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Anbda-pacnan B pamkax Teopud Pewbaxa

B paMmkax Teopuu sinepHbix peakuui Pewbaxa UiMpHHBI anlbda-pacnana
onpeneisOTCd anbPa-No4YepHAM sgaepHBIM MOTeHUManoM u dakTopamd GopMHUpoO—
Banus, [lokasaHo, 4To paccyuTaHHble abCOMOTHbIE 3HAYEHHH albda-WHPHH And
NEerkHX U30TOlNOB Po HAXOQATCd B XOpPOlIEM COrJIaCHH C 3KClepHMeHTallb-—
HbIMH TaHHBIMH, €CJIH HCNOJb3yeTCd pealbHAasg 4YacTbh OINTHYSCKOI'O NOTeHUHa=-
Na C napameTpamH, MoAOOpPaHHBIMHU IO HHXHeH 2Heprud a —paccesdHud.

Pa6ora BomonseHa B JlaGopatopuu teoperudeckod ¢uauxku OHHI.
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Alpha -Decay within Feshbach Theory of
Nuclear Reactions

In the frame of Feshbach theory of nuclear reactions
the alpha- decay widths are determined by the alpha-
daughter nucleus optical potential and by the preforma-
tion factors. It is shown that the calculated absolute
values of the alpha widths for the light Po isotopes are
in good agreement with the experimental data, if the real
part of the optical potential with the parameters fitted
by the low energy a -scattering is used.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

It i1s well known, that the relative alpha
decay widths calculated in the framework of
R -matrix theory of nuclear reactions ’'!?/
are in reasonable agreement with the experi-
mental data, however, the predicted absolute
values deviate drastically from the experi-
mental oneSM/-Applying the R-matrix theory
to alpha decay, one finds that the alpha
widths are exclusively determined by the
surface terms like penetrabilities and re-
duced widths and that the absolute values
are strongly dependent on the channel radius
parameter.

In order to avoid these difficulties new
methods were proposed for determining the
alpha widths without using the channel ra-
dius 7.

The present paper is aimed to describe
the alpha decay within the Feshbach theory
of nuclear reactions’® in complete analogy
to the continuum shell model for nucleons’?.
This theory unifies the advantages of the
shell model description of the parent and
daughter nuclei with the optical model for
the emitted alpha particle. This model is
explained in details in section 2, where
a new expression for the alpha decay widths



is obtained. In the last section this expres-
sion is applied to the alpha-decay of the

Po 1isotopes. It is shown that the abso-
lute alpha-decay widths are in reasonable
agreement with the experimental data for
these isotopes.

2. THE DECAY CONSTANT

The starting point of our considerations
is the fact that for the description of such
a phenomenon like alpha-decay we need two
sets of basic states. The first set consists
of the bound states 9> of the parent nucleus
obtained by diagonalizing the shell model
Hamiltonian HSM within the functional sub-

space of bound states, denoted as the Q-space,

which reproduce the energy spectrum of

the parent nucleus. The second set involves
the scattering states which consist of pro-
ducts of the intrinsic states of the daughter
nucleus |®P>and of the alpha particle [0%>

of the angular |fm> and radial |d > parts of
the relative motion characterized by the an-
gular momentum £, its projection m and the
energy ¢ of the relative motion.

}x;>=H®D >le%>1e > >1 . (1)

In the above expression, we have denoted
by the channel index ¢ all discrete quan-
tum numbers necessary for the description of
the alpha-particle, daughter nucleus and the
relative motion and by E the continuous
quantum number which describes the total
energy of the system, i.e., the sum of the

ground and excitation energies of the daughter
nucleus, of the alpha-particle and the energy

¢ of the relative motion.
4

The space formed by the scattering states

C . .
Ixg> with ¢ 0 will be denoted as the P-
space.

Both basic states are normalized

<¢k|¢k’>=5kV

(2)
(3)

’

<x ¢ ¢, >=8 -E’
xEle, o OE-E)

P=3 [ dE |y¢ ¢
- [ IxE ><x | )

and

Q= I <0, |. 5

. The projection operators P and Q@ deter-
mine two orthogonal subspaces of the comp-
lete functional space of the a-decaying
nucleus which describes the behaviour of the
A+4 nucleons-system. If there are no other
open channels, the sum of these two spaces
1s a complete functional space of the A +4
nucleons-system, and we get

P.Q-Q-P=0 P+Q=1. (6)

If there are other open channels than the
a -channel, for example fission, the comple-
teness relation (6) is fulfilled only appro-
x1ma§ely. In that case we can try to describe
the influence of the additional subspace P’
py an effective Hamiltonian containing an
imaginary part in the nuclear potential.

