СООБЩЕНИЯ
 OБ bEAИHEHHOTO
 ИНСТИТУТА
 ЯАEPHЫX
 ИССЛЕАОВАНИЙ

$$
\triangle Y E H A
$$

THE GENERALIZED SYMMETRICAL JACOBIS' COORDINATES

FOR THE NON-RELATIVISTIC
MANY-BODY PROBLEM

E4-10737

I.Lukáč

THE GENERAUIZED SYMMETRICAL JACOBIS' COORDINATES FOR THE NON-RELATIVISTIC MANY-BODY PROBLEM

Лукач Н.

- Обобщенные симметричные коордннаты Якобч для нерелятнвистской звдачи многнх тел

В работе введены обобщенные симметрнчные координаты Якоби для нерелятивнстско月 системы многих тел с разлачными массами. Эти коордннаты позвопяют исключить центр ннерцин системы тел таким образом образом, что оставщаяся часть кпасскческого иля квантовомеханнческого гамнльтониана симметрпчна относительно переставовок всех төл.

Работа выполнена в Лаборатории төоретнческой фнзикв ОНЯИ.

Lukáč I.
E4 - 10737
The Generalized Symmetrical Jacobis' Coordinates for the Non-Relativistic Many-Body Probiem

The generalized symmetrical Jacobis" coordinates for tho non-relativistic many-body problem are introduced. These cuordinates permit the elimination of the centreof -mass of the system in such a way that the remaining part of the Hamiltonian (classical or quantum-mechanical) is symmetrical in regards to the permutation of all particles.

The investigation has been perofrmed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute Ior Nuclear Research. Dubna 1977

The classical and quantum-mechanical many-particle problem is a problem which has been very attractive for a great number of investigators for many jears. In spite of the principle difference of the classical and the quantum-mechanical non-relativistic many-particle problem there is a general feature in the solution of these two problems. Such a common festure of the mentioned problems is the elimination of three degrees of freedom connected with the motion of centre-of-mass of the many-particle system and the introduction of some new independent coordinates. Let's suppose that the many-particle system contains an N number of different mass particles which we shall denote as $m_{1}, m_{2} \ldots m_{N}$, where $m_{1} \geqslant m_{2} \geqslant \ldots \geqslant m_{N}$. The system of N particles has $3 N$ degrees of freedom. The main task of the classical or quantum mechanics of the N free or interacting particles consists in the elimination of cencre-ofmass of the system.

It is well known that the problem of the elimination of the centre-of-mass for the three-particle system was solved for the first time by C.G.J. Jacobi in his memoire $/ 1 /$ in 1843. At the present time these (relative) coordinates are called the Jacobis ones for the three-body problem. These coorsinates were generalized by 4 . Allegret in his work ${ }^{\prime 2 /}$ for the case of N bodies in 1875.

The clasaical system of the N free. particles is characterized by two quantities: the kinetic energy T_{0} and the moment \vec{T}_{0} in the following form

$$
\begin{equation*}
T_{0}=\frac{1}{2} \sum_{i=1}^{N} m_{i} \dot{\vec{R}}_{i}^{2}, \quad \vec{m}_{0}=\sum_{i=1}^{N} m_{i}\left[\vec{R}_{i} \times \dot{\vec{R}}_{i}\right] \tag{1}
\end{equation*}
$$

where the point over vectors \vec{F}_{i} indicates the time derivation. The Jacobi coordinates for the in-particle system having the obvious geometrical meaning are introduced as following ${ }^{3,4 /:}$

$$
\begin{gathered}
\vec{r}_{0}=m_{0}^{-1} \sum_{i=1}^{N} m_{i} \vec{R}_{i}, m_{0}=\sum_{i=1}^{N} m_{i}, \\
\vec{r}_{a}=\vec{R}_{\alpha+1}-\left(\sum_{\beta=1}^{\alpha} \quad m_{\beta} \vec{R}_{\beta}\right)\left(\sum_{\beta=1}^{\alpha}, m_{\beta}\right)^{-1}, \\
\alpha=1,2, \ldots N=1,
\end{gathered}
$$

where \vec{r}_{0} is radius-vector of the centre-of-mess of the system, the coordinate \vec{r}_{a} represents the vector connecting the centre-of-mass of the subsystem of particles with the numbers $1,2, \ldots \alpha$ and the particle with the number $\alpha+1$. The inverse transformation to the one expressed by (2) is:

$$
\begin{aligned}
& \vec{F}_{i}=\vec{r}_{0}-\sum_{k=1}^{N}\left[m_{k+1} \vec{r}_{k}\left(\sum_{j=1}^{k} m_{j}\right)^{-1}\right]+ \\
& +\left(\sum_{k=1}^{i-1} \quad m_{k}\right)\left(\sum_{j=1}^{i} m_{j}\right)^{-1} \vec{r}_{i-1}
\end{aligned}
$$

