# СООБЩЕНИЯ <br> OБbЕАИHEHHOГO ИНСТИТУТА <br> ЯАЕРНЫХ <br> ИССАЕАОВАНИЙ 

АУБНА

$\frac{C 3415}{s-54}$
K.V.Shitikova
$168 / 2-78$
STRUCTURE OF LIGHT NUCLEI
IN THE K-HARMONICS DESCRIPTION
WITH DIFFERENT
NUCLEON-NUCLEON POTENTIALS

# E4-10995 

K.V.Shitikova

STRUCTURE OF LIGHT NUCLEI<br>IN THE K-HARMONICS DESCRIPTION<br>WITH DIFFERENT<br>NUCLEON-NUCLEON POTENTIALS



$$
\begin{aligned}
& \text { Шитикова К.В. E4 • } 10995 \\
& \text { Структура легких ядер в методе } \mathrm{K} \text {-гармоник для различных } \\
& \text { вариантов нуклон-нуклонного взаимодействия } \\
& \text { В методе К-гармоник иэучалась структура легких ядер. В связи } \\
& \text { с этим развивался формализм метода гилерсфернческих функций. Исследо- } \\
& \text { ной перестановочной симметрией, развига эффективная генеалогическая } \\
& \text { техника, рекуррентная по числу нуклонов в ядре, получены матричные } \\
& \text { менты различных физических операторов. Затем эти формулы применялись } \\
& \text { для описания различных свойств ядер. Оценивалась зависимость резульга } \\
& \text { тов расчета от варианта реалистического нуклон-нуклонного потеншинла. } \\
& \text { Изучались энергии связи, средние квадратичные радиусы, возбужденные } \\
& \text { состояния нормальной и аномальной четности, параметр сжимаемости } \\
& \text { и кластерная характеристика ядра. Нсследовались ядра 1.p -оболочк } \\
& \text { в приближении } \mathrm{K}=\mathrm{K}_{\text {min }} \text { и } \mathbf{K}=\mathrm{K}_{\text {min }}+\mathbf{1} \text {. Полученные результаты позволяют } \\
& \text { сделать вывод, что относительное положение в спектрах уровней менее } \\
& \text { чувствительно к выбору параметров потенциала, чем абсолютное значение } \\
& \text { ннергии связи. В дипольном гигантском резонансе существенна примесь } \\
& \text { состояний три частицы - три дырки и пять частии - пять дырок. Пара- } \\
& \text { метр сжимаемости легких ядер зависит ог варианта нуклон-нуклонных } \\
& \text { сил, отличается для изовекторных и изоскалярных состояний, но не ме- } \\
& \text { няется при увеличении энергии возбуждения ядра. } \\
& \text { Сообщение Объедпненного пнстптута пдерних псследованиі. Дубиа } 1977 \\
& \begin{array}{l}
\text { Shitikova K.V. } \\
\text { Structure of Light Nuclei in the K - Harmonics }
\end{array} \\
& \text { Description with Pifferent Nucleon-Nucleon Potential } \\
& \text { The structure of light nuclei is studied within the } \mathrm{K} \text {-harmonics } \\
& \text { method. First we briefly consider the structure of the wave func- } \\
& \text { tional parentage coefficients and the matrix elements of various } \\
& \text { operators. Then several nuclear properties are described by the } \\
& \text { Binding energies, rms sizes, excitedl stic two-nucleon potentials. } \\
& \text { malous parity, compressibilities of the nuclei, the cluster structure } \\
& \begin{array}{l}
\text { malous parity, compressibilities of the nucle i, the cluster structure } \\
\text { of the wave functions, etc., are studied. The } 1 \mathrm{p}-\text { shell nuclei in }
\end{array} \\
& \text { the } \mathrm{K}=\mathrm{K}_{\text {min }} \text { and } \mathrm{K}=\mathrm{K}_{\text {min }}+1 \text { approximation are investigated. } \\
& \text { The investigations have been performed at the } \\
& \text { Laboratory of the Theoretical Physics, JINR. } \\
& \text { Communication of the Joint Institute for Nuclear Research. Dubna } 1977
\end{aligned}
$$

1. The K-harmonics method has been widely used recently in the theory of light atomic nuclei. The firet and successful applications cover the three- and four-nucleon problame/1/. Later on the method was generalized for arbitrary $A / 2 /$ and applied for calculations of the binding energies and low-lying excitations in the light nuclei. Fevertheless, there is no gystematic etudy avallable in the literature which would concern the divere nuclear properties treated simultaneously within the technique of K-harmonica. Such a study was hampered by the difficulties met in constructing of the hyperspherical harmonics (ESH) with a definite permutation aymetry. This problem is reduced to the etudy of transformations which connect HSH expressed in the different sets of Jacobi coordinates. Recently /4/ (in th type. As a matter of fact, this method is a natural extension of the translational-invariant shell-model techniques $/ 5 /$.

