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fAucces . u ap. E4 - 10959
Oeyxda3nas Morcenb ppamalomEXca foep

Hs ocHose MeTona FeHeDATOPHOA KOODAMKATH CHOPMYTHpPOBAHA Moaels
B KOTOpPOR AADO MPeACTABASETCH KaK TPEeXOCHLIA poraTop, WMmewlkll HOpmanh-
HYI0 M CBEpXIDOBOASWYK $HA3bl, CBA3SHHME Mexily coboi. [uaroHainays mart-
pHUY TpPexoCHOro poTatopa MPH TOMOILH KOreDeHTHLIX cocroaxuit, nonyvaem
aHepreruueckui cnektp snoa. PaccuaTann BepoATHOCTH Nepexola B fpelene
Gonbwux I . PaccmarpmpaTcs 3d$eKTH DA3AUHMHLIX OPHEHTEUNA MACCOBOrG
KBa pynonion1a OTHOCHTENLHO Yr/l0poro MoOMEHTAa, Pacuérsl npoegeldeHul A48
snep 156,166 Er.
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Janssen D. et al. E4 - 10959
Two-Phase Model of Rotating Nuclei

Using the generator-coordinate method the model is
formulated in which the nucleus is treated as a triaxial
rotator with coupled normal and superconductive phases.
Averaging the model Hamiltonian over coherent states we
study the effects of different orientations of the mass
quadrupoloid with respect to the angular momentum for the
cage of 138.18¢p nuclei. ’

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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The investigation of spectroscopic pro-
perties at moderate values of angular momen-
tum [ are carried out usually suggesting
that the average field is axially symmetric.
Although supported by the calculation of the
equilibrium deformation, this suggestion
may be invalid at finite I due to the strong
deformation dependence of inertia properti-
es. The possibility to describe the spectra
of some transitional odd-mass nuclei in the
model with a quasiparticle coupled to a tri-
axial core/V gives an empirical indication
to that.

The onset of triaxial deformation induced
by the rotation may be investigated starting
with the generator-coordinate method. Start-
ing from the superposition of different
"intrinsic" states’? one writes

I51
tvm=zik colPaild ;> (1)

In eq. (1) jA;> is a ECS-function with the
gap parameter A,,
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a —iaJ, —iBJy -yl , .
where R =e e e is the operator
of rotation through the Euler angles Q =(a,8,y).
Using the standard technique of the angular
projection method one introduces the overlap

matrices
~1

ik, i’k H_ | o041

- *‘( R
B =<B | P > > fdQDx (Q)<A |1 @ >

T ki’ (3)

and the Hamiltonian matrix
~ e~ ~
K=o g%, 4)

The eigenvalue problem for H determines the
energies E, and the eigenvectors f!

1 -~ )
P = ,z,n /iékfi'k'c:'k' : (5)
i’k
The kncwledge of f!or ¢! may be used in order
to calculate the matrix elements of physical
operators.
Assuming the field essentially triaxial

one writes

"'l nl ,
Y ikaik’ _nii’akk' (k. k" > 0). (6)

Then, using the procedure of kamlah/% for
the evaluation of <A[|[HR()|A;> one comes to
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where the following symmetry properties of
the ECS function were taken into account

i

wd A
e H 1A, >=IA > (,,=1,v2,3),<Ai|JF|Ai>=0. (8)

Thus, the generator-coordinate method leads
to the model of a triaxial rotator having
several coupled phases marked by the index
i. he note that the coefficients f! have
. . . ik <
the meaning of amplitudes in the expansion
for the wave function of such a rotator in
the functions having fixed angular momentum
projections to one of the axis. The parame-
ters in eq. (7} may be found from the many-
body Familtonian in a straightforward way
giving the microscopical description of the
spectroscopic properties of nuclear states.
This program is quite involved and may call
for the improvement of the theory in many
important details. For this reason we do
not follow this line but use some additional
approximations in order to study the general
properties of the model.

First, we limit the sum in eq. (1)} to two
terms: A,=A#0, A,=0. The overlap between such
states is considered to be small, i.e.,

D o =<A|0>= 2y << 1. Then e} =%, . The Ha-
miltonian H can be written as a 2 x 2 matrix
with the elements operating in the space of
states with different
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Second, we treat the inertia parameters
as phenomenological ones. The moments of
inertia in the correlated phase

B (a2_a2)2

(a #+ an)

(10)

where B is the fitting parameter and a, are
the nuclear semiaxes. In the normal phase
the rigid body moments of inertia are used.
The coupling between the two phases is
approximated by a constant £.

