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Functional Derivation of the "Nuclear Field
Theory" for a Schematic Model

Using functional methods we derive the Hamiltonian
of the so-callied Nuclear Field Theory for a schematic
model’. As a byproduct the graphical rules of the diagram-
matic nuclear field treatment are obtained,.
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In the.last few years a Nuclear Field
Theory (NFT) has been developed to handle the
complex interplay between collective and
single ©particle excitations of the nuclear
many-body system in a sophisticated way/1-4/,
Rules for a diagrammatic perturbation expan-
sion in terms of both single-particle and
collective excitation modes have first been
formulated for some schematic models/!.2/ In
this perturbation treatment proper care is
taken of the overcompleteness of the basis
and of the identity of the nucleons appear-
ing in the collective modes as well as in
the single-particle excitations. Moreover,
for a general two-body interaction the equi-
valence between the nuclear field treat-
ment and the usual Feynman diagrammatic per~-
turbation expansion (involvin§ only fer-
mions) has been shown in refs. 3.4/ for pro-
cesses connecting intermediate states. Re-
cently/y an attempt has been made to derive
the graphical rules of the NFT via functio-
nal methods in a simple model. However,
the collective field employed there is not
yet the phonon field of the nuclear field
expansion. Furthermore, the corresponding
effective Lagrangian does not contain ex-
plicitly the fermion fields. .In the present



note using functional methods™* we formulate
a modified perturbation theory in terms of
collective fields for a schematic model from
which, finally, the NFT is obtained. The

NFT Hamiltonian is strictly derived. The
diagrammatic rules of the NFT come out quite
naturally. '

The model under consideration consists of
N=22 fermions distributed over two single-
particle levels, each with degeneracy 20,
and which interact via a schematic monopole
particle-hole force

H =Hsp+}Hb , {1a)
where

HsP ::(E"{: é;aamn (1b)
and

H,, =-V(a+A")? {lc)
with

A+=§Ia;1am"l. (1d)

m=1 '

The index o takes the values ¢=1 and o=-1
for “he upper and the lower level, respecti-
vely, while the index m labels the degene-
rate states within each level. The level
spacing is given by 2¢, and V denotes the in-
teraction strength. In the unperturbed

- ground state the lower level is filled and

*Analogous methods have been applied for
deriving effective Lagrangians of more
complicated theories/8/,
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the upper one is empty. The monopole inter-
action (lc) contains Hartree-Fock contribu-
tions which can be absorbed in renormalized
single-particle energies ¢=¢+ V. The gene-
rating functional for the fermion Green
function is given by the following path-in-
tegral

ifdd.S?r (t)+1]+a +a +17 }

Zly,n 1= fDaDa"e ; (2) -
where
£, =2 alt (060 —o)a, 0+ V:(AM+A ) (3)

unr
is the Lagrangian corresponding to the
Hamiltonian of egq. (1), and 1 is an irre-
levant normalization factor. The integration
over the fermion variables a.a* may easily
be performed after linearizing the interac-
tion term in eq. (3) with the help of a col-
lective (boson) variable &(t)

ifdel - —?—2(-‘2+¢(z)(A+A+ i
e ifdtV(A+A+)2=n1fD¢e 4V . (4)

Introducing the single-particle Green func-
tion in the external field ¢(t) via

-1 ’ 0"1 ” ’
g . (L) =g (CLYLIPREN ¢ S Yo ()8 (t-t7), (s)

Pt - ({9 —oe)d(t-t?)
t

a



the generating functional becomes

. _ P ’ ’
Zlmn*] _n, [Dge ifslpl~ fawdt " (vsct.t e )}, 6)

where the collective action is given by*
2 (¢ -

Slgl = fdti ——":-vil— - 120 er(log g~ (L0 (7)
From the principle of least action, 385(¢)/5¢6=-0,
we get the equation of motion of the collec-
tive field

qSO (t)=-i4QV[gl._l (t.t')+g_l'l(t,t‘)]l,=t+0 . (8)

Excluding phase transitions™ we comnsider in
the following only the trivial solution¢b=0.
We may now expand the collective action
around the stationary point ¢04LThis brings
the second term in eq. (7) into the form

-i20 fdt tr(log g~ "Xt ,¢t) =—i20Q {dt tr(log gzl)(t, O+ZL, (g,
n

where the term***
n+1
)

n
L (gl =-imul ey 991" (9

0
e

*The trace has to be taken over the ¢
index.