In the present paper we study the structure of the $K$ harmonic wave functions. Some useful formulae for the frac-tional-parentage coefficients are given together with the matrix elements of different physical operators. Subsequently these expressions have been used to estimate, e.g., the apectroscopic factors and compreseibilities for all $1 \beta$-shell nuclei using several choices of the nucleon-nucleon residual interaction. The $K=K_{\text {min }}$ and $K_{\text {min }}+1$ approximation of
the K-harmonics method has been employed in the calculation. 2. The wave function $\psi$ of a nucleus consisting of $A$ nucleons must be translational-invariant and, therefore, the Jacobi coordinates $\bar{X}_{1}, \bar{X}_{2} \ldots, \bar{X}_{A-1}$ are ugually selected as its arguments. Each of these coordinates $\bar{X}_{i}$ is the distance between the centers of mass of two nucleon groups with $P_{i}$ and $q_{i}$ nucleons, reapectively ( $P_{i}, q_{i} \geq 1$ ). One can introduce the normalized Jacobi coordinates $\bar{x}_{i}=\bar{X}_{i} / N_{i}$ where $\mu_{i}=\frac{p_{i} q_{i}}{p_{i}+q_{i}} m \quad$ is the reduced mass, and $m$ is the nucleon mase. The standard set of the Jacobi coordinates is

$$
\begin{align*}
& \vec{x}_{1}=\frac{1}{\sqrt{2}}\left(\vec{\eta}_{1}-\vec{\eta}_{2}\right) \\
& \vec{x}_{2}=\sqrt{\frac{2}{3}}\left[\frac{1}{2}\left(\bar{\eta}_{1}+\bar{\eta}_{2}\right)-\bar{\eta}_{3}\right]  \tag{1}\\
& \vec{x}_{A-1}=\sqrt{\frac{A-1}{A}}\left(\frac{1}{A-1} \sum_{i=1}^{A-1} \bar{\eta}_{i}-\bar{\eta}_{A}\right)
\end{align*}
$$

Here $\vec{\eta}_{i}$ are the coordinates of the $i-t h$ nucleon. Each coordinate of the standard set determines the distance between the $1+1$-th nucleon and the center of mass of the group of nucleons numbered 1,2....1. The choice of the Jacobi coordinatea may be graphically illuatrated in the form of a "Jacobi
treen /6/. The Jacobi tree shown in Pig. 1 corresponds to the standard set of the Jacobi coordinates (1). The non-standard Jacobi tree shown in Fig. 2 describes the following set of the Jacobi coordinates

$$
\begin{align*}
& \bar{x}_{1}=\frac{1}{\sqrt{2}}\left(\bar{i}_{1}-\bar{i}_{2}\right) \\
& \bar{x}_{2}=\frac{1}{\sqrt{2}}\left(\bar{i}_{3}-\bar{i}_{y}\right)  \tag{2}\\
& \bar{x}_{3}=\frac{1}{2}\left(\vec{i}_{1}+\bar{i}_{2}-\bar{i}_{3}-\bar{i}_{y}\right)
\end{align*}
$$

The K-harmonics method consiats in that spherical coordinates (the collective hyperradius $\rho$ and $3 A-4$ hyperapherical angles) are introduced in the 3(A-1)-dimensional space of the Jacobi coordinatea and the wave function
$\Psi$ of the nucleus is expanded in the hyperspherical harmonica which are the standard functions of these angles /7/. Now we consider the structure of these functions. Let one have the Cartesian coordinates in the $n$-dimensional apace $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3} \ldots \vec{x}_{n}$. The hyperapherical anglea $\theta_{1}, \theta_{2} \ldots \theta_{n-1}$ can be chosen so that the Cartesian and hyperspherical coordinates be related as

$$
\begin{aligned}
& x_{1}=\rho \sin \theta_{n-1} \ldots \sin \theta_{2} \sin \theta_{1} \quad 0 \leq \rho \leq \infty \\
& x_{2}=\rho \sin \theta_{n-1} \sin \theta_{2} \cos \theta_{1} \\
& 0 \leq \theta_{1}<2 \pi \\
& x_{n-1}=\rho \sin \theta_{n-1} \cos \theta_{n-2} \\
& x_{n}=\rho \cos \theta_{n-1} \quad 0 \leq \theta_{k}<\pi \pi_{1}^{n} k \neq 1 \\
& \rho^{2}=\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

This set of the hyperspherical coordinatea can be graphically represented in the form of a hyperspherical tree (see Fig. 3).

If a set of hyperapherical coordinates (3) is used,


Fig. 1.


Fig. 2.


