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OapHhie KoppenSIUHH B c!f!epH'IeCKHX l!llpax 

PaCCMOTpeHO BnHSIHHe y'leTS OCTSTO'IHblX B3SHMOlleHCTBHH THna8 -CHn 

H B3SHMoaeAcrsHSI faycca na csepxreKy'!He csoAcrsa c!f!epH'IeCKHX Siaep. 

CpasnenHe c npH6nHll<eHHeM G=const noKaaano, 'ITO no Mepe yaaneHHSI or 

DOBepXHOCTH <l>epMH y'leT OCTSTO'IHblX B3SHMOlleHCTBHH YKB38HHOI'O THUB 

SIBflS!eTCSI He06XOllHMbiM, 3ro npHBOllHT K yny'IWeHHIO CXOllHMOCTH
1 

T,e, 

yMeHhwaeTCSI aasHCHMOCTb peaynhraros or 'IHCna y'IHTbiBaeMbiX B pacqerax 

OllHO'ISCTH'IHblX COCTOSIHHH, 8bi'IHCneHHSI cne~trpOCKODH'IeCKHX ljlaKTOpOB H tPSK

TOpOB ycHneHBSI B a -pacnaae noKaaano, 'ITO npH6nall<eHHe G=const npusoaHT 

X nepeoueHxe 9TBX BenH'IHH, 8 pac'!eTSX 6binB HCDOnb30BSHbl OJlHO'IBCTH'IHhle 

COCTOSIHHSI· B DOTeHUHane Caxcona-8yJlCS, MSXCHMSnbHOe 'IHCnO KOTOpbiX 

onpeJlenSinocb BhiCoroA H nponHuaeMOCTbJO norenuuanbnoro 6apbepa ( nponnuae 

>.~ocr& - O,l,'lro coorsercrsyer WHpHHe YPOBHSI 50 xaB) .AnanHa peayn&raros 

Bhi'IHCneHHA DOKS3an, 'ITO 8 -CHnbl H B3BHMOJleHCTBHe faycca JlBIOT DO'ITH re 

ll<e 3HS'IeHHSI Bbi'IHCnSieMblX BenH'IHH H D09TOMy QnSI npOCTOTbl pSC'IeTOB 
MOlKHO OI'pBHH'IHTbCSI 8 -CHnSMH, 

Pa6ora BhJUOnnena B na6oparopHH TeopeTH'IeCKOH ljlH3HKH OH.fiH. 

Coo6Ule&Be 06wuaeaaoro MHCTBTYT& •.11epaw.x accneJIOB&HBi. Jly6Ha 1977 

Bang E., Baznat M.I., Gareev F.A. 
Pairing Correlations in Spherical 
Nuclei 

E4 - 10691 

The influence of the residual interactions of the 8-
type and of the Gauss potential on the superfluid proper
ties of spherical nuclei is considered.The comparison with 
the approximation Gz const has shown that with increasing 
distance from the Fermi surface the above residual inter
actions become more important. This improves the conver
gence, i.e., the dependence of the results on the number 
of the calculated single-particle states.The calculation 
of the spectroscopic factors and a-strengths has shown 
that the approximation G=const results in the overestima
tion of these quantities.We have used the single-particle 
states of the Saxon-Woods potential the maximal number of 
which was defined by the height and the potential barrier 
penetration (penetration is 0.1, which corresponds to the 
width of 50 keV). The analysis of the calculated results 
has shown that the 8 -interaction and the Gauss potential 
give almost the same values of the calculated quantities. 
Therefore, for the sake of simplicity we may restrict our~ 
selves to the 8 -interactions. 
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1. INTRODUCTION 

The introduction of pairing correlations 
of superconductive type is an important step 
towards the understanding of the low-lying 
states of deformed and shperical nuclei, of 
level densities, electromagnetic transition 
probabilities and other effects, connected 
with the structure of these states. 

