of quasi boeona means 
some shift of energies of the two-phonon states. Using the 
perturbation theory one can take into account noncoherent 
terms which represent the rescattering of phonons on the pho-
nons. 

Therefore, within the quasiparticle-phonon nuclear model 
one can work with true bosons without violating the Paulx 
principle. Within each approximation, i.e.,in a certain cutoff 
of expansions in the wave functions (69) and (102), the cor
responding expression for the operators A (9, 9') and A (9,9') 

is chosen, i.e.,the subsequent terms in the expansion (114') 
are taken and the system of basic equations is found. 
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7. tte Method of Strength Functions 

t. The wave functions of the type (72) and (103) at in
termediate and high excitation energies of complex nuclei do 
not describe correctly the state structure due to the absence 
of шапу-phonon components in them. So, for instance, to des-

133 T T 

cribe the excittd states with energy of about 4 MeV in V 
the wave function (69) should compriee the quaaiparticle plus 
four phonon components. When formulating the quasiparticle-
phonon model we did not aim at finding the correct wave func
tions of highly excited states. The quasiparticle-phonon model 
Ls formulated so as to obtain the most correct description of 
few-quasiparticle components of the wave functions averaged 
over some energy interval. 

For intermediate and high excitation energies the results 
of calculation of the characteristics for each state can hard-

"Jrr 
ly be represented clearly. For instance, in u at excitation 
energies of (3-5) MeV, 10-20 poles (and the corresponding so
lutions) of the quasiparticle plus phonon type are in the in
terval of 100 keV. Therefore, when calculating the fragmenta
tion of nne-quaeiparticle i tt '-(,a •5°/ > t n e e ume of the type 

have been calc.-] ?d for the states lying in the 
interval from 200 to 400 keY, and the results have been repre
sented as a histogram. The energy of each state has been 
found, the components (many thousand of them) of the wave fun
ctions have been calculated and the value of one of them has 
been used for the calculation of quantities of the type "£.(CL) . 
Only a small part of information obtained has been used. The
refore, it became песеввагу to construct such a mathematical 
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apparatus which could be used for the calculation of aquired 
quantities in a certain interval of excitation energies. 
Such an apparatus is the method of strength functions, i.e., 
the method of direct calculation of averaged characteristics 
without a detailed calculation of each state. This method пав 
been used in refs/ 4 6' 5 7'' 

Let us consider the fragmentation of the single-particle 
state described by the wave function (100) with the secular 
equation (100') and the expression ( Г " ) г in the form 
as (100"). 

Now we construct the function 

(120) 
where 

(121) 

The way of presentation of the results of calculation depends 
on the value of the energy interval of averaging A . In 
ref. ' the strength functions have been calculated using 
the function P(),-}) . These functions are widely used in the 
quasiparticle-phonon nuclear model for the study of the frag
mentation of one-quasiparticle states, for the calculation 
of neutron strength functions and giant multipole resonan-
„„23.32,37,38,46,47,52,59.60/# T n e r e a u l t e s i m i l a r t 0 t n o s e 

which are used in the Green function method can be obtained 
b» introducing the functions P(}*-? ) • T n e probabilities 
of excitation of the giant multipole resonances have been cal
culated using the expressions which can be obtained by intro
ducing the function f(A-/J 2 6 > 6 1 / . 
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Bearing in mind formula (85) the function ft (h ) 

can be written as 

кы-'Ы-Цру^м.-*) и».) 
Using the theory of residues, we express the function (120') 
in terms of the contour integral around the poles which are 
the solutions of eq.(100'). As a result we obtain 

Ф -И-— -A I ClZ / ctz _ 
(122) 

the contour i/, being represented in Fig.1. Since the con
tour integral along the circle of infinite radius in the com
plex plane Z is equal to zero, we change the integral over 
the contour tf> to two contour integrals 8, and 1г 

around the poles 2.'£-i% 2 г г 2 " ' л / 2 , 

<h (h ) - -L -L J d z / 
(122') 

After simple calculations 

%,(%)~--JI 2(1-1) %(Z) « (122") 
>Z •ttiVe 

i7m (X^¥)} 
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and using Л ($ + <"-) a s 000'), we obtain 

where 

r(t):,*j(p<p-v4W ' ( 1 2 3 , ) 

The function & (*) is given in the Breit-Wigner form. How
ever the dependence of Г( fc) and 1С (4 ) on energy £ is 
very important, since it causes a strong deviation from the %.C0 
Breit-Wigner f o r m ' . Usually ' the functions or the form 
(123) with constant Г and jf are used, and 
this cannot be justified. 

2. The method of strength functions is an important part 
of the quaaiparticle-phonon nuclear model. The method of 
strength functionahas been used in refs. ' ' to study the 
main regularities of the fragmentation of single-particle 
states in odd-A deformed nuclei. Taking the wave function as 
(72) and the function J$t (\ ) aa (b1) and performing the 
same calculations as in eqs.(120),(122) and (122'), we obtain 

(124) 

i.e.,the same form as (122"). To obtain Щ^ (£ ) one should 
calculate the matrix of high order Q' or g ra
ther than diagonalize, whloh is muoh easier mathematically. 
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The fragmentation of one-quasiparticle states allows one 
to calculate the strength functions of neutron resonances and 
of оне-nucleon transfer reactions, the formulae for which 
include the expressions of the form 

The Bingle-particle wave functions Vs are given as the 
expansions over the spherical basis 

v:-l"Z*„. <*Z'Z<i£. (126) 

In ref. ' the strength functions 

SfrV'S/xi.-vltaZKC»,^ ( 1 8 7 ) 

*а'ч>'£/>Ио-г)\$а£ъс;\* ( 1 2 Т., 

are introduced, and the following transformations 

#!' 
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are performed. Here we have used formulae (85) and (8b). 
Baking the ваше operations as when passing from eq.(120) to 
eq.(122"), we obtain 

(120) 

The expression for Oel C^) differs from eq.(126), since 
the functions l/j and t/j- are substituted by Z^ and ly-
Using the condition of completeness the authors of ref. ' 
have obtained the following expression of the вит rule type: 

The right-hand side of eq.(129) is the upper limit of the 
strength function (128). Calculating eq.(128) in a certain 
energy interval and comparing it with the r.h.side of eq.(129), 
one may determine which part of the strength function Is exha
usted in this energy interval. 