Fig. 3.
the volume element $d V$
in the $n$-dimensional space is of the form

$$
\begin{equation*}
d N=d x_{1} d x_{2} \ldots d x_{n}=\rho^{n-1} d \rho d \Omega \tag{4}
\end{equation*}
$$

where the element of the solid angle $d \Omega 2$ is

$$
\begin{equation*}
d \Omega=\sin ^{n-2} \theta_{n-1} \sin ^{n-3} \theta_{n-2} \ldots \sin \theta_{2} . \tag{5}
\end{equation*}
$$

The Laplacian is given by the expression

$$
\begin{equation*}
\Delta_{n}=\sum_{n} \frac{\partial^{2}}{\partial x_{n}^{2}}=\frac{1}{\rho^{n-1}} \frac{\partial}{\partial \rho}\left(\rho^{n-1} \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \Delta_{\Omega_{n}} \tag{6}
\end{equation*}
$$

The hyperspherical harmonica are the eigenfunction of the angular part of the Laplacian: $\Delta_{\Omega_{n}}$

$$
\begin{equation*}
\Delta_{\Omega_{n}} Y_{L M}\left(\theta_{q}\right)=-l_{n}\left(l_{n}+n-i\right) Y_{L M}\left(\theta_{q}\right) \tag{7}
\end{equation*}
$$

The value K is an analogue of the angular momentum at $\mathrm{n}=3$ and is called the global moment. The subscript $Y$ denotes all the quantum numbers necessary to distinguish various degenerate states of equation (7). For $\gamma$, it is expedient to use the Young diagram $[f]$, the Yamanochi symbol ( $\eta$ ), and $L M$ the orbital moment of state and its projection.

The fractional parentage coefficients are used to calculate the matrix elements of various operators. Using the single--particle fractional parentage coefficients one can express the function of A particles through the products of the fundtins of A-1 particles by the function for motion of the last particle with respect to the center of mass of the A-1 particle
group. The formula of the fractional parentage coefficiente $\langle A \mid A-1\rangle \quad$ using $\langle A-1 / A-2\rangle$ will be rewritten as $/ 4 /$

$$
\begin{aligned}
& \left\langle A K[f] L \ell \mid A-1 K_{1}\left[f_{1}\right] L_{1} \ell_{1}, \ell_{1}\right\rangle=
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\cdot\left\langle\left[f_{1}^{\prime}\right]\left[f_{1}\right]\right| P_{A-1, A} \mid\left[f_{1}^{\prime}\right] l f^{\prime}\right]\right\rangle^{[f]} \cdot\left\langle\ell_{1} l_{2}^{\prime} \mid l_{2} l_{1}^{\prime}\right\rangle_{\varphi}^{l_{0} k_{0}} U\left[\partial_{1}^{\prime}, \dot{j_{1}} j_{j_{2}}, \gamma^{\prime} \dot{j}_{0}\right]_{x} \\
& { }^{\prime}\left\langle A-1 K^{\prime}\left[f^{\prime}\right] L^{\prime} \varepsilon^{\prime} \mid A-2 K_{1}^{\prime}\left[f_{1}^{\prime}\right] L_{1}^{\prime} \varepsilon_{1}^{\prime}, \ell_{2}^{\prime}\right\rangle, \\
& ,\left\langle A-1 K^{\prime}\left[f^{\prime}\right] L^{\prime} \varepsilon^{\prime} \mid A-2 K_{1}^{\prime}\left[f_{1}^{\prime}\right] L_{1}^{\prime} \varepsilon_{1}^{\prime}, l_{1}^{\prime}\right\rangle, \\
& =U\left(L_{1}^{\prime} E_{2}^{\prime} L \ell_{i} ; L^{\prime} L_{0}\right) U\left(L_{1}^{\prime} Q_{1}^{\prime} L \ell_{2} ; L^{\prime} L_{0}\right) U\left[y_{1}^{\prime} j_{2}^{\prime} J_{j_{2}} ; y^{\prime} J_{0}\right]  \tag{8}\\
& Q^{2}=1+(A-1) \sum_{L_{1}^{\prime} \varepsilon_{1}^{\prime} K_{1}^{\prime}\left[f_{1}^{\prime}\right] \ell_{2}^{\prime} \ell_{1}^{\prime} L_{0} k_{0}} \frac{n_{f_{1}^{\prime}}^{\prime}}{n_{0}^{\prime}}\left\langle\left[f_{1}^{\prime}\right]\left[f^{\prime}\right]\right| P_{A-1, A}\left|\left[f_{1}^{\prime}\right]\left[f^{\prime}\right]\right\rangle_{x}^{[f]} \\
& =\left\langle A-1 K^{\prime}\left[f^{\prime}\right] L^{\prime} \varepsilon^{\prime} \mid A-2 K_{1}^{\prime}\left[f_{1}^{\prime}\right] L_{1}^{\prime} \varepsilon_{1}^{\prime}, \ell_{2}^{\prime}\right\rangle \times(-1)^{\ell_{1}^{\prime}+\ell_{2}^{\prime}} \\
& *\left\langle A-1 K^{\prime}\left[f^{\prime}\right] L^{\prime} \varepsilon^{\prime} \mid A-2 K_{1}^{\prime}\left[f_{1}^{\prime}\right] L_{1}^{\prime} \varepsilon_{1}^{\prime}, l_{l}^{\prime}\right\rangle \cdot(-1)^{\dot{d}_{1}^{\prime}-d_{2}^{\prime}}{ }_{x} \\
& \cdot\left\langle l_{2} l_{2}^{\prime} \mid \ell_{2} l_{1}^{\prime}\right\rangle_{\varphi}^{l_{0} K_{0}} U\left(L_{1}^{\prime} l_{2}^{\prime} L l_{2} ; L_{1}^{\prime} L_{0}\right) U\left(L_{1}^{\prime} \ell_{1}^{\prime} L \ell_{2} ; L^{\prime} l_{0}\right) \times \\
& , U\left[y_{1}^{\prime} j_{2}^{\prime} y_{j_{2}} ; y^{\prime} y_{0}\right] U\left[y_{1}^{\prime} j_{1}^{\prime} J_{j_{2}} ; y^{\prime} y_{0}\right]
\end{align*}
$$