In this method, as introduced in the 
works of Soloviev/1/, Belyaev /2/,Kisslinger, 
and Sorensen/3/ the Hamiltonian is written 
in the form 

H=,;;/v a~ava- ~ I< v1 v 2 a 1a2 IGiv {v; a '1a; > x 
(1) 

xa+ a+ a,,a,, 
vlal v2a2 v2a2 vial 

where fv are the single particle energies 
and a+<a } are the creation (annihilation) 

s s 
operators of the corresponding states. 

To describe a system of ~ particles it is 
convenient to use a variational method of 
solution, i.e., minimizing the energy with 
a wave function of the type given below, (3) , 
changing the Hamiltonian to 

H' = H-AN, (2) 

where the Lagrangian multiplier A allows for 
the possibility of fixing the average par
ticle number to N. 
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The variational solution is according to 
the method of Bardeen, Cooper, and Schrief
feriW written in the form 

+ + I 'I'= II (u + v a a ) 0>, 
11 v vv+v- (3) 

where \0> is the particle vacuum and u 11 and 
vv are the variational parameters subject 
to the condition u~+v~= 1. 

Equivalently, the ground state of the 
form (3) may be described as the vacuum of 
the quasiparticle creation (annihilaticrn) 
operators a+(a) defined by the Bogolubov trans
fa rma t ion /S/ 

+ 
ava= u vav-a + av v ava 

+ + a = u a +av a va v v-a v va 

( 4) 

For the u 11 and v11 , the variation with the Ha
miltonian (1) leads to the system of equa
tions /I, 2/ 

6. =IG ).1 ,v, 
II v' VII II II 

N = I 2v 2 
(5) 

II 
II 

with 

2 1 {v-A 2 2 
v =-<1- ), u =1-v , 

II 2 y(€ -A)2+6.2 
II II 

(6) 

- ~ 2 
f=f -kG ,11 ,, 
II II v' VII II 

(7) 

4 

where 

G ,=<v +v -IG\v'-v'+>-<v+v-\0\v'+v~> 
VII 

determine the pairing effects whereas the 
residual pairing term 

(8) 

G ,=G ,+<v+v'+\G\v+v'+>-<v+v'+\0\v'+v+> (9) 
VII VII 

contributes to the self-consistent nuclear 
field. 

2. Ttm RESIDUAL INTERACTION 

In the majority of the works, where the 
influence of pairing correlations on diffe
rent nuclear properties is investigated, it 
is suggested that the short range part of the 
nuclear forces, which leads to the pairing 
correlations can be represented by a-func
tions and that their matrix elements between 
the wave-functions of the average nuclear 
field can be approximated by a constant 

G , = G . (10) 
VII 

This leads to great simplifications in the 
system of equations (5)-(7), i.e., the gap 6. 
and the chemical potential are determined 
by 

~=I 1 
G II v (f- - A ) 2 + 6. 2 

(11) 

N = I2v ~. 
II 

The properties of low-lying nuclear sta
tes, which are connected with pairing, are 
generally investigated by means of these 
equations/6/,where, at least in medium heavy 
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and heavy nuclei, the pairing of neutrons 
and of protons are treated as two independent 
problems, and the corresponding coupling 
constants GE and GN are adjusted to fit the 
experimental data. 

In this article we are investigating the 
influence of the choice of residual inter
action on the pairing phenomena of spherical 
nuclei. ~e use interactions of the form 

v 1 = v 0 1 ° (;1 -; 2 ) ' 

-> -> 2 2 
V = V exp!-( r - r ) I r I , 

2 02 1 2 0 

(12) 

(13) 

and the results of the calculations are com
pared with those obtained in a constant G. 

When the simple pairing method of ref /1.2,3/ 
is replaced by more realistic calculations, 
a number of problems is met/7/.The expressions 
(11) will give coupling constants, which de
pend on the number of single particle states 
taken into account. 