Let us denote the exact Hamiltonian by H.
Thus, the basic states|®k> and |y®> are the

E
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eigenstates of the projected Hamiltonian
in the corresponding subspaces (Hy,=QHQ,

H ~PHP)
B, —H gld,>=0 (7)
E -H,)|xg >= 0. (8)

While the operators Hgq and Hppdescribe
the behaviour of our process in the cor-
responding subspaces, the exact Hamiltonian
H=Hpp Hgq +Hgp +H pg (Hgp=PHQ) describes both
the bound and the scattering states and the
connection between them.

Due to the orthogonality of the subspaces
(6), the scattering states |x > must be
orthogonal to the bound states

<(I)klxg>-=0. (9)

Thus, the eigenstates |[¥> of the exact
Hamiltonian H

(E-H)|¥ >=0 (10)

can be written as a sum of two components
corresponding to the two subspaces

¥>=P |¥>+Q [¥>. (11)

Using the expansion (11) and the orthogo-
nality (6) we get from the Schrodinger
eq. (10) the following system of coupled
equations for the two components P|¥> and
Ql¥> .

(E—HQQ)QW>=HQPPN‘> (12)

E-H ,, )P[¥>=H, Q|¥>. (13)

With the help of the Green operator of
the P-subspace

+ 1 + .
GP—PE‘*‘_HP (E =E + ip), (14)
which produces only outgoing waves for the

@ -particles, we can rewrite eq. (13) in the
form

+
PI¥ > = G (E)H, |¥>. (15)

Contrary to the description of a scatter-
ing process eq. (15) does not contain a solu-
tion of the homogeneous equation, because
there is no incoming flux in the decay pro-
cess. Inserting expression (15) into eq. (12)
we get a homogeneous equation for the bound
component Q[¥>:

(E—HQQ—HQPG*P(E)HPQ)Q]%:(). (16)

Due to the imaginary part of the Green
operator GS&D the component Q|¥> 1s an
eigenstate of a nonhermitian operator, i.e.,
it describes a set of resonance states whose
energies and widths are given by the real and
imaginary parts of the complex eigenvalues
of eq. (16).

Using the relations (4-6) and the Schro-
dinger eq. (7), multiplying eq. (16) from the
left by <e,| and integrgting we get

<¢kuﬂxs,><xg,uuwkf>

%KE_Ek‘ka-§ [AE ra— k¢kJV>(17)

or



2’[(E—Ek,)Bkk,~AEkk,+-é-Fkk,]<d>k,|‘P>, (18)

where the real part is denoted by
(DRIHlXE ><)(E H|® - >
E-E~

AEkk,=CE’? {dE”’ (19)
in which ? means the principal value of the
integral and the imaginary part by

Fkk,=2n~%<<bk[H§XE ><X [H]cb , > (20)

In order to obtain the energy and widths
of the resonances, we have to diagonalize
the matrix eqs. (18). If the widths are
much smaller than the decay energy, the mat-
rix is practically diagonal and the width I'y
of a state k is given by the diagonal ele-
ment

L, =Ty, =27 3 <0, [Hix} 52 (21)
In such a case we can also neglect the
small energy shift AExx., which is of the same

order of magnitude as Tk -

While the bound basic statesl@ > can be
obtained directly by dlagonallzlng a shell
model Hamiltonian in a truncated space, we
have still to calculate the scattering
stateslx >. From eq. (8), using eq. (9) we
have

(¢ C (¢
E-H) [x  >=-QHlx =-2<® [Hix_>I% >. (22)
i.e., an integral equation.

Denoting by ]x > the solution of the
homogeneous equatlon

C
(E H)|XE;0 >=0 (23)
which fulfils the usual boundary conditions
for the scattering states (incoming waves

in the channel ¢ and outgoing waves in all
open channels) and by |xg.x > the solution of
the unhomogeneous equation

c
(E—H)[)(E;k >-|<Dk > (24)

which vanishes at large separations, the so-
lution of the integral equation (22) can be
written as

k
I o> =Ix g > EDc Ix g, > (25)

K .
where D, are the unknown matrix elements
<<Dk|H]XC >.
E

On the other hand the coefficients D
can be determined from the condition (9) as
solutions of the following system of algeb-
raic equations

’

k c
f,Dc < l)(';:;k, >=<d, ‘XE;O > (26)

Inserting (25) into eq. (20), we get

| =27r2Dkk*.

(27)

If we consider only one level k of the
parent nucleus we get the same expression
like in ref.

In the R matrix theory of alpha decay,
due to the fact that we divide the total
space into two completely separated subspa-
ces with two different Hamiltonians with no
connections between them G{PQzﬂ = 0), our



coupled system of equations (22) reduces to
the uncoupled eq. (23). It is evident that
the orthogonality relation (9) is already
satisfied and the alpha widths (21) can be
reduced to a surface integral with the help
of the usual approximations.