The classical energy E_{0} of N particles interacting by means of the potential $V\left(\vec{R}_{1}, \vec{R}_{2}, \ldots \vec{R}_{N}\right)$ may be expressed by means of the Jacobis' coordinates (2) as:

$$
\begin{align*}
& E_{0}=\frac{1}{2} \sum_{i=1}^{N} m_{i} \dot{\vec{R}}_{i}^{2}+V\left(\vec{R}_{1}, \vec{R}_{2}, \ldots \vec{R}_{N}\right)= \\
& =\frac{1}{2} m_{0} \dot{\vec{r}}_{0}^{2}+\frac{1}{2} \sum_{a=1}^{N-1} \mu_{\alpha} r_{\alpha}^{2}+V\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N-1}\right) \tag{3}
\end{align*}
$$

The quantities μ_{α} in the formula of the kinetic energy (3) have - in the present case - the following simple form:

$$
\mu_{\alpha}^{-1}=m_{\alpha+1}^{-1}+\left(\sum_{\beta=1}^{\alpha} m_{\beta}\right)^{-1} \text {, i.e. } \mu_{\alpha}=m_{\alpha+1}\left(\sum_{\beta=1}^{\alpha} m_{\beta}\right)\left(\sum_{\beta=1}^{\alpha+1} m_{\beta}\right)^{-1} \text { : }
$$

The principal defect of the Jacobis' coordinates entered in the form (2) is connected with this fact that they are not symmetrical in regards to the permutation of all particles. It is a very serious defect because,e.g., the quantum-mechanical solutions $\psi_{[E]}\left(\vec{R}_{1}, \vec{R}_{2}, \ldots \vec{R}_{N}\right)$ of Schrbdinger's equation for N-particle problem

$$
\left[-\frac{\hbar^{2}}{2} \sum_{i=1}^{N} m_{i}^{-1} \frac{\partial^{2}}{\partial \vec{R}_{i}^{2}}+V\left(\vec{R}_{1}, \vec{R}_{2}, \ldots \vec{R}_{N}\right)-E\right] \psi_{[E]}\left(\vec{R}_{1}, \vec{R}_{2}, \ldots \vec{R}_{N}\right)=
$$

$$
=\left\{-\frac{\hbar^{2}}{2}\left[m_{0}^{-1} \frac{\partial^{2}}{\partial \vec{r}_{0}^{2}}+\sum_{a=1}^{N-1} \mu_{a} \frac{\partial^{2}}{\partial \vec{r}_{a}^{2}}\right]+V\left(r_{1}, r_{2}, \ldots r_{u-1}\right)-E\right\} \tilde{\psi}_{[\epsilon]}\left(\vec{r}_{4}, \vec{r}_{1}, \vec{r}_{2}, \ldots \vec{F}_{u-1}\right)=0
$$

must have the certain symmetry in regards to the perautations of all particles. Since the Jecobis' coordinates (2) haven't got the necessary symmetry in regard to the permutations of the particles we have to restore this symmetry later on, in the wave functions by means of the summarizing of the solutions with respect to the permutations of particles. However the dealing with such sums is very difficult and unpractical in most caaes.

A quite natural question appears in connection with the fact: whether it is possible to find such a (linear) transformetion of the radius-vectors \vec{R}_{i}, so that the new coordinates would be fully symmetrical in regards to the permutations of all
particles - (as it analogically takes place for the coordinate of the centre-of-ma.3s of system) - in that case we should work with the right symmetry coordingtes from the very beginning. There is 9 positive answer to the above-mentioned question. It is possible to eliminate the centre-of-mass of N-particle system in such a way that the remaiming part of the classical or quan-tum-mechanical Hamiltonian is symmetrical in regard to the permutation of all particles. We shall call these coordinates as the generalized symmetrical Jacobis' ones.

```
Thegeneralimeda symmetricamldaco-
bis, coordinntes.
```