When this number is increased, and ~ is 
kept fixed, G converges to 0. A similar lack 
of real convergence is met with the o -forces 
whereas any calculation with realistic forces 
obviously leads to a finite result. The root 
of the difficulty seems to be two-fold. Part
ly, the number of bound single particle sta
tes of real nuclei is finite. Even if the 
resonances should also be taken into account, 
the constant matrix element approximation 
should therefore lead to a finite result. 
Partly, a "realistic" interaction will cor
respond to finite energies, even if a basis 
with infinitely many bound states, like the 
harmonic oscillator,is used. 

6 

Another problem concerns the localization 
of the correlation effects. If we consider 
such reactions, which are apt to reveal the 
pair correlations, like two-particle transfer, 
the amplitude gets its main contributions 
from a region outside the nuclear radius. 
Since all bound states fall off exponential
ly in this region, admixtures of high lying 
single particle states ("unbound"), even if 
the corresponding v-coefficients may be 
small, can play a large role in these trans
fer amplitudes. However, a realistic esti
mate of the wave function is difficult with 
the harmonic oscillator basis where the 
states fall off in an unreal is tic way with 
increasing distance from the nucleus. For 
this reason, the Sturmian basis functions 
were introduced in the calculations of trans
fer form factors for the case of two partic
les outside a closed shell~/.similar calcula
tions are under pr~paration for the many 
body problem, but the complications connected 
with the weight-orthogonality of the Stur
mian functions mean, that a comparison with 
simpler calculations is also needed, even 
if the asymptotic form of the wave function 
in this case is not completely correct. 

From the above considerations, it is 
obvious, that it is desirable to investigate 
a model where both the potential and the re
sidual interactions are finite, non-singu
lar functions of the coordinates, and where 
continuum admixtures are taken into account 
approximately by using single particle reso
nances along with the bound states. 

The residual interactions must in prin
ciple, of course, include tensor forces, etc., 
but since our aim is not so much a complete-
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ly realistic calculation, but rather to see 
the effects of refining certain approxima
tions, we shall limit ourselves in the two 
interactions 

~ ~ 

VI = V o I o (r I - r 2 ) ' 
~ ~ 2 2 

V2 ='b2exp{-(!<r1 - r 2 > lr 
0 

I. 

The results of the calculations are then 
compared to those obtained with a constant 
G. To solve the system of coupled equations 

1 
~ . = I G .. , u . , v . , = - I ---=====::~::::;=---

1 j'' JJ J J 2 j' _I (- \ ) 2 A 2 v i . , -I\ + u . , 
J J 

N = I (j + V2><1 -
-ti -.\ 

- 2 2 
y(t.-.\) +~. 

J ] 

we start by calculating the matrix ele
ments G .. ,. 

JJ 

3. CALCULATION OF THE MATRIX ELEMENTS 
OF THE RESIDUAL INTERACTION 

(13a) 

Our basis states are the single particle 
states of a }\oods- Saxon potential 

V(r) = -
vo 

1 + exp ( r- R 0 I a) 

and of spin orbit term 

1 dV 'it~ V (r) = - K - -- (t: a) 
s. o. r dr 

for the Coulomb potential protons 
2 3 r 1 ( r ) 3 R (Z-De - - - - -- ' r S o 

V c (r) = 1' I 2 R 0 2 R 0 
1 , r > R

0
• 
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(14) 

(15) 

(16) 

The parameters of the potentials are given 
in ref. 191. 