Here

$$
\begin{gathered}
\varphi=\operatorname{arctg} \sqrt{\frac{1}{A(A-2)}}, \quad j_{i}=\frac{1}{2}\left(l_{i}-\frac{1}{2}\right), \quad j_{i}^{\prime}=\frac{1}{2}\left(l^{\prime}-\frac{1}{2}\right) \\
y_{0}=\frac{1}{2}\left(K_{0}+1\right), \quad y=\frac{1}{2}\left(K+\frac{3 A-7}{2}\right), \quad y_{1}^{\prime}=\frac{1}{2}\left(K_{1}^{\prime}+\frac{3 A-13}{2}\right), \\
y_{1}=\frac{1}{2}\left(K_{1}+\frac{3 A-10}{2}\right), \quad y^{\prime}=\frac{1}{2}\left(K^{\prime}+\frac{3 A-10}{2}\right)^{2}
\end{gathered}
$$

$n_{f}$ is the dimensionality of the irreducible representation of the group $s_{A} ; \quad\left\langle\left[f_{1}^{\prime}\right]\left[f_{1}\right]\right| P_{A-1, A}\left|\left[f_{1}^{\prime}\right]\left[f^{\prime}\right]\right\rangle$
is the matrix element of the etandard irreducible representation of the same group. The label $U[\ldots]$ stands for the generalized Racah coefficients with quarter-integral moments, the label $U(\ldots$.$) denotes the usual Racah coefficients and$ $\left\langle l_{1} l_{2}^{\prime} \mid l_{2} l_{1}^{\prime}\right\rangle_{\varphi}^{l_{0} k_{0}}$
are the Raynal-Revai coefficients which are related to the Talmi coefficients using the 3 j -symbols with quarter-integral moments.

$$
\begin{align*}
& \left\langle l_{1} \ell_{2} \mid \ell_{1}^{\prime} l_{2}^{\prime}\right\rangle_{\varphi}^{k A}=\sum_{\substack{n_{1}+n_{2}=k \\
n_{1}^{\prime}+n_{2}^{\prime}=k}}^{\sum}\left\langle n_{1} l_{1} n_{2} l_{2} \mid N k\right\rangle \\
& ,\left\langle n_{1}^{\prime} l_{1}^{\prime} n_{2}^{\prime} \ell_{2}^{\prime} \mid N K\right\rangle \times  \tag{9}\\
& \left\langle n_{1} l_{1}, n_{2} l_{2}: \Lambda\right| p r / q(p+q+\eta)\left|n_{1}^{\prime} l_{1}^{\prime}, n_{2}^{\prime} l_{2}^{\prime}: \Lambda\right\rangle .
\end{align*}
$$

The two-particle fractional parentage coefficients are expressed as

$$
\left\langle A K[f] L \varepsilon \mid A-2 K_{2}\left[f_{2}\right] L_{2} \varepsilon_{2}, \Lambda\left\{L^{\prime} K^{\prime}\right\}, L_{0}\right\rangle=
$$

