





Uarukosa K.B. E4 - 10995
CTpyKTypa /Merkux saep B MeTode K-TapMOHMK AMd pas3iuuHbIX
BADHAHTOB HYK/IOH-HYK/JIOHHOIO B3aumMogedcTBHS

B merone K-rapMoOHUK €3yyalach CTPyKTypa Nerk#xX saep. B cpasm
C 9THM pa3BHMBaiCsd POpPManu3M MeToia runepcepHUecKHX dyHKuuw#H. HMccnemo
BaH BONPOC O MOCTPOEHHH rulepcdepuyeCKHX TFapMOHHK €  3agal-
HOM NepecTaHOBOYHOH CHMMeTpHel, pa3BHTa shdeKTHBHAS IeHealorHYECKas
TeXHHKA, PeKyppeHTHas IO YHCiy HYKJOHOB B dipe, NOly4eHbl MATPHYHbIE /e
MEHTBbl Da3/MHYHLX PUIHYECKHX ONepaTOpoB, 3aTeM 3TH GOPMYIH NPUMEHSIHCH
A7 OMuCaHMA PA3NH4HBIX CBOACTB saaep. OueHnBanacCk 3aBHCHMOCThL pe3y/bTa~
TOB paciyeTa OT BAPHAHTA pealUCTHYECKOrO HYKJIOH-HYK/IOHHOI'O NOTEeHUHAJA.
Hsyuanunch owepruu cesuan, CpeaHHe KBAAPATHYHBIE DAAHYCH, BO36yXAeHHble
COCTOSIHHSI HOpMANBHON H AHOMANbLHOH 4YeTHOCTH, MApaMeTp CXMMAEeMOCTH
M K/lacTepHasl XapaKTepuCTHKa sapa. Hccnenoeanuck aapa 1p -o6osnouxu
B NpHONUKeHHH K'Kmin 44 KgKmin +1 . [Monyyenusvie pe3ylbTrarsl NO3BOALGIOT
CfenaTb BHIBOA, YTO OTHOCHTeNbHOE NOMOXEHHe B CNeKTpaX ypoBHeR MeHee
4YYBCTBHTe/bLHO K BHIGOpDY NMapaMeTpoOB moTeHUHanda, YemM abCOMOTHOe 3HadeHHe
PHEPT'MH CBA3K. B AMNONBHOM THMaHTCKOM pe3oHaHCe CYWeCTBeHHA IpHMeCh
COCTOSHWA TPH 9acTHUbl ~ TPH ABIPKH H NATb YaCTHU = NATh AbIPoK. [lapa-
METP CXHMMAeMOCTH JIeTKHX fiep 34BHCHT OT BAPHAHTA HYK/IOH=HYK/OHHBIX
CHIl, OTINHYAETCH A/ M3OBEKTOPHLIX H M3OCKAMSPHBIX COCTOSIHAH, HO He Me-
HAeTCS npu ypeludYeHHH SHeprud Bo3ByXneHusa saapa.
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Shitikova K.V, E4 - 10995

Structure of Light Nuclei in the g -Harmonics
Description with Different Nucleon-Nucleon Potentials

The structure of light nuclei is studied within the K -harmonics
method. First we briefly consider the structure of the wave func-
tional parentage coefficients and the matrix elements of various
operators. Then several nuclear properties are described by the
obtained formulas, using different realistic' two-nucleon potentials.
Binding energies, rms sizes, excitedl states of normal and ano—
malous parity, compressibilities of the nuclei, the cluster structure
of the ‘wave functions, etc., are studied. The Ip -shell nuclei in
the K=K min and K=Kmm+ 1 approximation are investigated.
The investigations have been performed at the
Laboratory of the Theoretical Physics, JINR.
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1. The K~-harmonics method has been widely used recently
in the theory of light atomic nuclei. The first and succesaful
applications cover the three- and four-nucleon problems/1/. Later
on the method was generalized for arbitrary A /2/ and applied
for calculationas of the binding energies and low-lying excita-
tions in the light nuclei. FNevertheless, there is no systematic
study available in the literature 'hioh would concern the di-
verse nuclear properties treated simultaneously within the
technique of K~harmonics, Such a study was hampered by the dif-
ficulties met in conmstructing of the hyperspherical harmo-
nics (HSH) with a definite permutation symmetry, This problem
is reduced to the etudy of transformations which connect HSH
expressed in the different sets of Jacobi coordinates. Recently
4/ the problem was solved by applying an effective recurrence
(in the nucleon number A) technique of the fractional-parentage
type. As a matter of fact, this method is a natural extension

of the translational-invariant shell-model techniques/S/.