** The necessary ccndition to ensure the
stability of the normal ground state is
e>av@- .

*** Matrix multiplication implies here integ-
ration over intermediate times.



represents a closed fermion loop emitting or
absorbing n (even) collective lines ¢.The
second order term yields the bubble diagrams.
As usual the bubble processes are included
into the free action
¢*
4v

S ee [Pl = fdtl - b+ Lyle).

free
Thus we have

Sl¢) = Sl'ree (o] + Sint (4]
with

Sint[¢]=nE4Ln[¢l'
The free action partSn!J¢} can be cast
into the form
H -1
Stree[# = 3 RABOT  (L1ISE),
where :

Tt = 220 T ) - [+ —
on 2v wz_*zA

is the free propagator of the collective
field which is easily recognized as the T -
matrix in the ladder approximation. From

T (w) =0 we find the frequency of the col-
lective excitation mode being equal to
wp=Feyl - T (10)

€

For subbsequent considerations it is conveni-
ent to rewrite the propagator as

Tlw) =-2V + T_(), T, ()=ADWA,
(11)




Our final aim is to obtain an effective Lag-
rangian in terms of fermion and collective
(phonon) fields including their coupling. For
this purpose, we express exp(iS; ) again by
an integral over fermion variables. Intro-
duciug a source term j¢ in the exponent of
eq. (6) and integrating over the ¢ variablc
the generating functional takes the form

5

. 1
—le['i— 3;—]

Zlp,n ") =N,e [DaDa"

. O + u +
x explifatijVj + 2Vj(A+A )Y+ £ (1) a+a -
Jaeljvj + 2vj (D47 7 (12)

+ .
- %-.fdt’(A+A +DT (E1)(A+4" 4j)|i|j o

In analogy to eq. (4) we can now introduce
a new collective field ), the free propaga-
tor of which is given by D(w), defined in eq.
{(i1). Then, the generating functional reads

. SiL [eva+atye L 2
Zlpn' =R e o
13)
. P ] + + (
foaDa+nyelfdd af(0+iAe +77a+a gl | ’
j=0
where
S')nf=£f+ fph+ gint' (14)

is just the effective Lagrangian in the NFT
which comprises besides the full fermion



Lagrangian (defined by eq. (3)) a free
phonon and an interaction term which are
given by

2 1 -1 ” .

S’ph = T?—q,(t)D (t,t Vg (t9
and

+

e = Ao (DAM + A (W)

respectively, A is obtained from A by the

0 . .
replacement a - o , at o ——. Quantization
LBt idn
of the collective field yields

+
oD = —=—=(CH + C' (W),

’2(1)0 +
where CGL » C() are the phonon operators

in the interaction picture. Then the Hamil-
tonian corresponding to eq. (l4) reads

H -H Fth"Ht\)" Hm

nf sp t
with
+
th =m0C C,
’ + + . A
H,,=-AC+C xa+A%), A - ——.
Vaw g

Thus Hy is just the Hamiltonian of the NFT,
which has previously been derived only empi-
rically (see, e.g., ref./ 134/ ) The func-
tional method used in the present paper

yields not only the NFT Hamiltonian btut pro-~
vides us also with the corresponding grap- /
hical rules for a diagrammatic perturbation -
theory based on this Hamiltonian: The term /
in front of the functional integral in eq.
(13) (see also eq. (9)) projects out the {
bubble diagrams from the perturbation expan-
sion, which have already been included in



the definition of the collective field. The
obtained results are not restricted to the
schematic model considered here but can easi-
1y be generalized to more complicated situa-
tions.
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