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I. INTRODUCTION

The radial shape of the realistic shell-
model potential for a spherical or deformed.
nucleus is usually specified in agreement
with the empirical evidences that nucleon
density is nearly constant inside the nuc-
leus and decreases rapidly to zero in the
thin surface layer. As an example of such
a definition, one may refer to the Woods-
Saxon type of the potential for the defor-
med nucleus (refs./1'2/) and to the poten-
tial obtained by folding an effective two-
nucleon interaction with a uniform sharp-
surface pseudodensity’/3/

New experimental data such as electron
scattering with large momentum transfer
indicate that there exists a deviation of
proton density from the Fermi distribution/4/
The theoretical calculations performed in
the framework of both the shell model /5/
and Hartree-Fock theory’®/ also lead to the
non-monotonic dependence of nucleon den-
sity on the radial variable and potential
inside the nucleus. In this work we propose
a method for determining the radial depen-
dence of the shell-model potential. The
shape of the nucleus is considered to be



fixed (spherical or deformed). The potential
is determined by some effective nucleon-
nucleon interaction, which is briefly dis-
cussed in section 2.

Following ref./”/our aim is to define
the potential in such a way that 1t should
depend smoothly on the number of nucleons
unlike the constrained Hartree-Fock poten-
tial. As a result, the newly defined poten-
tial may be used to calculate the properties
of a number of nuclei of the same shape.

A smooth variation with particle number
is achieved by the statistical self-consis-
tency procedure’3/. This means that the po-
tential should be consistent with the sta-
tistically averaged independent particle
density, the ?xact definition of which is
given in ref.g/(see section 2).

In ref./1%/ the direct numerical calcula-
tion shows that if in the Strutinsky type
calculations one uses the self-consistent
potential, the convergence of series in the
powers of the shell corrections to the nuc-
lear density becomes considerably better.
Hence one may expect that wusing the statis-
tically averaged potential in calculating
nuclear masses, surface shapes and fission
barriers will improve the existing theore-
tical predictions.

The definition of the potential and
description of the effective nucleon-nucleon
interaction is given in sect.2. In sect.3
a multi-parametric family of functions is
introduced, which is used for an approximate
description of the statistically averaged
density. As illustrative examples, the po-
tentials calculated for a number of nuclei
of spherical shape and for the deformed nuc-
leus 2#%py are presented in sect.4.
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2. DEFINITION OF THE STATISTICALLY AVERAGED
SELF-CONSISTENT POTENTIAL

For a given proton (neutron) density
Pp(ny the single-particle potential is defi-
ned as a variational derivation of the nuc-

lear potential energy Epol@p,%)
5E ,, »
U =Pt rep,n. (1)
op

r

For the energy of nuclear interaction
which, together with the Coulomb energy E
constitutes the total potential energy E

/1,2y ‘3 pot
the wusual’'" decomposition to two terms
is used, i.e.,

Coul »

E[ml'ENM+ELR+ECDM . (2)

These terms arise from the short-range (Eyy)
and 1ong—range(El¥components of nuclear for-
ces. /

In the local density approximation/“’m/

ENMhas the form

ENmsfer(%,;L%

where WUg,p") is assumed to be a result of
the nuclear matter calculations/!3-15/ |

The dependence of E on the density is

LR
as follows
-.—1— - _’—_’ *
ELR 2[ drld?2 E v ([rl r2|,P)
p.n (3)

)— pr,&l)l,

* pr(?l) [pr' (r2



which is formulated so that Ejq gquals zero
in the case of the constant dens;ty. The gf—
fective nucleon-nucleon interaction used in

eq. (3) 1is given by v sy
-T2
. . ”')e_(—JxT )
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v =v, =3(a +b k

ad r'’r im] i F
(4)

rr’ p.+p_. 1/3

For the details of the definition and
the meanings of the coefficients incorpora-
ted in eq.(4) the reader is referred to
ref./10/,

In addition to the potential (1), the.
spin-orbit potential V° was phenomepologl-
cally taken into account but the partlcu%ar
choise of VvV’ does not effect subgtantlally
the self-consistency procedure. It is con-
venient to define V,® in terms of the deri-
vatives of the density Here v, was
taken proportional to the linear combinations
of the derivatives of the proton and neutron
densities as proposed in ref.

K2 L3 sl
v, —K(E'V Pt VPF) p

(5)

r=n,p; T =p,0;

where K is a parameter to be adjusFed by com-

paring the experimental and theoretical po-

sitions of the single-particle levels. .
The solution to the Schrddinger equation

with the single-particle potential V, +V>°
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was found by the method described in refs./'?’
The eigenvalues 62 and eigenfunctions ¢ [ (P
obtained were then used in the calculations
of the statistically averaged nucleon densi-
ty

P, @)= 27 (g ()] rpon, (6)

where n (¢",) are the occupation numbers in
the Strutinsky method 9.