In the present paper we study the structure of the K-~
harmonic wave functions. Some useful formulae for the frac-
tional-parentage coefficients are given together with the
matrix elements of different physical operators. Subsequently
these expressions have been used to estimate, e.g., the spectro-
scopic factors and compressibilities for all ffi-shell nuclei
using several choices of the nucleon-nucleon residual inte-
raction, The K = K,“in and thnf { approximation of
the K-harmonics method has been employed in the calculation,
2. The wave function q[ of a nucleus consisting of A
nucleons must be translational-invarient and, therefore, the
Jacobi coordinates ><1, )(1._ ><_{ are ugually selected

t A

as its arguments. Each of these coordinates ><[ is the

distance between the centers of mass of two nucleon groups

with P; and 1; nucleons, respectively ( P[) e[ 2 1)

One can introduce the normalized Jacobi coordinates ii =;Kifﬁﬁ

where ‘{ML- = FB‘;—%—“— m is the reduced mass, and h isg
¢

the nucleon mass, The standard set of the Jacobi coordinates 1is
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Here 16 are the coordinates of the i-th nucleon., Each

coordinate of the standard set determines the distance between
the 1 + 1-th nucleon and the center of mass of the group of
nucleons numbered 1,2....1 . The choice of the Jacobi coordi-

natee may be graphically illustrated in the form of a "Jacobi

tree” /6/. The Jacobi tree shown in Fig., 1 corresponds to the
standard set of the Jacobl coordinates (1). The non-standard

Jacobi tree shown in Pig.2 describes the following set of the

Jacobi coordinates
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The K-harmonics method consists in that spherical coor-

L
x:z.(zl+zL -t

dinates (the collective hyperradius f and 3A-4
hyperspherical angles) are introduced in the 3(A-1)-dimensi-
onal space of the Jacobi coordinates and the wave function

HI of the nucleus is expanded in the hyperspherical harmo-
/1/

nice which are the standard functions of these angles
Now we consider the structure of these functions., Let one

have the Cartesian coordinates in the h ~dimensional space

I T T nerical angles & & 4
%,%,%... . %, . The hypersp 8 11 2 b

can be chosen so that the Cartesian and hyperspherical coor-

dinates be related as ZC, . fh'n 9,,_’ - h’hgl h'n@; o< ff ~
0% &1<2f/
z, = funb  Hnf oot
.o (3)
z, = f4un B cos8
Q<8< k#t
z, = Y €04 Q"-I ?l.: 5 I(_l.
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This set of the hyperspherical coordinates can be graphically

represented in the form of a hyperspherical tree (see Pig.3).
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If a set of hyperspherical coordinates (3) is used,
the volume element dkf in the n-dimensional space ie of

the form

N = da, do, . du, = " df A2

4)
where the element of the solid angle dﬂl is
_ © kg . k-3 . 6)
GLQ = Mn Qﬂ-/ Sm Qﬂ-z Lk 7 - ()
The Laplacian is given by the expression
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The hyperspherical harmonice are the eigenfunctions of

the angular part of the Laplacian: Zx
JZ——l‘b

AﬂhYLM(%) S b ln - (8

The value K is an analogue of the angular momentum at n=3

and is called the global moment., The subscript Y denotes all the
quantum numbers neceseary to dietinguish various degenerate
states of equation (7). Por V , 1t is expedient to use the
Young diagram [ f] , the Yamanochi symbol ( 2 ), and IM

the orbital moment of state and its projection,

The fractional parentage coefficients are used to calcula-
te the matrix elements of various operators, Using the single-
-particle fractional parentage coefficients one can express
the function of A particles through the products of the func-
tions of A-1 particles by the function for motion of the last

particle with respect to the center of mass of the A-1 particle



group. The formula of the fractional parentage coefficients

CAA-12 using {A-1/A-2)will be rewritten as /4/
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n,5 is the dimensionality of the irreducible representation
of the group S, <L][J[f]l AIA“)('IJH:'J>
ie the matrix element of the standard irreducible representa-
tion of the same group. The label 1L[~.--] stands for the
generalized Racah coefficients with quarter-integral moments,
the label Z((.....) denotes the usual Racah coefficients and