In connection with the dealing we nentioned above we are going to introduce the generalized symmetrical Jacobis' coordinates \vec{r}_{0} and $\vec{r}_{\boldsymbol{\lambda}}(\boldsymbol{\lambda}=1,2, \ldots N-1)$ as the following linear transformation of radius-vectors $\overrightarrow{\mathbf{R}}_{i}$:

$$
\begin{equation*}
\vec{r}_{0}=m_{0}^{-1} \sum_{i=1}^{N} m_{i} \vec{R}_{i}, \vec{r}_{\lambda}=\sum_{i=1}^{N} e_{\lambda}^{i} \vec{R}_{i} . \tag{4}
\end{equation*}
$$

The N (N-1) unknown coefficients $e_{\lambda}^{\frac{i}{\lambda}}$ in (4) are only some non-dimensional functions of the masses of the panticles, i.e.

$$
e_{\lambda}^{i}=e_{\lambda}^{i} \quad\left(m_{1}, m_{2}, \ldots m_{N}\right)
$$

It is well-known that the task of the determination of the coefficients $e_{\boldsymbol{\lambda}}^{i}$ in (4) is underdetermined because for $N(N-1)$ coefficients only the $\frac{1}{2} N(N-1)$ conditions exist which we can receive from the form of the transformation of kinetic energy
and moment in (1) ${ }^{+/ / 3 /}$. To eliminate (or better to restrict) this arbitrariness we shall demand the coefficients e_{λ}^{i} to have a certain symmetry in regards to the change of the masses of particles, namely, let the mutual substitution $m_{j} \rightarrow m_{k}$ in the coefficients $e_{\lambda}^{1}, e_{\lambda}^{2}, \ldots e_{\lambda}^{N}$ lead to the transformation:

$$
\begin{equation*}
e_{\lambda}^{j}-e_{\lambda}^{k}, \quad e_{\lambda}^{i}=\text { const, for } i \neq j, k . \tag{5}
\end{equation*}
$$

Substituing the transformation (4) to the formuls (3) we receive the $\frac{1}{2} \mathrm{~N}(\mathbb{N}+1)$ following (non-independert) conditions for $e^{\frac{j}{2}}$:

$$
\begin{equation*}
\sum_{\lambda=1}^{N-1} \mu_{\lambda} e_{\lambda}^{i} e_{\lambda}^{k}=m_{i}\left(\delta_{i k}-m_{k} \cdot m_{0}^{-1}\right), i, k=1,2 \ldots N \tag{6}
\end{equation*}
$$

From the conditions (6) by means of their summarizing we may deduce an important relation, namely

$$
\begin{equation*}
\sum_{\lambda=1}^{N-1} \mu_{\lambda}\left(\sum_{i=1}^{N} e_{\lambda}^{i}\right)^{2}=0 \tag{7}
\end{equation*}
$$

As all the quantities μ_{λ} (which represent the masses of some fictious particles) in (7) are positive, hence the ($N-1$) conditions follow:

$$
\begin{equation*}
\sum_{i=1}^{N}: e_{\lambda}^{i}=0, \quad \lambda=1,2, \ldots N-1 \tag{8}
\end{equation*}
$$

[^0]The conjitions (8) pernit us to find the elements of inverse transformation to (4). We signify the determinant of the transformation matrix (4) in terms of Δ, i.e., we put

$$
\Delta=m_{0}^{-1} \cdot\left|\begin{array}{lllll}
m_{1} & m_{2} & \cdot & \cdot & \cdot \\
e_{N}^{1} & e_{1}^{2} & \cdot & \cdot & \cdot \\
e_{1}^{N} \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
e_{N-1}^{1} & e_{N-1}^{2} & \cdot & \cdot & \cdot \\
e_{N-1}^{N}
\end{array}\right| .
$$

Since the conditions (B) must be carried out, we remark that all (N-1) $\times(N-1)$ subdeterminants Δ^{i} of determinant Δ made up from coefficients e_{λ}^{i} can be expressed in terms of Δ, i.e.,the following relation holds:

On the other hand, the subdeterminants $\Delta_{\boldsymbol{\lambda}}^{i}$ obtained from the determinant Δ by cancelling isth column and $(\lambda+1)$-th row maj be expressed in terms of $\mu_{\boldsymbol{\lambda}}, m_{i}$ and elements $e_{\boldsymbol{\lambda}}^{i}$. Indeed, we get:

The relation (9) may be proved very easily by using the condoLions (6). We remark, too, that the determinant Δ^{-1} of the inverse transformation matrix is expressed by means of determirant \triangle as

$$
\Delta^{-1}=\frac{\mu_{1} \mu_{2} \cdot \cdot \mu_{N-1} \cdot m_{0}}{m_{1} m_{2} \cdot \cdots m_{N}} \Delta,
$$

and, hence

$$
\Delta^{2}=\frac{m_{1} \cdot m_{2} \cdot \cdot m_{N}}{\mu_{1} \cdot \mu_{2} \cdot \cdot \mu_{N-1} \cdot m_{0}}
$$

Having the subdeterminants $\Delta_{\boldsymbol{\lambda}}^{i}$ we have as a matter of fact the elements of the inverse transformation matrix.

Therefore, the inverse transformation to (4) is following:

$$
\begin{equation*}
\vec{R}_{i}=\vec{r}_{0}+m_{i}^{-1} \cdot \sum_{\lambda=1}^{N-1} \mu_{\lambda} e_{\lambda}^{i} \vec{r}_{\lambda} . \tag{10}
\end{equation*}
$$

Substituting the expression(10) into the kinetic energy form in (1) we again immediatly find that the following corditions for the coefficients e_{λ}^{i} must be satisfied:

$$
\begin{equation*}
\sum_{i=1}^{N} e_{\lambda}^{i}=0 \text {, and } \sum_{i=1}^{N} m_{i}^{-1} e_{\lambda}^{i} e_{\gamma}^{i}=\mu_{\lambda}^{-1} \delta_{\lambda y} \tag{11}
\end{equation*}
$$

We shall now suppose that the ccofficients e_{λ}^{i} have the following simple form:

$$
\begin{equation*}
e_{\lambda}^{i}=\frac{A_{\lambda}}{a_{\lambda}-a_{i}} \tag{12}
\end{equation*}
$$

where the parameters $a_{i}=$ sil $_{i}^{-1}$ (inverse masses), and 2 ($i+j$) unknown quantities A_{λ} and a_{λ} are some symatrical functions of the parameters $a_{1}, a_{2}, \ldots{ }_{N}$, i.c., masses of all particles. The simple form of the coefficients in (12) possesses all the recessary properties given in (5) in regarde to the perautetions of all N particles. The quantities A_{λ} and α_{λ} must be determined from those conditions which also satisfy the coefficients e_{λ}^{i}.

First of all, the coefficients e_{2}^{i} must satisfy conditions (8) and, therefore the following must holds:
$\sum_{i=1}^{N} e_{\lambda}^{i}=A_{\lambda}{ }_{i=1}^{N}\left(a_{\lambda}-a_{i}\right)^{-1}=A_{2} P_{N}^{\prime}\left(a_{\lambda}\right) \quad\left[p_{N}\left(a_{\lambda}\right)\right]^{-1}=0$,
where we introduced the notation $P_{N}(\alpha)$ for a polynoxial of the N - th degree

$$
\begin{equation*}
P_{N}(a)=\sum_{i=1}^{N}\left(a-a_{i}\right)=\sum_{k=0}^{N}(-1)^{k} \quad g_{k} \quad \alpha^{N-k} \tag{13}
\end{equation*}
$$

and $P_{N}^{\prime}(\alpha)$ is the first derivation with respect to α of $P_{N}(\mathbb{\alpha})$, i.e.,
$P_{N}^{\prime}(x)=\frac{d}{d a} \sum_{i=1}^{N}\left(\alpha-a_{i}\right)=P_{N}(\alpha) \sum_{i=1}^{N}\left(\alpha-z_{i}\right)^{-1}=$ $=\sum_{k=0}^{N-1}(-1)^{k}(N-k) \quad g_{k} \quad \alpha^{N-k-1}$.

