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Янссон Д. и др. Е4 - 10959 
Двухфазная модель вращающихся ядер 

На основе метода генераторной координаты сформулирована модель, 
в которой ядро представляется как трехосный ротатор, имеющий нормаль­
ную и сверхпроводящую фазы, связанные между собой. Диагонализуя мат­
рицу трехосного ротатора при помощи когерентных состояний, получаем 
энергетический спектр ядра. Рассчитаны вероятности перехода в пределе 
больших I . Рассматриваются эффекты различных ориентации массового 
кваа руполоида относительно углового момента. Расчёты проведены для 
ядер 15в.1вв Ег. 

Работа выполнена в Лаборатории теоретической физихи ОИЯМ. 
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Janssen D. et a l . E4 - 10959 
Two-Phase Model of Rotating Nuclei 

Using the generator-coordinate method the model is 
formulated in which the nucleus is treated as a t r i a x i a l 
rotator with coupled normal and superconductive phases. 
Averaging the model Hamiltonian over coherent s ta tes we 
study the effects of different or ientat ions of the mass 
quadrupoloid with respect to the angular momentum for the 
case of iseie'Et nuclei . 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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The investigation of spectroscopic pro­
perties at moderate values of angular momen­
tum I are carried out usually suggesting 
that the average field is axially symmetric. 
Although supported by the calculation of the 
equilibrium deformation, this suggestion 
may be invalid at finite I due to the strong 
deformation dependence of inertia properti­
es. The possibility to describe the spectra 
of some transitional odd-mass nuclei in the 
model with a quasiparticle coupled to a tri-
axial core^1/ gives an empirical indication 
to that. 

The onset of triaxial deformation induced 
by the rotation may be investigated starting 
with the generator-coordinate method. Start­
ing from the superposition of different 
"intrinsic" states'8/one writes 

In eq. (1) |Aj> is a ECS-function with the 
gap parameter Aj, 

PJ.= -^i/dflD*ik(0)R(n), (2) 
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A - i a J z - i | 8 j - i y J z where R(0)=e e e is the operator 
of rotation through the Euler angles 0=(a,/3,y). 
Using the standard technique of the angular 
projection method one introduces the overlap 
matrices 

~ i 
h i k . i ' k ' „ p l - u 

„ I . 1 kk 1 8 n 2 k k ' i 1 1 
i k . i ' k ' (3 ) 

and. the Hamiltonian mat r ix 
~_V4~ ~-*4 ,., 

л = n h n . (4 J 
The eigenvalue problem for И determines the 
energies E and the eigenvectors f1 

i!.rnV. vc! v • (5) 
ik , . ik,i к l к i к 

The knowledge of f1 or c1 may be used in order 
to calculate the matrix elements of physical 
operators. 

Assuming the field essentially triaxial 
one writes 

n ' .,,,-n}.,6 (k.k' > 0). (6) 
ik,i к li kk -

Then, us ing the procedure of Kamlah 7 ' 3 / for 
the e v a l u a t i o n of <A s |HR(n) |Д 5 > one comes to 

h' ., b.-V..,fi..,+ i l A W , [ ( S \ . + ( £ \ ..Ц7) 
ik, l к n kk 2i/=l " v kk v k . - k 
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where the following symmetry properties of 
the ECS function were taken into account 

iuj 
11 IA.> = |A> (M = 1,2,3),<A.|J |A.>=0. (8) 

Thus, the generator-coordinate method leads 
to the model of a triaxial rotator having 
several coupled phases marked by the index 
i • toe note that the coefficients t' have 
the meaning of amplitudes in the expansion 
for the wave function of such a rotator in 
the functions having fixed angular momentum 
projections to one of the axis. The parame­
ters in eq. (7) may be found from the many-
body Hamiltonian in a straightforward way 
giving the microscopical description of the 
spectroscopic properties of nuclear states. 
This program is quite involved and may call 
for the improvement of the theory in many 
important details. For this reason we do 
not follow this line but use some additional 
approximations in order to study the general 
properties of the model. 

First, we limit the sum in eq. (1) to two 
terms: A 1 = A ^ 0 , A 2=0. The overlap between such 
states is considered to be small, i.e., 
is =<Д|0>н 2TJ « 1 Then с ik - f ' k The Ha-

miltonian К can be written as a 2 x 2 matrix 
with the elements operating in the space of 
states with different 

2„=i и " l 

AsVHv 
"!/=l 22 

(9) 
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Second, we treat the inertia parameters 
as phenomenological ones. The moments of 
inertia in the correlated phase 

д Ч ц Ь у . в ^ - ' ^ 8 , do) 1 11 

where В is the fitting parameter and a„ are 
the nuclear semiaxes. In the normal phase 
the rigid body moments of inertia are used. 
The coupling between the two phases is 
approximated by a constant <f . 