$\left.=\langle[f](\eta)|\left[f_{2}\right]\left(\eta_{2}\right),\left[f_{0}\right]\left(\eta_{0}\right)\right)^{-1} \sum_{K_{1} \varepsilon_{1} L_{1} l_{1} e_{2} \lambda x}\left\langle A K[f] L \varepsilon \mid A-1 K_{1}\left[f_{1}\right] L_{1} \varepsilon_{1}, \ell_{1}\right\rangle$
$=\left\langle A-1 K_{1}\left[f_{1}\right] L_{1} \varepsilon_{1} \mid A-2 K_{2}\left[f_{2}\right] L_{2} \varepsilon_{2}, \ell_{2}\right\rangle(-1)^{\lambda-\ell_{1}-\ell_{2}+y_{z}-j_{1}-j_{2}-1} x$
$\cdots \cup\left(L_{2} \ell_{2} L \ell_{1} ; L_{1}, \lambda\right) U\left[y_{2} j_{2} y_{j_{1}} ; y_{1} y_{\mathcal{X}}\right] U\left(L_{2} \wedge L L_{0} ; L^{\prime} \lambda\right) x$
$\left.\cdots V_{2} y_{\Lambda} \quad y_{0}, y^{\prime} J_{2}\right]\left\langle l_{1} l_{2} \mid \lambda L_{0}\right\rangle_{\varphi}^{2 \lambda}$,
where $\quad \varphi=\operatorname{arctg} \sqrt{\frac{A-2}{A}} \quad$ the Young diagram $\left[f_{1}\right]$ and the corresponding Yamanochi symbols $\left(\eta_{2}\right)$ and (2) are chosen in an arbitrary but fixed way.

Here $L_{0}$ is the moment of momentum of the nucleon pair A-1 and $A$ (the degree of freedom

$$
\left.x_{A-1}^{\prime}=\frac{i}{\sqrt{2}}\left(\eta_{A}-\eta_{A-1}\right)\right)
$$

$\Lambda$ is the moment of this pair relative to the remaining


Thus, with in the K-harmonica method we may uge the game formulas for the fractional parentage coefficiente which were obtained earlier by the TISM/5/. In this case the Talmi-Moaninaky coefficients must be replaced by the Raynal-Revai coefficients, $\quad 6 j$-aymbols muet be added for overbinding of the global moments $K$, and additional phase multipliers are inserted.

Within the K-harmonics method /1/ the wave function of nucleus $A$ is sought in the form of expansion in the K-harmonice polynomials $\mid A K[f] \varepsilon L S T>$ :

$$
\begin{equation*}
\left.\Psi(1,2 \ldots A)=\rho^{-\frac{3 A-4}{2}} \sum_{K \gamma} x_{k \gamma}(\rho) \right\rvert\, A K \gamma> \tag{11}
\end{equation*}
$$

where $\gamma=[f] \varepsilon L S T \quad$. The Hemiltonian of the nuoleus is the form

$$
H\left[=-\frac{\hbar^{2}}{2 m} \frac{1}{\rho^{3 A-4}} \frac{\partial}{\partial \rho}\left(\rho^{3 A-\psi} \frac{\partial}{\partial \rho}\right)-\frac{\hbar^{2}}{2 m \rho^{2}} \Delta_{\theta}+V .\right.
$$

The Schrödinger equation for the radial functiona can be written as

$$
\begin{aligned}
\left\{\frac{d^{2}}{d \rho^{2}}-\frac{y_{k}\left(y_{k}+1\right)}{\rho^{2}}\right. & \left.-\frac{2 m}{\hbar^{2}}\left(E+W_{k \gamma}^{k \gamma}(\rho)\right)\right\} x_{k \gamma}(\rho)= \\
& =\frac{2 m}{\hbar^{2}} \sum_{k^{\prime} \gamma^{\prime} \pm k \gamma} W_{k \gamma}^{k^{\prime} \gamma^{\prime}}(\rho) X_{k^{\prime} \gamma^{\prime}}(\rho)
\end{aligned}
$$

where $\quad \mathcal{L}_{k}=k+\frac{3 A-6}{2} \quad, \quad W_{K \gamma}^{K^{\prime} \gamma^{\prime}}(q) \quad$ are the matrix elements of the potential energy of the nucleon-nucleon interaction

$$
\begin{equation*}
V=\sum_{i<j}^{A} V\left(z_{i j}\right) \quad V\left(i_{i j}\right)=f\left(i_{i j}\right) W_{\sigma \tau} \tag{14}
\end{equation*}
$$

which can be expreased in terms of the two-particle fractional parentage coefficients in the form

$$
\begin{align*}
& W_{K \gamma}^{\bar{K} \bar{\gamma}}(\rho)=\left\langle A K[f] \varepsilon L S T M_{L} M_{S} M_{P} / V / A \bar{K}[\bar{f}] \bar{\ell}\left[\bar{S} \bar{T} M_{L} M_{S} M_{p}\right\rangle=\right. \\
& =\frac{A(A-1)}{2 K^{\prime}\left[f^{\prime}\right] \varepsilon^{\prime} \Lambda^{\prime} S^{\prime} T^{\prime} \lambda S_{0} T_{0}}<\vec{K}[f] \ell L S\left|A \sim K^{\prime}\left[f^{\prime}\right] \varepsilon^{\prime} L^{\prime} S^{\prime} T^{\prime}, \lambda S_{0} T_{0}\right\rangle_{x} \\
& x\left\langleA \overline { K } [ \overline { f } ] \overline { \varepsilon } \left[\bar{S} \bar{T} \mid A-2 K^{\prime}\left[f^{\prime}\right] \varepsilon^{\prime} L^{\prime} S^{\prime} T^{\prime} ; \lambda S_{0} T_{0}>x\right.\right. \\
& *\left\langle S_{0} T_{0}\right| W_{\sigma \tau}\left|S_{0} T_{0}\right\rangle \cdot R_{K^{\prime} \lambda}^{K \bar{K}}(\rho) \tag{15}
\end{align*}
$$

