
C31.ft{;(.... 

8-1 3 
E4 • 10588 

.lf-i-8/j,-'ff-
E.Balazs, V. V .Pashkevich 

THE RADIAL DEPENDENCE 

OF THE SHELL MODEL POTENTIAL 



2778/2-77 pr. 
azs,E. and 

E.Balazs, V. V .Pashkevich 

THE RADIAL DEPENDENCE 

OF THE. SHELL MODEL POTENTIAL 

Submitted to JI<I> 

...,"~ ... "·"''""~~ .. ~~ I ij ....-:6-~< ...... n.:._· J_II-'_! .. _T_E_K_A_ 

E4 • 10588 



EanalK E., nawKeBK'i B.B. E4 · 10588 
PaaKanbHaH aaBKCKMOCTb noTeHuHana o6ono'ie'IHOH MoaenK 

B pa6ore onHcaH cnoco6 onpeaeneHKH paaKanbHOH aaBKCKMOCTK noreH­
UKana o6ono'le'IHOH MoaenK c¢epK'ieCKoro KnK ae~opMKpoaaHHoro Hapa, oc­
HOBBHHbiA Ha npouenype caMocornacoaaHKH,B npouecce KOTopoli BBOOKTCH 
CTSTKCTK'ieCKK ycpeaHeHHSH nnOTHOCTb HyKnOHOB, ilnH OnKCSHHH nocneaHeH 
KCnonbayeTCH npH6nKlKeHKe,cyTb KOTOpOrO COCTOHT B TOM, 'ITO npeHe6pe­
raeTCH yrnOBOH 3SBKCKMOCTbiD nnOTHOCTK K K3y'iaeTCH TOflbKO ee cpeOHHH 
paaHanbHaH aaBKCHMOCTb. B pa6ore onpeaeneHo noHHTHe paaKanbHOH aaBHCH­
MOCTK B ae¢lopMHpOBSHHOM HOpe. 8 KS'ieCTBe npHMepa npKBeaeHbl peaynbTa­
Tbl pacqera noreHUKana B psme Haep c¢epH'ieCKOH ~opMbi K a Hape 240Pu 
npH pa3flK'iHblX ae~OpMSUKSIX noBepXHOCTK, 

Pa6ora BbmomieHa B na6oparopHH reopeTH'ieCKOli ~K3KKK OH.s:IH. 
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The Radial Dependence of the Shell Model 
Potential 

A method.is described for determining the dependence 
of the shell-model potential on the radial variable for a 
spherical or deformed nucleus, It is based on a self-con­
sistent procedure with statistically averaged nuc!eon den­
sity. An approximation to the density, in which an angular 
dependence of the density is neglected and only the ave­
raged radial dependence is studied, is introduced. The no­
tion of the radial dependence is defined for a deformed 
nucleus. As examples, the potentials calculated for a num­
ber of nuclei of spherical shape and for the nucleus 240 Pu 
of several deformed shapes are given. 

The investigation has been performed at the 
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Eana)l{ E., nalliKeBH'I B.B. E4- 10588 
PanHanbHBH aaaHCHMOCTb noreHuHana o6ono'!e'IHOA MonenH 

B pa6ore onHcaH cnoco6 onpeneneHHH panHanbHOH aaBHCHMOCTH noreH­
UHana o6ono'!e'IHOA MonenH c¢epH'IeCKoro HnH ne~opMHpoaauuoro gnpa, oc­
HOBBHHbtA H8 npouenype C8MOCOrfl8COB8HHH,B npouecce KOTOpOH BBOOHTCH 
CTBTHCTH'IeCKH ycpeaHeHHBH nnOTHOCTb HyKnOHOB, ilnH onHCBHHH nocneaHeK 
HCnOflb3yeTCH npH6flH)I{eHHe,cyTb KOTOporo COCTOHT B TOM, 'ITO npeHe6pe­
raeTCH yrnoaoA 38BHCHMOCTb~ nnOTHOCTH H H3yqaeTCH TOnbKO ee cpeOHHH 
panHanbHBH aaaHCHMOCTb, B pa6oTe onpeneneuo noHRTHe panHanbHOH aaBHCH­
MOCTH B aecjlopMHpOB8HHOM HOpe. 8 .KB'IeCTBe npHMepa npHBeQeHbl peaynbTa­
Tbl pacqeTa noTeHUHana a pHne gnep c¢epH'IecKoA ~opMbt H a Hnpe 240Pu 
npH pa3nH'IHb!X ne~OpM8UHHX noaepXHOCTH. 

