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Lippman-Schwinger Eqation in the
Harmonic-Oscillator Basis for the
Trinucleon Bound-State Problem

The matrix element of the n-body free Green function
between the harmonic-oscillator states has been brought
into the form of a one-dimensional integral which is use-
ful for practical calculations. Using the explicit expan~
sion for the three-body wave function, its asymptotic
form is derived by a nev method. Starting with the Lipp-
man-~Schwinger equation, better convergence for the bind-
ing energy calculations is obtainec as compered with the
method of the diagonalization of the energy matrix.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

Several years ago the problem of the tri-
nucleon ground-state was extensively studi-
ed/Y by the method of the diagonalization
of the energy matrix (DEM) built up from
the Reid soft-core interacticn/? in a har-
monic-oscillator basis. Strayer and Sauer/3/
improved these calculations by enlarging
the basis considerably. Their results are
compatible with those derived by other me-
thods/3/. The convergence of some of the
basic three-nucleon bound-state quantities
like the binding energy and s-state proba-
bility was lacking, however.

It is known, that this trouble lies in
the form of the spatial dependence of the
oscillator wave functions. A great number
of them is needed to build up a realistic
three-nucleon wave function which (a) is
strongly suppressed at small relative dis-
tances and (b) decreases exponentially at
large relative distances/4/. The complica-
tions arising from (a) can be partly avoided
by using the super-soft-core two-nucleon
potentials /5.

Nunberg, Pace and Prosperi/®attempted
to solve the problem by introducing two
oscillator radii instead of the usual one.
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The employment of another nonlinear parameter
gave them a tool to change once more the
radial form of the oscillator wave functions
so that the convergence would be better. They
estimated that they improved it by = 0.2 MeV
in the binding energy, at the maximum number
of oscillator quanta Qmax = 36.

In this paper we attempt to make the con-
vergence of the three-nucleon binding energy
calculations better using the Lippman-
Schwinger (LS) equation. This approach is
based on the observation /78/ that the in-
correct asymptotic behaviour of the wave
function from the DEM method is due to the
truncation of the basis in which the kinetic
energy operator is acting. Quite recently,
this method has been used/%to solve the
two-centre problem with realistic potentials.
A potential V was expanded in terms of har-

monic oscillator functions V = §1i><i{VH><jL

Thus, the resulting approximaffon to Vis

a rank-N separable potential, and the well-
known methods can be applied to solve the
problem.

Here, we consider the problem more for-
mally and use rather the completeness of
the basis to simplify the treatment of the
kernel of the LS equation. The formalism
needed for practical calculations is des-
cribed in sec. 2. The numerical results for
the triton binding energy are given in sec.
3.1. Our main results concerning the three-
body wave function properties are presented
and discussed in sect. 3.2,



2. FORMALISM

Let us write down the LS equation for the
trinucleon bound-state problem

[¥> ==Gy(E)V|¥>. ' (1)

In eq. (1) the Green function G (E) is

) -]
GO(E)=(HO-E ) o, (2)

where E is the energy eigenvalue and 1l 1is
the kinetic energy operator of the system.
Further, V stands for the operator of the
potential energy and is equal to the sum of
the two-nucleon potentials. Using the comp-
leteness of the basis constructed/!0:¥from
the harmonic oscillator functions <rjnl » =
= ¥Ry (/b)) ( bis the oscillator length
parameter, b=(h/woM¥/Zwhere » is the oscillator
frequency and M is the nucleon mass), we
write eq. (1) as

[W>=:§ Gy (ENi><i|V]j><j|¥>. (3)

We define the basis states|k>(k=i,j)accord-
ing to eq. (2) of ref./%.

In principle, the sums in eq. (3) contain
an infinite number of terms. We take the
first N,(Nj) of them for the sum over i(j).
We do not demand that N; =N. . The reason
is that the sum over i may turn out to be
saturated easier than the sum over j . The
equality N, =N. would just mean waste of the
computer time'when performing the sum over

i numerically.

Now we transform eq. (3) into the system
of homogeneous equations for the coeffici-
ents c, =<k|¥> '



N N .
e =-i=£l Z<kIG,E)D><ilVIi>e kLo - (4)
It is immediately seen that the problem of
solution of eq. (1) is simplified conside-
rably. In eq. (4} the potential energy matrix
<iJVv|j> is the same as in the DEM method.
hkere we use the Eikemeier-Hackenbroich poten-
tial/1/, This potential has the core of
= 800 MeV and reproduces satisfactorily the
nucleon-nucleon phase shifts in the singlet-
even and triplet-even states up to 300 MeV
and the binding energy of the deuteron.