An equation which depends only on one
coordinate can be easily obtained. Indeed,
denoting by HP and H® the intrinsic Hamil -
tonians of the separated fragments (daughter
nucleus and alpha particle)

D D
(ED—H o~ >=0, (28)

E, ~H")[e® >=0, (29)

where E_.E_ and 10°>. 1% > are the eigen-
values and the eigenfunctions of the con-
sidered fragments, we can write the exact
Hamiltonian H as a sum of Hamiltonians for
separated fragments and their relative motion

H=H" +H® + TP, v (30)

D . . . .
where T*" is the relative kinetic operator
and

V=2 2 V() (31)

is the sum of the two-body interactions bet-

ween the nucleons of different fragments.
Assuming that V%P can be approximated by

a nuclear potential which depends only on the

relative distance between the centers of mass

of the fragments, we get by multiplying to

the left the eqs. (24-25) with the channel
wave function

10

le > = (10" (€)107 (> 1Y, @) (32)

and integrating over the intrinsic coordi-
nates of the fragments ¢ and » and the
angular variables of the relative motion .
the following differential equations for the
radial parts of the homogeneous solution

$9 ()=<re | xg.o > and of the unhomo-

geneous solution ¢ﬁ@)z<rc{X;_k >

0
) 02 @) (0
L I mm} ° % _ z k g,(SS)
2u  dr f 6" () L@

where # is the reduced mass of the fragments,
¢ 1s the energy of the relative motion

e=E-E, -E, (34)
and I:(U the overlap integral
1 @)=r [d¢ dpd0[e )0 ()Y, @) @ ). (35)

In order to compute the above integral we
have to pass the wave function ¢k@2) of the
parent nucleus, which is a function of all
individual coordinates r, of the nucleons,
to the same coordinates as the channel wave
function (32). The procedure of calculating
the overlap is given in ref. '°"'* After cal-
culating the overlap integral (35), we can
solve numerically the differential equa-
tions (33) with the boundary conditions men-
tioned above.

11



Because the normalization of a Schrédin-
ger equation of the type (22) is determined
by its asymptotic behaviour, we have only
to normalize the homogeneous solution, in
order to satisfy the condition (3). Then, we
can solve the system of algebraic equations
(26) whose matrix elements can be expressed
by a simple integral over the overlap integ-
ral (35) and the radial solutions #2() and

¢EU) of the homogeneous and unhomogeneous
equations (23) and (24)

sp¥ fart @)t @)= rart el o). (36)
k

The corresponding widths follow from eq. (27).

5. APPLICATION TO THE Po ISOTOPES

In the following we shall assume that the
bound states can be described by the simplest
shell model with no residual interactions
and harmonic oscillator radial single par-
ticle wave functions, and only one bound
state |®,> participates in the decay.

Due to the fact that for open shell model
configurations we have to consider the mix-
ture of configurations, we restrict our-
selves to the alpha decay of the light polo-
nium isotopes (N<126). For the parent nuclei
( Po 1isotopes) the shell model consists of
a core (the double magic nucleus 208 pyp
with two additional protons in the 1h,, -
shell and a certain number of neutron holes,
and for daughter nuclei ( Pb isotopes) the
same core and two additional holes in 3p-2f -
-shell relative to the parent nucleus.

For the intrinsic wave functions of the
alpha particle we have taken a Gauss func-

12

tion in the relative coordinates with the
parameters from ref.’”® and for the alpha-
nucleus optical potential a hood—saxgn shape
with the parameters obtained by.flttlng @he
elastic and reaction cross section data in
the lead region at energies close to the
Coulomb barrier/12/For completeness also the
imaginary part has been considereq.

The results are shown in the figure. It
is evident that the calculated absolute .
alpha widths with the real part of the.optl-
cal potential are in good agreement Wlth the
experimental data for all 90351dered isoto-
pes, in spite of the simplicity of the
assumptions.

lg (Ty's)

-
o
T
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n 1 A

50 52 54 B ET(MeV)

Absolute alpha decay widths of the light Po
isotopes with (~—-—-—and withgut(——-——— —)
the imaginary part of the optical potential.
The experimental values (——-) are taken from
ref.’20 13



The inclusion of the imaginary part of
the optical potential gives absolute values
for the alpha decay half-lifes much larger
than the values obtained if only the real
part of the optical potential 1is considered.
In principle, our model may contain also
imaginary potentials but we may exclude these
potentials since in a decay process with
a given initial state there are no other
open channels which can participate in the
process like in the elastic scattering. Thus,
it is reasonable in our calculations to
consider only the real part of the optical
potential.

We have concluded that the proposed mo-
del is able to describe the absolute values
of the alpha widths using the real part of
the optical potential whose parameters
were obtained by fitting the elastic and
reaction cross section data at energies close
to the Coulomb barrier. Of course, in order
to have final conclusions additional studies
are needed like: the inclusion of the Pauli
principle in the relative motion 13-1%/  the
improvement of the radial single particle
shell model wave functions (Woods-Saxon
type)’10:16.17/ the introduction of a more
complex intrinsic alpha particle wave func-

tion’*'® or of the residual interaction of
a pairing type’

/19/
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