< ¢ ﬂl )é Z/ > e are the Raynal-Revai coefficients
which are related to the Talmi coefficients using the 3j-symbols

with quarter-integral moments.,
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The two-particle fractional parentage coefficients are expres-

sed as
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where q - Q@cég /—E;zﬂ the Young diagram [ fn] and
the corresponding Yamanochi symbols (7, ) and (%) are
chosen in an arbitrary but fixed way,

Here Lv is the moment of momentum of the nucleon

pair A-1 and A (the degree of freedom

! {
z :_-A('Z-’l ))
-1 -
l '/Z- ,4 A//
/\ is the moment of this pair relative to the remaining
!
A-2 particle (the degree of freedom Z - ié&f)( bl { Z‘ 2, e
PR N ERTE

Thus, with in the K-harmonics method we may use the same
formulas for the fractional parentage coefficients which were
obtained earlier by the TISM/S/. In this case the Talmi-Moshin-
sky coefficients must be replaced by the Raynal ~Revai coeffi-
cients, GJ' -symbols must be added for overbinding
of the global moments K, and additional phase multipliers are
inserted.

Within the K-harmonics method 1/ the wave function of

nucleus A is sought in the form of expansion in the K-harmo-

nics polynomials IA K [g ¢l S T >
3A-9

Yo a8 _TL Fey (01 1Aky>

(11)
where X = Lf] ¢ LST «The Hamiltonian of the nuoleus is
the form
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The Schrodinger equation for the radial functions can be

written as

& 4 (4 WA/ .
{Jf. ) “7{“ ‘%ﬂ(f Wkr{”)}}fk/m

L TV K ),

kv*k{ (13)
K’,/
where ix = K+ ‘%_6‘ . Wk( [f) are the
matrix elements of the potential energy of the nucleon-nucleon
interaction
V- Z Vi) Viyl={y) W, (14
29

which can be expressed in terms of the two-particle freactional

parentage coefficients in the form
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Here
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The matrix element of the effective potential is caloculated
using the formula proven by Basz. According to this formula the
matrix element in the K-harmonics method dependent on f
is expressed in terms of the matrix element of the translati-
onal-invariant shell model, This matrix element is the following

function of the oscillator parameter 5 /2/.

le' 1_5A~" e
Wln- TET g o
b ) e W (65)
l

(17)
This method 1s asymptotical and may give acourate results only
at sufficiently high mass numbers A (we confine ourselves to
the lower term in powers of ( 3A—4 + 2 K)™1),
These formulas were used to find the binding energies
and the wave functions of all p-shell nuclei for various versi-

ons of the central potential of the nucleon-nucleon interaction.,
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Then, we have caloulated the RMS sizes, the matrix elements
of the dipole transition operatoy the compressibility of the
nuclei, the spectroscopic form~factor of a( ~cluster. For
example we give below the expressions for matrix elements of
some physical operators.

8, The reduced width amplitude of the decay of nucleus A
into nucleus A-4 and a( ~particle. This amplitude can be

expressed as

Jm: D SNKN-H 2 Nl WK W] %D
NNnrXY
(Aszmsr MK UILST A, YKL L { X 1)
f”’ [”‘ HM(”) (18)

where 1 :I.l the dieta.noe between the centers-of-mass of
particles A, = A—4 and A, = 4 ; < Ake |

} Ai K, Ly, A, [IK“ ¢, {x ‘2} > are the fractional

parentage coefficients for four particles in the K-harmonics
method; <.’Vk/V"/Vy{/NK>
are the generalized 3j-symbols for the global momentum;

C A C *  are the coefficients of the expansion
of K—hamonice runctione in the wave functions of the TISM,
b. 'l'he dipole transition operator from the ground etate

7 L , T = 0 of 0'® nucleus to the excited state
I
77 w1, a1 /¥

<YL 1Ay s 5 (/Jfoff)x,s(fffdi
Js‘fo }0(3)},4(7)7@).