We restrict ourselves to the trinucleon
symmetric § -state. In this case the matrix
element of the Green function G,(E) between
the oscillator states [i> and |k> is

a . » 2
<k|Gy®i> =% (-n% %2
5 hnht [(1+8  H1as , . V2
L2z PR I
{ even : (5)
x<nll, nzg’ol'i!'nzl>< n f.nZP,O!nl [ ,nzl >F Jw,a).

0,0
1 2

The sum in eq. (5) 1is restricted by the
conditions

n+n +L=0 +n +( =0
1 2 1 2

2 (6)
n’+n’ +0 =h’+n’ 4l =2,
172 17 e 2

The numbers of the oscillator quanta Q
and Q’ are related to the states |k> andli>,
respectively. The sum over i in eq. (4) is
different from zero, only if the selection
rule



l_ ) ‘= N
> (Q+Q" ) +€ 4" =even (7)

is satisfied. Due to this restriction about
one half of the terms is ruled out.

The symbols of the type <'?,ﬁ? Lin# nt >
stand for the Moshinsky tran?fér%giioﬁ'c3é¥—
ficients .. .

62,0
; i e v, s, o, ii

The function F“l“r"%rﬂlnz-»n, w,a) (in
our caser=2 andtl=‘lz=? ) is the r -dimensional
integral

phled 0w -

3 nz...nr sy By -l
T . . -
weo o (ILR: 5 (BOR 4 (b )p2 (dp, ) (8)
2 =1 40 R"t'k ke TR
Eofofm({ L) )
(% p
k=]

In eq. (8) by *(k=t2..pare the absclute
values of the Jacobi momenta of the (r+1)-
body problem/!%and

r

2)4a2
k

2 _ 2K :

a or (9

For the practical calculations the follow-
ing integral representation of the function
F is useful .

?llén.Pr
F.. . ..., ., (o,
BBl ,n]' n’an’

2

r .
. N TG snie +3)
| k k k 2

o Ve . c ., 3
1 )i+ 43 y/2
[kg ot Tin +€+ > YT n +Ek + > )y
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T

kél( N +nk' )

= —a2 z r . . . . ] 1
ﬁsze T 3¢LF(—%‘ﬂk;—%—%-75;1—:;)'
E(x&+n'+f+——)
k=1 k k9 110)
(1+2) '

Here I"(«) and Fle,B;y;x) are the gamma and
hypergeometric functions /1%, respectively.

In order that the system of equations, eq.
(4) be solvable, the condition :

N;
Det|, fx <k|GEi><i| V[j>[=0, jk=l..N.. (11)

must hold. This equation defines the energy
eigenvalues of the problem.

3. RESULTS AND DISCUSSION

3.1. The three-nucleon binding
cnergy

We found numerically the lowest energy
eigenvalue as the function of three non-
linear parameters b,N; and N; . The results
are presented in tables 1 and 2.

The convergence for Q_,,, = 20 ( N, = 67)
is similar to the case when Q,,, = 16 (tab-
le 1). It is seen from table 1 that the sum
over i in eq. (4) is saturated for N; = 53

(18 oscillator quanta).

In table 3 we present the results derived
within the DEM method for the same potenti-
al/N/ (see also ref./t3/ ). The comparison of
tables 2 and 3 shows that the convergence
in the binding energy for the LS equation
is better.



Table 1
The triton ground-state energy -g (in MeV)
from cq. (4) as a function of the number N;
of the intermediate states |i» and of the
oscillator length b (in fm); the dimension
of the determinant is 41 ( Quax = 16).

b 57 41 45 49 53

.7 6.38 6.31 6.37 6.40
.8 6.42 6.47 6.50 6.51 6.51
.9 6.33 6.38 6.37 6.35

Table 2
The triton ground-state energy Epnj, (in MeV)
from eq. (4) as a function of the number N;
of the basis states corresponding to the
total number of oscillator quanta Q,,, ;b =
= 0.8 fm and the number of intermediate
states]i> , taken into account, N; = 53
(18 oscillator quanta).