When calculating the strength functions instead of dia-
gonalizing the matrix of high order j ' or j ' for each 
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state there are calculated the imaginary parts of the deter
minants of an order of a or Q at different values of епигцу 
£ with step 4 • The calculation of the strength 

functions instead of calculating the values for each state 
reduces the computational time by a factor of 10 -10 . 

3. Within the quasiparticle-phonon nuclear model the 
strength functions for the reduced <Д -traneition probabili
ties are widely used to study the giant multipole resonances 
and neutron resonances. 

We dirive the expression for the strength function of 
Ел -excitation of a doubly even deformed nucleus, th« excited 
states of which are described by the wave function (103). 
fhe reduced £b -transition probability has the form 

^W'o-VwWblJnoox/i/ifKffji* , ( 1 3 0 ) 

(131) 

'^iWMW, 
whure etulf>) and вф In) are the effective electric charges,and 
for Ei -transitions they are equal to 

The functions V , X a"1* tf/> a r e determined by for
mulae (5D, (48) and (50). Then 

Ji'„ -- Z/?."0$«) R^(t/t)^i(tyi)Li' Ujl) - (131") 
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Let us introduce the strength function 

tltWZBlEXM/XfrV 0 3 2 ) 

where/>f^ -fy) is determined by formula (121). it is еьау to 
Bhow that the relation 

?•% 
/ Не*.Г)аЬ'=*А*(Е*; in) (132') 

is fulfilled with a suffieiently good accuracy. The summation 
.y-n-in it iB performed over all the states with given К 

in the energy interval Д . Using formulae (111) and 
(111') and substituting (130) and (131) into (132), we obtain 

HfPr^- lnnc.,\T ,-)*fr LjlWLilW H>ыМц- 1 

(132") 
z.A (""мша?4j- li<Wkw t-ouMUu) dz 

u I've %<Z) MU(Z) d-V* (*/,?• 

Here the integration is over the contour, given In the Figure. 
Using the same procedure as when passing from eq.(122) to 
eq.(122") and formula (109), we obtain 

but, ч)»£my iщ?и-ои'и<у)1>№)1>» lj0fj-j. <"з> 
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When calculatij-g the strength functions «(£ >̂>J one 
should not diagonalize the matrices 9 and M;i but 
should calculate their imaginary part at different values of 

b . ThiB reduces the computational time 
by a factor of 10 -10 . The rank of the determinants 0 

can be chosen within the following limits! 10-20 for spheri
cal nuclei and 20-100 for deformed nuclei. It follows from 
the aforesaid that the calculation of many gxant multipole 
resonances for a large number of nuclei needs reasonable time 
at the computer. 

The calculation of the energy weighted sum rule (EW3R) is 
very important for determining the regions of location of the 
giant multipole resonances. The energy weighted sum rule ie 
as follows: 

M" (13*) 

For spherical nuclei there is no summation over fi. or К • 

The model independent energy weighted sum rule ie useful 
for determining the coapleteness of the single-particle basis 
used. The model independent dipole sume rule is 

\B[Ei,^^OJb^-lzMxn MeV. ( 1 3 5 ) 

For * > t 
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8. Conclusion 

1. Many properties of complex nuclei at low, intermedia
te and high excitation energies can be calculated within the 
quasiparticle-phonon model. A part of these calculations has 
already been performed. It is obvious that in future йоге com
plicated variants of the model will be used, by including nuw 
terms in the wave functions (69) and (102) and by taking into 
account new forces. 

2. It should be noted that the main contribution to the 
wave functions of highly excited states comes from many-quasi-
particle components. It is undoutful that in future new pro
perties of highly excited states due to many-quasiparticle com
ponents will be demonstrated. So far, there is no data on the 
magnitude and distribution of many-quaeiparticle components 

of the highly excited state wave functions. Even for neutron 
resonances it xe shown ' 5» b- J' that direct experimental evi
dence for many-quaeiparticle components of their wave functions 
is absent. The contribution of the few-quasiparticle components 
to the wave function normalization is only 10 -10 . 

3. With increasing excitation energy the state structure 
becomes complicated. A variety of properties of the high-lying 
atatев may be expected as compared to the low-lying ones. One 
can hardly imagine the structure of nuclear states at very 
high excitation energies. Will it be the state of nondistingu-
ishable nuclear matter or something else? 
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4. It is doubtfull whether a siiaplt; and clear descrip-
tic of complex nuclei will be found. The atomic nucleus is a 
very complex syeteu, but this complexity can be understood, 
the known properties can be described and the new ones pre
dicted withjn the nuclear theory based on the computational 
technique which is rapidly developing. 

In conclusion the author expresses his gratitude to 
N.N.Bogolubov, A.I.Vdovin, R.V.Jolos and L.A.Malov for 
numerous discussions and help. 

Figure. Integration contours in complax plane Z. 
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