The basis functions are written 
0 0 

'~'e· =R e· <r>'!le· ce,¢). (17) 
n 1 n J 1 

The residual interactions are now expanded 
in multipoles 

V(r 12 > =I fL(r
1
r 2 ) PL (cos8

12
) 

L 

for the a -force 
V
01

<2L+1) o(r
1
-r

2
) 

f L (r I r 2) = ~:o__ __ 

4rr r
1
r

2 

(18) 

(19) 

and the matrix elements have the simple form 

<(jlj1)J =OIVo1°<;I_f'2>l<j2j2)J =O> 

(20) 

V (2j 1 +1H2j 2+ 1) f R 2 (r) R 2 . (r)r 2dr 
-v 0 • n e J - 01 8rr nlLIJI 2 2 2 

for the Gaussian interaction 

1 L 2r r 
fL(r1 r 2>= V02 expl--<ry+rpl<2L+1H jL(i 1 2 ) (21) 

r2 r 2 
0 0 

and the matrix elements are given by the 
expression 

-c: _-; ) 2 I r 2 

< (j j )J = 0 IV e 1 2 0 
I (j j )J = 0 >=I F V , 

I 1 02 2 2 L L L 
(2 2) 

where the radial part is 

~L =ffridr 1r~dr 2 R e . (r 1>R e . (r 2)fL(r1r 2>R e . (r 1) x(23) 
nl 1l1 nl 1 11 n2 212 

X R e . (r 2) 
n 2 2 1 2 
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and the angular part is 
L (2j2+l> ~ 2 

VL=(-1) I I <j2~LOii1~>. (24) 
(2j 1 + 1) 

In contrast to the a-force, where the 
radial part of the matrix elements does not 
depend on L,the radial and angular part of 
the matrix elements of the Gaussian force do 
not separate. The Klebsch-Gordan coeffi
cient shows, that the maximal L which contri
butes to a certain matrix element is deter
mined by 

L = f + f max 1 max 2 max 

The matrix elements calculated for a number 
of single particle states are shown in 
tables 1 and 2. Obviously, both for the a
force and for the finite range force, the 
diagonal elements are the larger. The non
diagonal elements going to quasistationary 
states are 5-10 times smaller than the diago
nal ones. 

To compare the matrix elements of the 
a -force and the Gaussian with the constant'G 
approximation, we take for these interaction 
a Geff (average matrix element), determined 
by 

ff 
V0 I,<<jj)J=OIG .. ,l<i'i '}·J=O> 

G e = U JJ 

I (j + ~) <i , + ~ ) 
jj , 

The calculated pairing properties (~,A,u,v) 
for the a-force and the finite range force 
will differ from those for a constant G main
ly for such states where the matrix elements 
differ strongly from G eff . 

10 
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Table 1 

Matrix e 1 em en t s _<_(~jj:...;..)J.:....=_O.:....::I 'V~o~J:::a:::<r~~=-=;::2>~1<:Li '.2.i....:.')~J=O>~ ( MaV) 

3 
V

0 
= 250 Me V/F 

2p)/2 1,:3/2 

2p)/2 .))) .08) 
1,:3/2 .16) 
2d5/2 
1hli/2 
)ei/2 
2n/2 
111)/2 

Matrix elements 

y(j+~)(j'+~. 

2d5/2 1hii/2 )s1/2 2'!7/2 11 t)/2 

.2)2 .078 .21) .14) .075 

.oeo .15) .068 .oao .1)8 

.22) .on .1)0 .175 .070 
.148 .06) .070 .140 

.748 .11) .060 
.168 .065 

.1)8 

Table 2 
-> -> 
r1-r2 2 

< (jj)J=U I v 02 e -l-r 0-l r (j'j ~J=O> 
--------~~--~~-----------(MeV) 

v' (j + ~ )(j , + ~.) 

r0 = 1.5 fm, V02 = 25 MeV 

2p)/2 1ff)/2 2d5/2 Ibii/2 )ei/2 2n/2 Ii1J/2 

2p)/2 .)78 .07) .228 .068 .115 .105 .060 
1,:3/2 .180 .06) .158 .105 .058 .1)0 
2d5/2 .228 .058 .09) .158 .05) 
Ihii/2 .148 .040 .048 .1)0 
)a1/2 .720 .090 .0)8 
n'T/2 .155 .048 
111)/2 .123 
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4. Trill DEPENDENCE OF THE COUPLING CONSTANT 
ON THE NUMBER OF CONFIGURATIONS 
TAKEN INTO ACCOUNT 

As mentioned above, in the case of con
stant matrix elements, coupling constant de
termined from a given ~ converges to zero, 
when the number of single particle states 
taken into account grows beyond all limits. 