The newly determined density (6), in ge-
neral,differs from'the initial one used in the
definition of the potential (1). The potential
is considered to be statistically self-con-
sistent if both densities coincide. To find
such a potential one may in principle use
the same iterative procedure but the comple-
xity of the calculation remains practically
the same as in the Hartree-Fock procedure.
Moreover, for the deformed nucleus one has to
introduce some constraints. To simplify the
calculation the density is sought in a rather
special family of functions. The shape of the
nucleus is considered to be fixed and the va-
riations of only the radial dependence of the
density is allowed in the self-consistency
process. I'or the specification of the shape
the usual formalism is used which is develo-
ped in the theory of nuclear fission for the
definition of the shell model potential/!=318.19/
Only axial-symmetric shapes are considered.

The "radial'" variable ¢() in the de-
formed nucleus is defined as a minimal distan-
ce from the given point r’ to an arbitrary
point on the nuclear surface. The distance ¢
1s considered to be negative inside the nuc-
leus and positive outside it. This distance
1s found numerically. In the simplest case of
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the spherical nucleus f =rgpy -R ,.where foph
is a radial variable in the spherlcal_coor—
dinate system and R is a quclear radius. Ge-
nerally speaking, the gradient of ¢(7) may
have a discontinuity on the symme?ry axis,
but the matrix elements of the §p1n—orb1t
potential (5), which is proportional to ve ,
are finite. In the case of the.surface shape
with large curvature the function E(ﬂ may
have a discontinuity of the derivatlves not
only on the symmetry axis. But we will res~
trict ourselves to the smooth enough shapes,
which are only interesting from a‘phyS}cal
point of view and involve no diff}cultles of
the kind. The coordinates specifyypg the po -
sition of a point on the surface mﬁsgonst
will be referred to as '"angular' variables;
the exact definition of these will not be
required further. o
Now we are in a position to formulate
the main approximation. We will neglect the
dependence of the statistically avergged.den—
sity on the angular variables. Our aim will
be to study its radial dependenge. In this X
approximation pr(ﬂ depends_on r _only'throug
¢() . It is noteworthy that a similar appro-
ximation has actually been 1ntroduceq }n-the
theory of nuclear fission.in/EEflgﬁﬁlnltlon
of the shell model potential 180 or ge-
nerating pseudodensity/34 In the latter case
the pseudodensity is constant if €<0 and
equals zero if £ >0 _ .
The dependence of pr on Ea}s approxima-
ted by some of the functions p;*(f)from the
multi-parametric family of functions descri-
bed in the next section. The parameters that
specify p,*V(f) are found using the.lgagt— _
square-fit method, i.e., by the minimization

W

of the integral of the square of the devia-
tion Ap, =p["(0)-p, (). The integral is taken
over the nuclear volume with a constant
weight factor. Such an approximation may be
interpreted as an averaging over the angular
variables. Then p7¥(?) may be called the
average value of density prG) at a given
distance ¢ from the nuclear surface. By
substituting the so obtained function p3¥()
in the formulae (1) and (5) for the defini-
tion of the new potential we will close the
iterational circle. For a first approximation
a function from the same family is also to
be taken. The repetition of the procedure
till the coincidence of the initial and fi-
nal density obtained using eq.(6) results
in the potential to be referred to as a sta-
tistically self-consistent one and which is
proposed to be used as a shell-model poteu-
tial.

The problem of finding the self-consis-
tent solution in our approximations is redu-
ced to the problem of finding a fixed point
in a space of finite dimensionality with pa-
rameters as coordinates. For the solution of
the reduced problem one may use not only the
conventional methods of nuclear physics.

The approximation used may be improved
by introducing the dependence of the parame-
ters that specify the function on the angu-
lar variables, but the approach becomes rather
involved in such a case.