The third simplification we introduce
consists in the use of coherent states %
which in the limit I>>1 are expected to be
a good approximation to the yrast state
eigenvectors f' . We write

c =cin:d(¢,e,0) (11)

I
ik
and pass from the eigenvalue problem to the
variational problem in which the Hamiltonian
H from eq. (9) is averaged over coherent
states (11) and then the expectation value
is minimized with respect to the deformation
parameters g,, and the angles ¢,6.

To calculate the B(E2) values the follow-
ing approximate relation is used for the
matrix elements of the charge-quadrupole
operator taken between the intrinsic states:

5
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(12)
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where 8 and y are functions of semiaxes a,

in eq. (10). If the angles ¢, ¢ are the

same for the states involved in a transition,
then

5

T

B(E2,I+2-1) =

BB (4cosy- D (¢,0,0
(e 0)|i=1cl+2j €y | toosy-D(0,00+

siny 2 2 2 (13)
+ 7[D22(¢,0,0)+D2_2(1;'),0,0)]‘ .

In particular, if 6:1%, eq. (13) reads

3

R
2, ol
B(E21+24D)=( ZeR %)% 3 g © 1 |2 (cosy+/ 3+ sinycos2),

8y =1 (14)

where Ze is the electric charge, R-1.2a13 fm.
In the case of small y and moderate values
of I eq. (11) does not hold and is to be
substituted by

I (ayi 1
cik(axlal)=ci8k'0 . (15)
The choice between (11) and (15) can be
made remembering that in the case of the
triaxial rotator the projection of the an-
gular momentum on the axis 1 of the body-
fixed frame of reference is approximately
conserved if ! satisfies the inequality

A A,-2A
I<<'—Ai‘i———i—(AlsﬁziAa)- (16)

2V(A,~A JA-A)



The difference between (11) and (15) does
not change essentially the energies of
states and the B(E2) values,but leads to a
hindrance factor in the E2-transition if

the transition leads from the state with the
cgk coefficients given by eq. (11) to the
state for which eq. (15) is valid

BYEZ21+2-1) =«aB(E2I+2-1). (17)

The hindrance factor « is

a=l<y;é0[y=0‘2=(D;I(0,?”.0))2= _1_1_ . (18)
4

The model was applied to the '*®1%€g; jso-

topes using the calculations of the poten-
tial energy V;(B,y) with the shell correcti-
on method of Strutinsky. In the transitional
nucleus !%6hr increases rapidly with 1.
reaches about 25° at I =10 and then drops
down to very small values. This effect is
accompanied by the decrease of the probabi-
lity to find the nucleus in the correlated
phase. A more detailed information concern-
ing the yrast band of this nucleus is dis-
piayed in the table. The estimates for the
B(E2) values in 158Er have been calcu-
lated with eq. (14) for all the transitions
but 12*.10*. In the latter case the y -de-
formation changes in the transition and

eqs. (17), (18) are used. Contrary to 156Er
the other isotope !%6Er appears to be quite
stable in 8 and y with! . The axiality is
not brecken here essentially up to 1 > 20.

In the case of 196g no hindrance is expect-

ed. This corresponds nicely to the measure-
ments of life-times of states in Er isoto-
pes reported in/7 . Experimentally it was



Table
Calculated deformation parameters g and y,
energy values E;, transition ratios
B(E2,I+1-0)/B(E2,2 -0) and the experimental
energies/®/ of the yrast band in  !%gr,

I B [v}° E‘,"e‘" E{*P BERI2 - D peor.
(keW) B(E2,2 » 0)

2 0.213 17 545  344.2 1

4 0.219 20 973 797 1.080
6 0.226 23 1465 1340 1.168
8 0.234 26 2017 1959 1.265
10 0.237 25 2638 2633 1.294
12 0.213 6 3740 3315 0.15
14 0.213 5 4152 3838 0.899
16 4618 4383
18 5614 5008
20 0.213 5 5725 5718 1
22 6365 6490
24 7064 7317

found that the 12*.10* transition in '®gr
is slowed down by about a factor of four
while in 166pr no deviation from the Alaga >

rules is found. .a
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