Pa6ora Bbmomieua a lla6oparopHH reopeTH'IeCKOH ~H3HKH Olif.Rlif. 
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of the shell-model potential on the radial variable for a 
spherical or deformed nucleus. It is based on a self-con­
sistent procedure with statistically averaged nuc1eon den­
sity. An approximation to the density, in which an angular 
dependence of the density is neglected and only the ave­
raged radial dependence is studied, is introduced. The no­
tion of the radial dependence is defined for a deformed 
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I. INTRODUCTION 

The radial shape of the realistic shell­
model potential for a spherical or deformed. 
nucleus is usually specified in agreement 
with the empirical evidences that nucleon 
density is nearly constant inside the nuc­
leus and decreases rapidly to zero in the 
thin surface layer. As an example of such 
a definition, one may refer to the Woods­
Saxon type of the potential for the defor­
med nucleus (refs. /1,2/) and to the poten­
tial obtained by folding an effective two­
nucleon interaction with a uniform sharp­
surface pseudodens i tyl 31 • 

New experimental data such as electron 
scattering with large momentum transfer 
indicate that there exists a deviation of 
proton density from the Fermi distributiod4 ~ 
The theoretical calculations performed in 
the framework of both the shell model/5/ 
and Hartree-Fock theory 161 also lead to the 
non-monotonic dependence of nucleon den­
sity on the radial variable and potential 
inside the nucleus. In this work we propose 
a method for determining the radial depen­
dence of the shell-model potential. The 
shape of the nucleus is considered to be 

• 
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fixed (spherical or deformed). The potential 
is determined by some effective nucleon­
nucleon interaction, which is briefly dis­
cussed in section 2. 

Following ref!71 our aim is to define 
the potential in such a way that it should 
depend smoothly on the number of nucleons 
unlike the constrained Hartree-Fock poten­
tial. As a result, the newly defined poten­
tial may be used to calculate the properties 
of a number of nuclei of the same shape. 

A smooth variation with particle number 
is achieved by the statistical self-consis­
tency procedure/81. This means that the po­
tential should be consistent with the sta­
tistically averaged independent particle 
density, the ~xact definition of which is 
given in ref. 91 (see section 2). 

In ref / 10 / the direct numerical calcula­
tion shows that if in the Strutinsky type 
calculations one uses the self-consistent 
potential, the convergence of series in the 
powers of the shell corrections to the nuc­
lear density becomes considerably better. 
Hence one may expect that using the statis­
tically averaged potential in calculating 
nuclear masses, surface shapes and fission 
barriers will improve the existing theore­
tical predictions. 

The definition of the potential and 
description of the effective nucleon-nucleon 
interaction is given in sect.2. In sect.3 
a multi-parametric family of functions is 
introduced, which is used for an approximate 
description of the statistically averaged 
density. As illustrative examples, the po­
tentials calculated for a number of nuclei 
of spherical shape and for the deformed nuc-
1 e us 240Pu are presented in sec t . 4 . 
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2. DEFINITION OF THE STATISTICALLY AVERAGED 
SELF-CONSISTENT POTENTIAL 

For a given proton (neutron) density 
Pp(n) the single .... particle potential is defi­

ned as a variational derivation of the nuc­
lear potential energy E (p ,p ) 

pot p n 

oE not 
U • --JO--- , r - p , n. 

r o 
p r 

(1) 

For the energy of nuclear interaction 
which, together with the Coulomb energy ECoul, 

constitutes the total potential energy E ot 

the usual i 11 
•
121 decomposition to two ternfs 

is used, i.e., 

E pot "'EN~ELR+E Coul (2) 

These terms arise from the short-range (ENM) 

and long-range (E komponents of nuclear for­
LR ces. 