(19)
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c. ‘The compressibility of the nucleus’>’  may be written

in the form

K=o (),

2 (20)
where 1 is the radius of the nucleus ground state; 4 £
is the difference of excitation energies of the neighbouring
monopole states,

3. Fig.4 shows fhe calculated binding energies of the
p-shell nuclei within the K~harmonics description and the
experimental values /1 0/.

It can be seen from the figure that the theoretical
binding energies for the chosen potential (version 1 of
Volkov's potential /11/) are strongly underestimated (excluding
the 016 nucleus) as compared to the experimental values, This
result is not unexpected since the calculations were made in
the approximation K'Kmin « S0, the inclusion of the subsequent
harmonics will result in an increase of the binding energy.

Besides, the absolute value of the binding energy depends
strongly on the ohoioce of the nucleon-nuoleon potential,
Indeed, as is seen from Table 1, the results of the calcula-
tions of the binding energies of certain nuclei strongly differ
for the various two-nucleon potentials /11'12/.

Therefore, the disagreement between the theory and expe-
riment may be associated not only with inefficiency of Klin
approximation but also with inadequate choice of the nucleon-
-nucleon potential. The shape of the calculated A dependence
of the binding energy reproduces that of the experimental curve

o that the anomalous increase in the binding energy for the
nuclei having the ‘i ~structure can be desoribed using the
K-harmonics,

14

Table 1. The results of the calculatione of the binding ener-

gles of certain nuclei for the various two-nucleon

potentials,
Vermions of
th exp
A Eb, MeV the potential Eb ) MeV
23.5 1/10/
Het 25.8 6/ 10/ 28.3
26.0 3/10/
17.0 1/10/
116 20.9 /10/ 31,99
13.0 /1
26.1 1/10/
117 13.7 /1Y 39.25
142.4 1/10/ 127.62
0 158.4 2/10/
151.4 3/10/
:.,uN
y Pig.4. Oomparison of the calculated
binding energies in the K-harmonics
) desoription of the p-shell nuclei
with the experimental values.
1. - Experimental values.
2, - Results of caloculations
P e At in the K=K ,  approximation.
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Table 2, The theoretical and experimental 2/ 4 radii of
the light nuclei.
— th — _ 8XD.
A LW YN, fermi <'z,">"; fermi ('+2+350
+ +

4 1.81 1.708 5L 170 0
5 2.3 -
6 2.74 2.535 - 3/2°3/2

3
7 2.65 - 10 t L% 5/ 1;
8 2.71 - /2 /2
9 2.84 2.26 ’+0 5Q ’f
10 2'72 hd 5 o -+ - {,

270 4o ot +. 4+ 4 0@ /&

NLIEUA ] VA VAY)
1 2.87 2.25 e ¥ [ (12’0 5% v, ) Y
12 2.94 2.496 370 a*2's")0 - -
" 2,92 ) oL1o 10 Tg- it 212 e 3y,

I I o v Ye1'2

14 2.85 2.48 I I v
15 2.80 - Pig.5, Spectra of the low~lying excited states of the nuclei in
16 2.75 2.741 the hyperspherical method: a, Li® , b, Li7 .

I. - Experimental values.

II.- Version 1 of the potential 711/,

III.-Version 6 of the potential /11/,

IV, -Eikemeier-Hackenbroich's central potential /12/.

Table 2 presents the results of calculations of the RMS

sizes of the light nuclei for the version of Volkov's poten-

tial /11/. It can be seen that the theoretical values are

for two kinds of the central potential ( due to Volkov
overestimated. This is probably due to the inadeguacy of

and Eikemeier-Hackenbroich) along with the corresponding expe-
the used version of potential, A deeper potential may give

rimental spectra. The calculations involved central forces,
higher values of the binding energy eand a smaller width of

digregarding the spin-orbital splitting. Therefore, the rela-
the well so that the values of the RMS gizes.will also decre-

tive positions of the calculated levels LST-010 and LST-210
ase,

. ] in 6Li; should be compared with the value of the center of
Fig., 5 shows the spectra of the lower lying excited states
of the 6Li and TL1 nuclei within the hyperspherical method

17
16
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gravity of the lowest levels jﬁ_- 1+, 2+, 3+, T =0 in
experiment, For the chosen versions of the central potential
the relative positions of the levels vary from 1 MeV to 3.5 MeV,
while the experimental value is 3,74 MeV, In all cases, however,
the sequence of the levels is correct, The first excited state
with 7 / -1t +» T = O with respect to the collective vari-
able @ can be also found, This excited state has one node
when plotted versus the hyperradius f .