~e have, for a number 6£ nuclei with dif
ferent single particle schemes, calculated 
the coupling constants for the case of con
stant matrix elements, of a-force, and of 
Gaussian force,, taking into account 10, 15, 
20 and 25,single particle states. The un
bound states were limited by the requirement, 
that the width should be below 50 keV, cor
responding to a penetration .01 . The re
sults of the calculations are shown in fi
gure 1 and in table 3. 

It is seen, that the coupling constants 
for the a-force and the Gaussian force depend 
much less strongly on the number of levels, 
than the constant G. Nevertheless, the depen
dence is not negligible, and it is even not 
clear from the figure, whether a convergence 
is completely reached. The similarity bet
ween the Gaussian and the a-force curves 
shows, that the convergence problem with the 
a -force which is due to admixtures of high
lying states are of an importance here, and 
that as far as energies are concerned, the 
Gaussian force can be well approximated by 
the a-force with properly adjusted coupling 
constant. 
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• • • • • • • • • f 

-------- 2 

3 

0.05 L____J~---L---~---~----
10 15 20 25 

number of s totes 
Fig. 1. The dependence of Geff on the number 
of states taken into account. Dotted curve: 
G = const. Dashed curve: a -force, full 
curve: Gaussian force. 

5. Ttffi PAIRING PROPERTIES OF 
Ttffi CONFIGURATIONS 

The ~,u and v for configurations in the 
neighbourhood of the Fermi surface, for the 
three different types of residual interac
tions are shown in tables 4-6.It is seen 
that the ~ calculated with the different 
interactions are very different, and that ~. 
also differs strongly from state to state.

1 

The maximal magnitude ~max is 0.830 in the 
Gaussian case and 0.842 in the a-force case, 
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Table 3 
The dependence of ~ (in MeV) on the number 
of levels taken into account with fixed 
G eff = 0.1 MeV (for the 8 -force (I I) and the 
Gaussian force (I II)). In the cases II and 
III we give the values of ~ for the nearest 
level below and above the Fermi level, as 
well as for the latter (marked with*). 

G-const. 
5 -f'orce 

Gaussian 
interacti
ons 

Number of' levels taken into account 

12 17 22 

.509 .583 .7)9 

.415 .487 .617 
• 603 • .674* .847* 
.524 .582 .737 

.442 .525 .659 

.672 * • 729. .861* 

.443 .5}2 .692 

Table 4 

27 

.853 

.680 
• 94"6 • 
.629 

.7)8 

.927 

.778 

The value of ~ , u and v for the proton 
system with Z=86 with G= const. 

State 

lf7/2 
2d5/2 
lhll/2 
2d3/2 
3el/2 
lh9/2 
2g7/2 
li13/2 
2g7/2 
Jp3/2 

14 

t!. 

.95 

us v~ 

.a93 .996 

.106 .994 

.140 .990 

.165 .986 

.848 .531 

.960 .280 

.972 .234 

.994 .109 

.994 .106 

.996 .086 

~ 
! 
I 

i 
I 

Table 5 

The values of ~, u and v as well as the 
leading matrix element for the proton system 
with Z= 86 with 8-force and V0 =202 MeV/F 3 