Then, we have calculated the RMS eisen, the matrix elements of the dipole trensition operaton the compreseibility of the nuclei, the epectroscopic form-factor of $\alpha$-clugter. For example we give below the expreseions for matrix elements of some physical operatore.
a. The reduced width amplitude of the decay of nucleus $A$ into nucleus $A-4$ and $d$-particle. This amplitude can be expreseed as

$$
\begin{align*}
& f(r)=\sum_{N}\left\langle N_{1} K_{1} N-N_{1} \nsim \mid N K\right\rangle\left\langle n \wedge N_{2} K_{2} \mid N-N N_{1}\right\rangle x \\
& N N_{1} N_{2} n \not Z \mathcal{Z} \\
& *\left\langle A K[f] L S P \mid A_{1} K_{1}\left[f_{1}\right] L_{1} S_{1} T_{1} ; A, 4 K_{2}\left[f_{2}\right] L_{2} s_{1} I_{2}\{\mathscr{L} \mathscr{L}\}\right\rangle \times \\
& \text {, } C_{A}^{N} C_{A_{1}}^{N_{1}} C_{4}^{N_{2}} R_{n \Lambda}\left(\frac{2}{20}\right)  \tag{18}\\
& \text { where } \eta \text { is the distance between the centers-of-mass of }
\end{align*}
$$ partioles $\Lambda_{1}=A-4$ and $\Lambda_{2}=4$;

$<A K \& \mid$
$\left|A_{1} K_{1} \varepsilon_{1} ; \Lambda, 4 K_{2} \varepsilon_{2}\{\mathscr{Z}\}\right\rangle$ are the fraotional parentage coefficienta for four particles in the K-harnonice method;

$$
\left\langle\mathcal{N}_{i} K_{i} N-N N_{i} \mathcal{H} / N K\right\rangle
$$

are the generalized 3j-8ymbols for the global momentum; are the generalized $3 j$-aymbols for the global momentum; of K-harmonice functions in the wave functions of the TISM.
b. The dipole transition operator from the ground atate

$$
\begin{aligned}
& y^{\pi}=0^{+}, T=0 \text { of } 0^{16} \text { nucleus to the excited atate } \\
& y^{\pi}=1, T=1 / 8 /
\end{aligned}
$$

$$
\begin{align*}
& \left\langle\Psi_{0+}\right| \hat{d}\left|\Psi_{1^{-}}\right\rangle=\frac{3 \cdot 69!!}{2^{36} \cdot 35!} \ell\left(\int_{0}^{\infty} x_{0}(\rho) x_{i s}(\rho) q d \rho+\right. \\
& \left.+\sqrt{5} \int_{0}^{\infty} X_{0}(\rho) X_{1 d}(\rho) \rho d \rho\right) . \tag{19}
\end{align*}
$$

c. The compressibility of the nucleus/9/ may be written in the form

$$
K=\frac{m}{\hbar^{2}} \eta^{2}(\Delta E)^{2}
$$

where $\eta$ is the radius of the nucleus ground atate; $\Delta E$ is the difference of excitation energies of the neighbouring monopole states.
3. Fig. 4 shows the calculated binding energies of the p-shell nuclei within the K-harmonics description and the experimental values /10/.

It can be aeen from the figure that the theoretical binding energies for the ohosen potential (vervion 1 of Volkov's potential /11/) are strongly underestimated (excluding the $0^{16}$ nucleus) as compared to the experimental values. This result is not unexpected aince the calculations were made in the approximation KmK min. So, the incluaion of the eubeequent harmonics will reault in an increase of the binding energy.

Besides, the absolute value of the binding energy depends strongly on the ohoioe of the nueleon-nuoleon potential. Indeed, as is meen from fable 1 , the resulte of the calculetions of the binding energies of certein nuclei atrongly differ for the various two-nucleon potentiale $/ 11,12 /$.

Therefore, the dieagreement between the theory and experiment may be aseociated not only with ineffioienoy of $K_{\text {in }}$ approximation but also with inadequate choice of the nucleon--nucleon potential. The shepe of the calculated $A$ dependence of the binding energy reproduces thet of the experimentel curve so that the anonalous increase in the binding energy for the nuclei hering the $d$-structure can be desoribed using the K-harmontce.