3. RADIAL DEPENDENCE OF THE STATISTICALLY
AVERAGED NUCLEON DENSITY

An approximate expression for the den-
sity of both protons and neutrons will be
sought in the form (the index specifying pro-
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tons or neutrons is omitted)
pV(r,z) =

f(r,2)/a
1+TI(0(r,2)=d)/(R+d)] /(1 +e ) (7)

0 {{(r,z)/a ’
l+e

where p, 1is a scale factor, R is the radius
of the sphere with a volume equal to that of
the region inside the nucleus, a is the dif-
fuseness parameter, f(r,z) is the distance
from the point with cylindrical coordinated
r and z to the surface of the nucleus (see
the preceeding section), T(x) is the poly-
nomial function of x equal to zero at x=0.
The coefficients of T(x) are the parameters
defining the radial dependence. The factor
of T(x) 1is introduced to reduce the correla-
tion of the parameters with R and a (see
discussion of this point 1in ref./4/).
Parametrization (7) in the case of one
parameter and without the factor of T(x),
i.e. T(x) =px 2, is known as a '"wine bottle

shape'. In the case of two parameters, i.e.,
if

T(x)=px? +qx 2, ' (8)
. . /20,21/ .
it was used in refs. for the descripti-

on of the density of a spherical nucleus, ¥
being equal to r_,

To specify the radial dependence fur-
ther one should take into account higher
terms in the decomposition (8).

The reduction of correlation between
the polynomial coefficients is achieved by
the expansion of T(x) in terms of some ortho-
gonal polynomials

10

M
T(x)= % p Q (). (9)

where
—_ (0,2
Qn(x)z—\/1+2nxpn_l (—2x-1), (10)
(a,8) . . . /22/
and P, " () is the Jacobi polynomial . The

polynomials Q,(x) are orthonormal on the seg-
ment —-1<x< 0 that corresponds to the nuc-
lear interior -Rx< fxd The number of
terms in the sum (9) is chosen according to
the desired accuracy of the approximations
of density (6). But at very large M the strong
correlation of the parameters makes the
least-square method ineffective. The p; pa-
rameter appears to be too strongly correla-
ted with the rest of the parameters and it
was taken to be identically equal to zero.
The d parameter permits expansion of the re-
gion of the orthogonality of the Q polyno-
mials slightly beyond the nuclear surface

f= 0.

4. EXAMPLES OF THE CALCULATED SHELL-MODEL
POTENTIAL

The shell model potential for 2 '°Pb cal-
culated with different choices of the short-
range effective interaction (SEI) is shown
in fig.1l. For comyarison, the usual Woods-
Saxon potential/z/ is also shown. It is seen
that the variation of SEI results in a change
of the global features of the potential. The
diffuseness of the nuclear surface is espe-
cially sensitive to the variation considered.
The oscillations of the density inside the
nucleus have a close correspondence to each
other for different SEI. The results suggest

11
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F%g.l. The statistically averaged self-
consistent proton (to the left) and neutron
(to the right) potentials in 2%Pb for diff;-
rent effective interactions. The solid and
dash-dotted curves correspond to variants I
and II ?f the short-range forces from ref/M/
respectively, the dashed curve 1is variant.C
from ref./1¥, The long-range forces were
taken from ref.”'®/ ., The dotted line repre-

sents the usual Woods-Saxon potential with
parameters from ref.’/23/,
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that after making a new fit of the SEI impo-
sing the condition of the good reproduction
of the known global features of the potential,
one may study the special variations of the
potential because they are not very sensitive
to the details of SEI. The parameters of SEI
are known to be so far chosen by fitting the
results of the nuclear matter calculations

to the experimental data.

The calculated spherically symmetric
potentials for a number of nuclei over the
whole Periodic Table are shown in fig.Z.
Variant II of SEI is taken from ref./”/.Th9

X - X 16/
long-range interaction recommended in ref.
was chosen (see eqs.(3,4)) , which 1is diffe-
rent from that used in ref./!4#/. Moreover, in
this paper the effective nucleon mass inside
the nucleus was considered to be equal to
that in vacuum. Due to this variation, the
global features of the potential shown in
fig.2 are slightly different from those des-
cribed in ref.’!*, the difference amounting
to several per cent.

It is seen from fig.2 that the oscilla-
tions of the potential in all the nuclei con-
sidered are, in a good approximation, nearly
the same function of the distance from the
border of the nucleus. To see this easily
the figure was drawn so that the borders of
all nuclei coincide. To be more exact, for
each potential an approximating Woods-Saxon
potential was found according to the proce-
dure described in section 2 for a particular
case of M =0 . The radii of the approximating
potentials are made to coincide in fig.Z.

The differences in the functional depen-
dence of the potential near the centre of the
nuclei are not meaningful because in the

13
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F?g.Z. The statistically averaged self-
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are close to the valley of beta-stability.
The values of mass number are shown near
the curves. Variant II of the effective
short-range forces from ref./'4 ywas used.
Each curve is shifted with respect to its
neighbour vertically by 5 MeV and horizon-
tally till the coincidence of the half-
minimum radius of the equivalent Woods-Saxon
potential (the definition is given in the
text) with the vertical straight line denoted
as RWS .
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case of spherical symmetry the difference Ap,
in this region contributes to the integral
with a small weight and, as a result, the
approximation to the density (6) is the
poorest one in this region. In addition, the
property of the exact density that its deriva-
tive over r vanishes on the symmetry axis is
not built into the approximation (7).