State Ll· uj vj G-jJ. 
.J 

1f7/2 .842 .059 .998 .137 

2d5/2 .619 .058 .998 .060 

1hll/2 .765 .082 .997 .123 

2d3/2 .635 .088 .996 .063 

3s1/2 .55) .078 .997 .052 

1h9/2 .821 .822 .569 .1)5 

2g7/2 .584 .978 .207 .061 

1il)/2 • 708 .981 .194 .112 

2g9/2 .60? .997 .077 .063 

3p3/2 .478 .998 .057 .048 

whereas the corresponding minimal magnitudes 
are 0.270 and 0.478. In tables 5,6 are also 
shown the matrix elements of the interaction 
between the Fermi level configuration and 
the other configurations. There is a clear 
correlation between the magnitudes of these 
matrix elements and ~i' This also explains, 
why the ~. of pisitive energy states are 
considera~ly smaller than those of the bound 
states. A comparison between the tables 
shows, that the approximation of constant 
matrix element is very good, when we are 
mainly interested in properties of configura
tions in the neighbourhood of the Fermi level. 
The further we come from the Fermi level, the 
more the results of the calculations with 
constant G with 8 -forces and with forces of 
finite range differ from each other. This 
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Table 6 

The values of 6., u and v as well as the 
leading matrix element for the proton system 
with Z =86 with a Gaussian residual inter
action. 
V 0 = 2 8 • 8 MeV, r 

0 
= 1 • 5 fm. 

State 

lf7/2 
2d5/2 
lhll/2 
2d3/2 
3sl/2 
lh9/2 
2g7/2 
lil3/2 
2g9/2 
3pJ/2 

I!.· 
J 

.83 

.43 
• 51 
.47 
.)8 

.76 
• J6 
.43 
.41 
.27 

uj 

.057 

.040 

.05) 

.063 

.051 

.800 

.990 
-992 
-999 
.999 

vj 

.998 

.999 
-999 
.998 
-998 
.606 
.141 
.127 
.051 
.OJJ 

6Jl' 

.293 

.054 

.092 

.096 

.054 

.277 
• 039 
.070 
.088 
.039 

can lead to large differences in determina
tion of spectroscopical factors from trans
fer reactions, and of a-decay strengths, etc. 

To illustrate this claim, we give two 
examples: 1) Calculation of a -decay strength. 
The inclusion of pair correlations in the 
description of a-decay leads to a change of 
the decay probability by a factor /6,10/ 

2 W=<D ·D), 
p n 

where 

D =Iuv. 
n,p v v v 
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I 

We get the following results for DP 
and Dn in our 3 cases 

G const a-force Gaussian force 

DP 
Dn 

8.49 
4.8 

6.92 
3.94 

5.11 
3.22 

It is seen, that the results may change by 
a factor 3-5. 

2) Spectroscopic factors in one particle 
transfer reaction. When the interaction bet
ween quasiparticles is neglected, the spect
roscopic factor is determined by the quantity 
v 2<u 2) for each state. v 2 is given below for 
the states near the Fermi surface. 

G const a-force Gaussian force 

0.98 0.98 0.98 
0. 28 0.33 0.38 
0.079 0.045 0.020 
0.053 0.036 0.017 
0.012 0.0064 0.0025 

The differences are obviously very large. 

6. CONCLUSION 

The results of the calculations of the 
pairing properties with residual interactions 
of o-type with finite range show small diffe
rences from the cases of constant G for 
states near the Fermi surface. The differen
ces are particularly large for states far 
from the Fermi surface. Particularly, the 
constant matrix element approximation seems 
to lead to an overestimate of spectroscopic 
factors and a-strengths contributions from 
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high lying configurations. In some cases, 
the pairing gaps of neighbour nuclei calcu
lated with G=oon~are very different, whereas 
the experimental gaps vary in a smooth 
way/l~Jn such cases the estimation may be 
improved by introducing the more defined 
methods. ' 

The variational method of Bogolubov used 
here is of course in itself an approxima
tion. Particularly when other properties than 
energies, like spectroscopic factors, etc., 
are calculated, it may be in need for radical 
improvements. These will, again, mainly af
fect the configurations far from the Fermi 
level/ 1 ~, however not in the same way as 
those mentioned here. 
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