Table 1. The results of the calculationa of the binding energies of certain nuclei for the various two-nucleon potentiale.

| A | $\mathrm{E}_{\mathrm{b}}^{\text {th }}$, MeV | Versions of the potential | $\mathrm{E}_{\mathrm{b}}^{\mathrm{exp}}, \mathrm{MeV}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{He}^{4}$ | 23.5 | 1/10/ | 28.3 |
|  | 25.8 | $6^{110 /}$ |  |
|  | 26.0 | $3^{10 /}$ |  |
| $\mathrm{Li}^{6}$ | 17.0 | $1^{/ 10 /}$ | 31.99 |
|  | 20.9 | $6^{/ 10 /}$ |  |
|  | 13.0 | 1/11/ |  |
| $\mathrm{Hi}^{7}$ | 26.1 | $1^{/ 10 /}$ | 39.25 |
|  | 13.7 | 1/11/ |  |
| $0^{16}$ | 142.4 | 1/10/ | 127.62 |
|  | 158.4 | $2^{10 /}$ |  |
|  | 151.4 | $3^{10 /}$ |  |



Fis.4. Oomperison of the calculated binding onergien in the K-harmonios desoription of the p-mhell nuclei with the experimental values.

1.     - Experimental valuen.
2.     - Reaulte of oalculations
in the $K_{-1 n}$ approximation.

Table 2. The theoretical and experimental $i / n 1$ radii of the light nuclei

| A | $\left\langle{\overline{r^{2}}}^{\frac{\text { th }}{y_{2}}}\right. \text {, fermi }$ | $\left\langle\overline{\eta^{2}}\right\rangle^{\text {exp }}{ }_{\text {fermi }}$ |
| :---: | :---: | :---: |
| 4 | 1.81 | 1.708 |
| 5 | 2.31 | - |
| 6 | 2.74 | 2.535 |
| 7 | 2.65 | - |
| 8 | 2.71 | - |
| 9 | 2.84 | 2.26 |
| 10 | 2.72 | - |
| 11 | 2.87 | 2.25 |
| 12 | 2.94 | 2.496 |
| 13 | 2.92 | - |
| 14 | 2.85 | 2.48 |
| 15 | 2.80 | - |
| 16 | 2.75 | 2.741 |

Table 2 presents the resulta of calculations of the FMS sizes of the light nuclei for the version of Volkov's potential /11/. It can be seen that the theoretical values are overeatimated. This is probably due to the inadequacy of the used version of potential. A deeper potential may give higher values of the binding energy and a smallor width of the well so that the values of the RMS eizes.will also decrease.

Fig. 5 shows the spectra of the lower lying excited atates of the ${ }^{6}{ }^{L i}$ and ${ }^{7} \mathrm{Li}$ nuclei within the hyperepherical method


Fig. 5. Spectra of the low-lying excited atates of the nuclei in the hyperspherical method: a. $\mathrm{Li}^{6}$, b. $\mathrm{Li}^{7}$.
I. - Experimental values.
II. - Version 1 of the potential /11/.
III.-Version 6 of the potential /11/.
IV. -Eikemeier-Hackenbroich's central potential /i2/.
for two kinds of the central potential (due to Volkor and Eikemeier-Hackenbroich) along with the corresponding experimental spectra. The calculations involved central forces, disregarding the spin-orbital splitting. Therefore, the relative positions of the calculated levela LST-010 and LST-210 in ${ }^{6}$ Li; should be compared with the value of the center of
gravity of the lowest levele $\quad y^{\pi}=1^{+}, 2^{+}, 3^{+}, T=0$ in experiment. For the chosen veraions of the central potential the relative positions of the levels vary from 1 MeV to 3.5 MeV , while the experimental value is 3.74 MeV . In all cases, however, the sequence of the levels is correct. The firat excited state with $y^{J_{1}}=1^{+}, T=0$ with respect to the collective variable $\rho$ can be also found. This excited state has one node when plotted versus the hyperradius $\mathcal{\rho}$.

Por several versions of the potential this level lies in the $15-17 \mathrm{MeV}$ range. The 15.6 MeV level with $y^{\mathbb{H}}=1^{+}$is experimentally observed in this nucleus. The results obtained make it possible to conclude that the relative position of levels in the spectra is less sensitive to the choice of the potential parameters than the absolute value of the binding energy. Similar conclusions can be drawn from the resulte for the spectra of lower lying excited states of the $\mathrm{Li}^{7}$ nucleus $/ 3 /$.

Fig. 6 shows the results of calculation of the reduced width amplitude for the virtual decay of ${ }^{16} \mathrm{O}$ into ${ }^{12} \mathrm{C}$ and $d$-particle for the nuclear states $y^{\pi /}=0^{+}$LST $=000$ and the relative orbital momentum $\Lambda=0$.

These results practically coincide with those for the potential of the (3A-3) - dimensional harmonic oscillator.