Por several versions of the potential this level lies
in the 15-17 MeV range. The 15.6 MeV level with . = 1* is
experimentally observed in this nucleus. The results obtained
make it possible to conclude that the relative position of
levels in the spectra is less sensitive to the choice of the
potential parameters than the absolute value of the binding
energy, Similar conclusions can be drawn from the results for
the spectra of lower lying excited states of the L17 nucleus/3/.

Fig. 6 shows the results of calculation of the reduced
width amplitude for the virtual decay of 160 into 12C and

A -particle for the nuclear states ./~ = 0% LSTe 000 and

the relative orbital momentum A =0 .,

These results practically coincide with those for the
potential of the (3A-3) - dimensional harmonic oscillator.

The excited states of anomalous parity can be obtained
in the K = Kmin + 1 approximation, We have calculated the
states with 7' =1, T a1 for 015; Fig. T shows the
strengths of the dipole transitions 74- 17, T=1o0f 06
in percent for the first version of Volkov's potential,
A8 a result, 20% of the dipole tranmsition strengths is
exhausted by the first monopole excited state and 5% by the

18
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Fig.6. The amplitude of the reduced width for the virtual
decay of 16O into 1% and x ~particle in the hyper-
spherical method,

10 o, E Mel/

30 40 50 60 70

Pig,7. The strengths of the dipole transitions
of O16 for the first version of Volkov's potential,

second., In terms of the particle-hole excitations, this
corresponds to an essential admixture of the l BP 3 h >
and ISP 5h> states in the dipole resonance, These resulta
are in qualitative agreement with experiment 713/ . According
to the experimental data about half of the integral cross-
-section determined by the dipole sum rule belongs to the

19



energy range of the giant resonance. The remaining part of the
cross-section falls within the range of higher energies,.
The calculated nuclear compressiﬁility is shown in fig. 8.
Ag a function of A it grows about 3.5 times within the p-shell.
The compressibility is anomalously large for the alpha-cluater
nucleli. Naturally the compressibility parameter depends
strongly on the choice of nucleon-nucleon.potential ye.8. the
Yukawa agd Gaussian potentials produce compressibilities in
169 { th :0+0) which differ by a factor of 1,3. The calcu~
lated compressibilities differ strongly(by a factor of 1.5)
for the isovector ( yﬁf {71 ) and isoscalar ( 771-_7: 010 )
states,
We have estimated the variations of the compressibility

parameter with growing nuclear excitation, We see that

K = m ’Z,L (A E)L does not change with increasing nuclear
excitation, In fact, 1t is easy to show that the 72/ 4 radius
grows quickly enough (~ /0-/3% ) to compensate for

the tendency of the nuclear levels to approach each other
260
K M3ab ! (91
100 } 9% o
L[/
60+ 66(T=‘)0
40}
S A
8 10 12 14 16

Fig.8. The calculated compressibility of the light nuclei in
the K-harmonice method,
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(decreasing AE Jat larger excitations. In reference/ls/ giant
dipole resonances were described in the shell model and a
conclusion was made about the so~called 1loss of rigidity of
nucleus in excited states. In that calculation the compressi-
bility for the isoscalar states was taken from experiment and
then it was used for the description of isovector states

( J =1, Ta 1), As we have shown ,the compressibility does

not vary with the increasing energy, but it differs strongly
for isoscalar and isovector states. We are apt to think that

the estimations we have made in the K-harmonics formalism eluci-
date the cause of the necessity of increasing the compressibi-
lity encountered in the shell-model calculations/ls/.

It is a pleasure to express my gratitude to Prof, V.G.Solo-
viev and to Dr, Mikhailov for useful discussions and for their

intereat in this work.
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