The third simplification we introduce 
consists in the use of coherent states '4// 

which in the limit I»l are expected to be 
a good approximation to the yrast state 
eigenvectors f1 . ive write 

с ; к = с ,D •,(*.*,<)) ( i n 

and pass from the eigenvalue problem to the 
variational problem in which the Hamiltonian 
Л from eq. (9) is averaged over coherent 
states (11) and then the expectation value 
is minimized with respect to the deformation 
parameters p , y and the angles ф,в. 

To calculate the B(E2) values the follow­
ing approximate relation is used for the 
matrix elements of the charge-quadrupole 
operator taken between the intrinsic states: 

<AJ5li. R(fl)|A.,> = — Ze<r 2 > / 8 l5 v . cosy + 
1 СЛ 1 A— K»U 

1 
+ { 8 K , 2 + S K , - 2 ) - = S i n y ] n i i ' m 

V 2 

(12) 
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where /3 and у are functions of semiaxes a,, 
in eq. (10). If the angles ф, в are the 
same for the states involved in a transition, 
then 

BCE2.I + 2-D-—(eQ/| I с . с | "looey-D*''U,0,0)+ 

+ _Siny^[ 2 Ц Д О ) + 0 2 Д 0 ) ] | 2 > ( 1 3 ) 

V2 22 ' 2-2 

In p a r t i c u l a r , i f в = ^~ , e q . (13) r e a d s 

B(E8.I + 2.I) = (-J=ZeR 2 /^) 2 ! | c C y | 2(cosvv/F +sinycos^) 2, 
«V* W 2 " " ( 1 4 ) 

where Ze is the electric charge, R = 1.2A1/3 fm. 
In the case of small у and moderate values 
of I eq. (11) does not hold and is to be 
substituted by 

c 1 (axial) = с'S . (15) 
ik i k,0 

The choice between (11) and (15) can be 
made remembering that in the case of the 
triaxial rotator the projection of the an­
gular momentum on the axis 1 of the body-
fixed frame of reference is approximately 
conserved if I satisfies the inequality 

1 « A 3 + A 2 - 2 A 1 ( Д 1 < А = < Д з ) , (16) 
2^(А8-АОД-А^ 
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The difference between (11) and (15) does 
not change essentially the energies of 
states and the Б(Е2) values, but leads to a 
hindrance factor in the E3-transition if 
the transition leads from the state with the 
с \к coefficients given by eq. (11) to the 
state for which eq. (15) is valid 

B'(E2,I+2- I) =«В(Е2,1 + 2-1). (17) 

The hindrance factor « is 

а-\<у*0\у .0\*-ф1л0,-1,в& ~-4= . (18) 
Vrf 2 

The model was applied to the 1 5 6 Л 6 6 Е Г iso­
topes using the calculations of the poten­
tial energy Vj(/4,y) with the shell correcti­
on method of btrutinsky. In the transitional 
nucleus 1 5 6Lr у increases rapidly with I. 
reaches about 25° at I =10 and then drops 
down to very small values. This effect is 
accompanied by the decrease of the probabi­
lity to find the nucleus in the correlated 
phase. A more detailed information concern­
ing the yrast band of this nucleus is dis­
played in the table. The estimates for the 
B(E2) values in 1 5 eEr have been calcu­
lated with eq. (14) for all the transitions 
but 12 + -»10+. In the latter case the у-de­
formation changes in the transition and 
eqs. (17), (18) are used. Contrary to i56Er 
the other isotope 1 6 6Er appears to be quite 
stable in 0 and у with I . The axiality is 
not broken here essentially up to I % 20. 
In the case of 1 6 6Er no hindrance is expect­
ed. This corresponds nicely to the measure­
ments of life-times of states in Er isoto­
pes reported in/7/ . Experimentally it was 
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Table 
Calculated deformation parameters p and у , 
energy values E t, transition ratios 
B(E2,I+1-I)/B(E2,2 -0) and the experimental 
energies/6// of the yrast band in 156Er. 

I /8 M° „ theor E e * p B(E2.I + 2 - 1 ) 
theor. 

I 
(keV) 

B(E2. 2 - 0 ) 

2 0 . 2 1 3 17 545 3 4 4 . 2 1 
4 0 . 2 1 9 20 973 797 1 .080 
6 0 . 2 2 6 23 1465 1340 1.168 
S 0 . 2 3 4 26 2017 1959 1 .265 

10 0 . 2 3 7 25 2638 2633 1.294 
12 0 . 2 1 3 6 3740 3315 0 . 1 5 
14 0 . 2 1 3 5 4152 3838 0 . 8 9 9 
16 4618 4383 
18 5614 5008 
20 0 . 2 1 3 5 5725 5718 1 
22 
24 

6365 
7064 

64 90 
7317 

found that the 12 + -10 + transition in 156Er 
is slowed down by about a factor of four 
while in i66Lr no deviation from the Alaga "̂  
rules is found. 

The authors would like to thank Prof. 
V.G.Soloviev for his continuous interest 
in the work. 
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