N. (g ) 41(16) 67 (20)

] max

-Enin 6.51 6.65




Table 3

The triton gorund-state energy E,;, (in MeV)

from the DEM method as a function of the

total number of oscillator quanta Q,, ;b =
= 0.9 fm

Qmax 16 20 24 28

~Epin  5.93 6.40 6.64 6.76

The other investigations of the triton
ground-state energy E_;, with the potential
used here give 6.98 MeV /1%, 7.00 MeV/'%/ and
7.03 MeV /1%/,

Strayer and Sauer/¥ estimated that due to
the lack of convergence their computed
binding energy was about 0.5 MeV too small
than the extrapo'ated ground-state energy
(this extrapolated value is in agreement
with the value from other calculations).Here
we see, that using the super-soft-core poten-
tial, the rate of convergence in the DEM
method is better.

3.2. The three-nucleon wave function

Solving eq. (4) for the coefficients ¢,
we obtain the wave function of the problem

N,
(o> -—ifll G ®]i>d, 12)
with \
& = = <i[V]j> ¢, . (13)
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The coefficients c; are also restricted by
the normalization of the function |¥>.

In the coordinate representation, the
wave function from both the LS equation and
the DEM method is of the form .

¥ (X oxy) ;k g V2 itz ° e
X +Xg) = ( ) X, Y (x )Y*. (x )
255 % 148, wpnyfa(da)t/2t0 1 tm 2
M %o
teven

x<n.?.nf,0{nf, n r>[.'. (x,,x 001, 1), (14)
1 2 1 2 nln2 1'72 2 2

In eq. (14) N = N; for the wave function
from the LS equation and N, =N, for the DEM
method. The sums overk=(n:g)and(QhJ)are
restricted by the conditions of eq. (6);
the coefficients D, =-(2/%w)d,with d, from
eq. (13) for the LS equation. For the DEM
method Dy result from the diagonalization
procedure. Further,6(8,T)is the spin-isospin
wave function. We chopsg the dimensionless
inter7a1 coordinates X, ,x, according to
refs./10.3/

I
1 vz 1 %2 (15)

At last for the wave function from the
LS equation

tf o =Tel (%,.k 32 M, (16)
N " 0 %%

1"



where

22 4%2
0 LTS LN -
z -
G ().&],'x :z)=Ne Z e 2(14+22)
na, 17 notn 29043
(1+2z) 1 2
[ -2 [ -2 (17)
cle 2 (2L L. 2 (22,
i } - 452 2 ] -422
and
3 '- ' |é .p
nmn !
N - 2 (%) .
2 .ot 3... 3 : % %) (18)
i+ P+ (nsf+2)
1 9 2 2

a
The function L, W is the Laguerre polyno-
mial/12/. For the DEM method

y . 1,502,249 1 P
? .. ¢ - . A 02 L, P e—
L. Ogux)=6, (x . xi0=Ne? 1 2L 2GAHL, 2 (:2),
nn n_. o n ] o 2
) "2 B9 1

(19)

withN from eq. (18). .

It is the factorexpl-(x*+x)/2] in eq. (19)
which dictates the asymp%ogic behaviour of
the wave function from the DEM method and
forces it to go down too rapidly. In eq.
f17) the effect of this factor is reduced by
the denominator (1+2z).

Consider now the asymptotics of the func-
tion 1% (x ,x ) from eqs. (16)-(18)

o0 1 2
. a2 2

X.x)=fe 3 L2 22,52

100 (xl,xz) Ofe 2(l+2z()1+2z)3, P -x1+x2. (20)
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After some simple transformations we
obtain

er 2E %

° ) (21)

I" (% ,x) = — , a =(-
00 r 2 p5/2 o

Generally it can be shown that the func-
tion from the LS equation (eqs. (14), (16)-
{(18)) has the asymptotic form, eq. (21).
The proof will be given elsewhere.

The asymptotic shape of the typeexpt-ap)/p
for the trinucleon bound-state function was
derived from the Faddeev equations by Mer-
kuriev/4/ (true three-body asymptotic form).

It follows that the wave function build
up here from the LS equation is more correct
than that obtained by the DEM method (eqgs.
(14), (19)). Consequently, the convergence
in the binding energy calculations is also
better (see tables 2 and 3).

My thanks are te Dr. M.Gmitro, Dr.L.Maj-
ling and Dr.J.Revai for useful discussions.
The help in programming by E.D.Fediunkin is
also acknowledged.
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