The exoited states of anomalous parity can be obtained in the $K=K_{\min }+1$ approximation. We have calculated the states with $y^{\sqrt{4}}=1^{-}, T=1$ for $0^{16}$. Pig. 7 shows the atrengths of the dipole transitions $y^{J_{1}}=1^{-}, T=1$ of $0^{16}$ in percent for the first version of Volkov's potential. As a result, $20 \%$ of the dipole transition strengths is exhausted by the firat monopole excited atate and $5 \%$ by the


Fig.6. The amplitude of the reduced width for the virtual decay of ${ }^{16} 0$ into ${ }^{12} c$ and $d$-particle in the hyperspherical method.


Fig.7. The etrengths of the dipole transitions of $0^{16}$ for the firat veraion of Volkov's potential.
second. In terms of the particle-hole excitations, this corresponds to an essential admixture of the $|3 p 3 h\rangle$ and $|5 p 5 h\rangle$ states in the dipole resonance. These resulte ere in qualitative agreament with experiment /13/. According to the experimental deta about half of the integral crose--section determined by the dipole sum rule belongs to the
energy range of the giant resonance. The remsining part of the cross-section falls within the range of higher energies. The calculated nuclear compreasibility is shown in fig. 8. As a function of A it grows about 3.5 times within the p-shell. The compressibility is anomalously large for the alpha-cluster nuclei. Naturally the compressibility parameter depends strongly on the choice of nucleon-nucleon potential , e.g. the Yukawa and Gaussian potentials produce compressibilities in ${ }^{16} 0\left(y^{\pi} T=0^{+} 0\right)$ which differ by a factor of 1.3. The calculated compressibilities differ strongly(by a factor of 1.5) for the isovector ( $y^{\pi} T=1^{-1}$ ) and isoscalar ( $y^{\pi} T=0^{+} 0$ ) states.

We have estimated the variations of the compressibility parameter with growing nuclear excitation, We see that

$$
K=\frac{m}{\hbar^{2}} \eta^{2}(\Delta E)^{2} \quad \text { does not change with increasing nuclear }
$$ excitation. In fact, it is easy to show that the $2 m f$ radius grows quickly enough ( $\sim 10-13 \%$ ) to compensate for the tendency of the nuclear levels to approach each other



Fig. 8 . The calculated compressibility of the light nuclei in the K-harmonice method.
(decreasing $\Delta E$ ) at larger excitations. In reference $/ 15 /$ giant dipole resonances were described in the shell model and a conclusion was made about the so-called loss of rigidity of nucleus in excited states. In that calculation the compressibility for the leoscalar states was taken from experiment and then it was used for the description of isovector atates ( $\mathrm{J}=1$, $\mathrm{T}=1$ ). As we have shown, the compressibility does not vary with the increasing energy, but it differs strongly for isoscalar and isovector states. We are apt to think that the estimations we have made in the K-harmonice formaligm elucidate the cause of the necessity of increasing the compressibility encountered in the shell-model calculations $/ 15 /$.

It is a pleasure to exprese my gratitude to Prof. V.G.Soloviev and to Dr. Mikhailov for useful discussions and for their intereat in this work.

## References:

1. Y.A.Simonov, Yad. Phys., 2, 630, 1966; $I, 1210,1968$.
2. A.I. Bez, M.V.Zhukov, Yad. Fiz., 16, 60, 1972 ;
A.I. Baz, Y.T.Green, V.G.Demin, M.V.zhukov, Particles and Fucleus, 3, N2, 1972.
3. K. M.E rokhin, N. V.Orlova, Y. P.Smi mov, K. V. Shitikova, Yad. Phyb., 22, 1102, 1975.
4. V.A.Knir, Y.F.Smirnov, K. V. Shiticova, Teor.Mat. Fiz. 30, 370,1977.
5. I.V.Kurdyumov, Y. F. Smirnov, K. V.Shiticove, S. Kh. El. Samarai, Nucl. Phys., 145, 593, 1970.
6. G.I.Kuznetsov, Ya.A.Smorodinsky, Yad. F1z., 21, 1136,1975.
7. H. Ya. Vilenkin, G.I.Kuznetsov,Ya.A.Snorodingky, Yad. Phy. 2. 906. 1965.
8. M. V. Zhukov, M.I. Zhurina, K. V. Shitikova, Yad. Phym., 17, 1191, 1973.
9. M.Sotona, J. ̌̌ofka, Fuovo Cimento, 2, 261, 1974.
10. V.A. Kravtsov"Atomic masees and binding energies of nuclei" Atomisdat, M., 1965.
11. A.B. Volkov, Wuol. Phye., 74, 33,1965.
12. H. Bikemeier, H. Hackenbroich, Zs. Fays., 195, 4121966.
13. A.P.Komar, V.P.Denicov, L. A . Kulohizky, Rep.Ac.Sc. USSR, 169, 1307, 1966.
14. G.L.Strobel, Fucl. Phys., A271, 162, 1976.
15. F.A.Ehivopistsev, A.V. Lakashov, K.V.Shiticova, Yad. Phys., 23, 557, 1976.