The quantities $g_{k}\left(g_{0}=1\right)$ in (13) are the slementary algebraic summetrical polymonisls made up from the parameters $a_{1}, a_{2}, \ldots a_{N}$. If we now put

$$
\begin{equation*}
P_{N}^{\prime}(\alpha)=0 \tag{14}
\end{equation*}
$$

the conditions (8) are fulfilled. We designate the roots of the algebraic equation (14) of ($N-1$) degree in terms of $a_{1}, a_{2}, \ldots a_{N-1}$. It is essy to show that for the case of all different maases all the roots a_{λ} are real, positive and different, where the following relations hold:
$a_{1} \leq \alpha_{1} \leq a_{2} \leq \alpha_{2} \leq \ldots \alpha_{N-1} \leq a_{N}$. In oddition the second conditions in (11) for $\lambda \neq y$ may be rewritten in the following form.
$\sum_{i=1}^{N} a_{i} e_{\lambda}^{i} e_{y}^{i}=A_{\lambda} A_{y} \sum_{i=1}^{N} a_{i}\left[\left(a_{\lambda}-a_{i}\right)\left(a_{y}-a_{i}\right)\right]^{-1}=$
$=A_{\lambda} A_{y}\left(\alpha_{\lambda}-\alpha_{y}\right)^{-1}\left[\alpha_{\lambda} P_{N}^{\prime}\left(\alpha_{\lambda}\right)-\alpha_{y} P_{N}\left(\alpha_{y}\right)\right]=0$
and it is clear that they are fulfille? autcmatically. On the other hand for $\lambda=y$ from the second conditions in (11) we obtain:
$\mu_{\lambda}^{-1}=\sum_{i=1}^{N} a_{i}\left(e_{\lambda}^{i}\right)^{2}=A_{\lambda}^{2} \sum_{i=1}^{N} a_{i}\left(a_{\lambda}-a_{i}\right)^{-2}=$
$=-A_{\lambda}^{2} \alpha_{\lambda}\left\{P_{N}^{\prime \prime}\left(a_{\lambda}\right) \quad\left[P_{N}\left(a_{\lambda}\right)\right]^{-1}+\left[P_{N}^{\prime}\left(a_{\lambda}\right)\right]^{2}\left[P_{N}\left(a_{\lambda}\right)\right]^{-2}\right\}$,
where $P_{N}^{\prime \prime}(\alpha)$ is the second derivation of $P_{N}(\alpha)$ with respect tc α. Since $P_{N}^{\prime}(\alpha)=0$ the relation (15) determines the unknown quantities A_{2} which are equal to the following irpression:

$$
\begin{equation*}
A_{\lambda}= \pm\left[-\frac{P_{N}\left(\alpha_{\lambda}\right)}{\mu_{\lambda} a_{\lambda} P_{N}^{\prime \prime}\left(\alpha_{\lambda}\right)}\right]^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

The sign before the square root in (16) has no meaning and for the definiteness we choose the positive one. Thus, we have determined A_{λ} and $0_{0} \boldsymbol{\lambda}$ in the coefficients e_{λ}^{i} in (12) by means of (14) and (16), and we can write them in the following explicit form:

$$
\begin{equation*}
e_{\lambda}^{i}=\operatorname{sign}\left(a_{\lambda}-a_{i}\right)\left[-\frac{p_{N}\left(\alpha_{\lambda}\right)}{\mu_{\lambda} a_{\lambda}\left(a_{\lambda}-a_{i}\right)^{2} p_{N}^{\mu}\left(\alpha_{\lambda}\right)}\right]^{\frac{1}{2}} . \tag{17}
\end{equation*}
$$

The coefficients e_{λ}^{i} in the form (17) contain the wasses μ_{λ} which were undetermined till now. These masses however cannot be determined from the form of the kinetic energy in (4). For the determination of masses μ_{2} we must make use of some other conditions following (for example) from the concrete form of the potential $V\left(\vec{r}_{1}, \vec{r}_{2} \ldots \vec{r}_{N-1}\right)$. Without loss of generality we can suppose for convenience, all uasses gre equel, i.e. .

$$
\mu_{1}=\mu_{2}=\ldots \dot{H}_{N-1}=\left[m_{1} m_{2} \ldots m_{N} m_{0}^{-1} \Delta^{-?}\right]^{\frac{1}{N-1}} .
$$