To calculate the potentials shown in
figs. 1 and 2 an approximation (7) was used
with 14 parameters ( R and a included, and
d taken to be equal to zero). The self-con-
sistent parameters vary smoothly over the
whole Periodic Table. To accelerate the con-
vergence of the self-consistency process the
interpolated values of the self-consistent
parameters were used as initial values in
the neighboring nucleus.

Let us make it clear that the method of
determination of the radial dependence des-
cribed above is applicable to any nuclear
shape. In particular, nuclei for which the
spherical shape does not correspond to stable
equilibrium are shown in fig.2. In contrast
to the Hartree-Fock method, in our case there
is no difficulty in calculating the potential
for the nucleuswith an unclosed subshell. In
this connection it is interesting to compare
our method with the rather artificial method
of averaging over subshells used in ref. /24/
for supplementing of the definition of the
self-consistency procedure.

A variation of the potential with defor-
mation was studied in the nucleus 2#°Pu. The
shape of the mnucleus was taken to be a Cas-
sinian oval with a distance between the foci
specified by the parameter ¢ (see ref./!%for
details). The nucleon-nucleon interaction

15



was chosen as in spherical nuclei discussed
in connection with fig.2. The parameter d
was equal to 2.0 fm.

From the results shown in fig.3 it fol-
lows that the conclusion drawn earlier for
the spherical nuclei that the potential in
good approximation may be considered to be
a universal function of only the distance
from the surface is also valid for the defor-
med nucleus. It is seen from fig.3 that this
function varies very weakly with deformation.
It should be noted, however that the accuracy
of the approximation, which can be measured
as a mean squared deviation Ap, (see sect.2)
is slowly deteriorating with deformation,
especially for protons.

As a hypothesis, let us say that such
a deviation of the proton density p_(f) from
the averaged value p2V(f) (see sects.£ and 3)
is connected with the distortion of the nuc-
lear field by the Coulomb potential inasmuch

as the latter has less deformed equipotential

surfaces that the former.

One may get some improvement of the ap-
proximation by introducing different surface
shapes for the protons and neutrons ; however

this point has not been studied quantitatively.

The noticeable diminution of the oscillation
of the potentials as functions of z , if
0<z<4 fm, r is small and ¢ is close to
0.5 (see fig.3), is a consequence of the fact
that in this domain the distance between a
point and the nuclear surface is almost inde-
pendent of the position of the point.
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Fig.3. The statistically self-consistent
proton (to the left) and neutron (to the
right) potentials in 2**Pu. The cuts of the
potential along the z-axis at very smallr
(tr=0.5 fm, the lower five curves) and along
the r —axis at very small z (2z~-0.5 fm, the
upper five curves) are shown. Each curve
corresponds to different deformation which
changes within each transition from the lower
curve to the upper one at first from ¢ = 0.5
through 0.0 with a 0.1 step and then from
0.1 through 0.5 with the same step. Each
curve 1s shifted with respect to its neigh=-
bour vertically by 2.5 MeV and horizontally
till the coincidence of the nuclear border
(denoted by vertical straight line and sym-
bol Ryg in the figure). The deviation of the
neutron spherical potential (the central
curve to the right) from the universal fun-
ctional form is connected with the inaccuracy
in the approximation to the density near the
nuclear centre, which is discussed in sect.4.

17



5. CONCLUSION

A method for definition of the radial
dependence of a nuclear force potential has
been described, which permits the fixing of
the surface shape and a study of only the
radial variations of the potential. A defini-
tion is given for the radial dependence in
a deformed nucleus (see sect.2).

The potential is consistent with statis-
tically averaged nucleon density which is
further averaged over the angular variables
with the least-square-fit method (see sects.
2 and 3). The so defined radial dependence
of the potential is shown to be almost the
same (except for the small region around the
nuclear centre) for a number of spherical
nuclei and only weakly changes with deforna-
tion (see sect.4). The potential is expected
to be useful for calculations by the Stru-
tinsky method of nuclear masses, surface sha-
pes and fission barriers.

However, the effective nucleon-nucleon
interactions used in the present paper should
be slightly re-adjusted to reproduce accura-
tely the global features of the potential.

The authors would like to thank Prof.
V.G.Soloviev for his constant interest in the
work, and Dr.I.N.Mikhailov for stimulating
discussions.
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