There is also some other way to receive the simple connection between $\mu_{\boldsymbol{\lambda}}$ and $\boldsymbol{\alpha}_{\boldsymbol{\lambda}}$. The lengths of the vectors $\vec{r}_{\boldsymbol{\lambda}}$ in (4) are arbitrary and we can "normalize" them by mears of normalizing the lengths of the vectors with the components $e_{\lambda}^{1}, e_{\lambda}^{2}, \ldots e_{\lambda}^{N}$. Using the relations mentioned ghove we have for $\lambda \neq \nu$:
$\sum_{i=1}^{N} e_{\lambda}^{i} e_{y}^{i}=A_{\lambda} A_{y}\left(a_{\lambda}-a_{y}\right)^{-1}\left[P_{N}^{\prime}\left(\alpha_{\lambda}\right)-P_{N}\left(a_{y}\right)\right]=0$, and also for $\lambda=y$:

$$
\sum_{i=1}^{N}\left(e_{\lambda}^{i}\right)^{2}=A_{\lambda}^{2} \sum_{i=1}^{N}\left(a_{\lambda}-a_{i}\right)^{-2}=\left(a_{\lambda} \mu_{\lambda}\right)^{-1}
$$

so that we can write:
$\sum_{i=1}^{N} e_{\lambda}^{i} e_{\nu}^{i}=\left(\alpha_{\lambda} \mu_{\lambda}\right)^{-1} \delta_{\lambda \nu}$.

If we choose the normalization in (18) equal to one, we have $\alpha_{\lambda} \mu_{\lambda}=1$, i.e., $\mu_{\lambda}=\alpha_{\lambda}{ }^{-1}$. Thus, in the given case we received a simple connection of the fictive masses $\mu_{\boldsymbol{\lambda}}$ in terms of the masses m_{i}. However it should be noted once again that such choice of the normelization is not obligate and the dependence μ_{2} on m_{i} is determined by the concrete physicsl problem.

Finally we also note that the form of the moment \mathbb{M}_{0} of the N -particle system in (1) can be easily expressed by means of the generalized symineifical Jacobis' coordinates (4), too, in the following way:
$\vec{M}_{0}=\sum_{i=1}^{N} m_{i}\left[\vec{r}_{i} \times \dot{\vec{r}}_{i}\right]=m_{0}\left[\vec{r}_{0} \times \dot{\vec{r}}_{0}\right]+\sum_{\lambda=1}^{N-1} \mu_{\lambda}\left[\vec{r}_{\lambda} \times \dot{\vec{r}}_{\lambda}\right]$.
conclusion

The problem formulated in the beginning is solved. The Jacobis' coordinates having the necessary properties with respect to the permutations are found. The introduction of the generalized symmetrical Jacobis' coordinates (4) does not solve, of course, still yet the problem of the N interacting particles; it solves only the particular problem of the N free particles. The solution of such a problem is alao of great importance, firgt of all, in the quantum mechanics, where the solutions of many-particle Schrb-
dinger's equation must have a certain parity in regards to the permutations of the particles.

Note shall be taken to the particular cases of the introduced Jacobis' coordinates, when two (or more) masses are equal. In this case our coordinates for N particle system reduce to the coordingtes of the analogic type but with a less number of particles. The rorm of the reduced coordinates Jepends on the sequence of the limited transitions in the system. The explicit form of the symmetrical Jacobis' coordinates for $N=3$ is considered in paper ${ }^{15 /}$.

The symmetrical elimination of the centre-of-mass of N particle system allows one to formislate a whole series of new and interesting problems. For example we can easily convince that the following formula holds

It means that the quantum-mechanical problem with a harmonic oscillator type potential can be solved ocgplately. There are some other potentials being of interest from the physical point of view which permit the total solution of equations of the motion. It is known that in the nuclear physics the method of K - harmonics is worked out. Basing on the generalized symmetrical Jacobis' coordingtes we can construct K-haraorics, too, $r-3$ these K-harmonics will possess the useful properiies with respect to the permutations of the particles. These and some other problems will be worked out in the future. The author of this paper vishos to thenle the group of physicists of the Theoretical Department of the Institute of

Fhysics of the Elovak fcademy of Sciences, especially Ir. J. Lánik, Dr. M. Nagy and Jr. B. Mamojks for all their numerous discusstons and their useful advices.

References:

1. C.G.J. Jacobi, Journ. flur reine und angew. Math. 26, 115 (1843).
2. M. Allegret, Jcurn. de math. pures et appl.

1, 277 (1875).
3. C.L. Charlier, Die Mechanik des Himmels.
W. de Gruyter and Comp., Serlin und Leipzig, 1927.
4. D.I. Elochintsev, Quantum Mechanics. D. Reidel pub. comp., Dordrecht, 1964.
5. I. Lukáč, JINF preprint P2-9928, (1976), (in russian).

[^0]: +/ This arbitrariness is used obly when conditions for the usual Jacobis' coordinates with their geometrical meaning are introduced.