In the local density approximation /I 1•
121 

ENM has the form 

E "'f dt w (p , p ), 
NM p n 

where w(p ,p ) is assumed to be a result of 
the nuc 1 Jar" rna t ter calculations 113- 15/ • 

The dependence of ELR on the density is 
as follows 

E LH • ; f dr~dr2 L 
r, r 
p,n 

" <I ~ -? I , P ) * 
rr I 2 

* P,(?l)[pr, (r~)- pr,(~I )), 

(3) 
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which is formulated so that ELR equals .zero 
in the case of the constant density. The ef­
fective nucleon-nucleon interaction used in 
eq. (3) is given by ? _; 2 

5 , , , -(__:.J..__,.,:~) 
rr rr rr A 1 v , =• , ~!.(a. +b. k F )e , 

rr rr 1~1 1 1 

"rr -=•, ,,r,r'-p,n; 
r r 

kr;' .. ( PT +pL-)1:3 
2 

(4) 

For the details of the definition and 
the meanings of the coefficients incorpora­
ted in eq. (4) the reader is referred to 
ref / 161. 

In addition to the potential (1), the 
spin-orbit potential v;o was phenomenologi­
cally taken into account but the particular 
choise of V ;o does not effect substantially 
the self-consistency procedure. It is con­
venient to define V ,so in terms of the deri­
vatives of the density 191 • Here v;o was 
taken proportional to the linear combinations 
of the derivatives of the proton and neutron 
densities as proposed in ref/171 

2 ... 1 .... .... ... 
V =K(-V p +-- Vp_).[sp1, 

r 3 r 2 r (5) 

rzn,p; r-p,n; 

where K is a parameter to be adjusted by corn­
paring the experimental and theoretical po­
sitions of the single-particle levels. 

The solution to the Schrodinger equation 
with the single-particle potential V, + v,so 

6 
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was found by the method described in refs :11 '~ 1 
The eigenvalues f~ and eigenfunctions ¢[<n 
obtained were then used in the calculations 
of the statistically averaged nucleon densi­
ty 

( ,.. ~- r I T --+)!2 p r)-..:.n.k)¢ (r , r-p,n, 
T j I I r (6) 

where n. (f'.) are the occupation numbers in 
the Str'utinsky method 191 

The newly determined density (6), in ge­
neral,differs frorn'the initial one used in the 
definition of the potential (1). The potential 
is considered to be statistically self-con­
sistent if both densities coincide. To find 
such a potential one may in principle use 
the same iterative procedure but the comple­
xity of the calculation remains practically 
the same as in the Hartree-l~ock procedure. 
Moreover, for the deformed nucleus one has to 
introduce some constraints. To simplify the 
calculation the density is sought in a rather 
special family of functions. The shape of the 
nucleus is considered to be fixed and the va­
riations of only the radial dependence of the 
density is allowed in the self-consistency 
process. For the specification of the shape 
the usual formalism is used which is develo­
ped in the theory of nuclear fission for the 
definition of the shell model potential 11 - 3 •18 •191 

Only axial-symmetric shapes are considered. 
The "radial" variable f(f) in the de­

formed nucleus is defined as a minimal distan­
ce from the given point ~ to an arbitrary 
point on the nuclear surface. The distance f 
is considered to be negative inside the nuc­
leus and positive outside it. This distance 
is found numerically. In the simplest case of 

1 



the spherical nucleus e ~r sph -R , where rsph 

is a radial variable in the spherical coor­
dinate system and R is a nuclear radius. Ge­
nerally speaking, the gradient of f(r) may 
have a discontinuity on the symmetry axis, 
but the matrix elements of the spin-orbit 
potential (5), which is proportional to ~e 
are finite. In the case of the surface sh~pe 
with large curvature the function e(n may 
have a discontinuity of the derivatives not 
only on the symmetry axis. But we will res­
trict ourselves to the smooth enough shapes, 
which are only interesting from a physical 
point of view and involve no difficulties of 
the kind. The coordinates specifying the po -
sition of a point on the surface f!:f) .. const 
will be referred to as "angular" variables; 
the exact definition of these will not be 
required further. 

Now we are in a position to formulate 
the main approximation. Ke will neglect the 
dependence of the statistically averaged den­
sity on the angular variables. Our aim will 
be to study its radial dependence. In this 
approximation p <n depends. on r only through 
e(r) • It is not~worthy that a similar appro­

ximation has actually been introduced in the 
theory of nuclear fission in the definition 
of the shell model potential /l- 2

, 
18

•
19

/ or ge­
nerating pseudodensity 13 ~ In the latter case 
the pseudodensi ty is constant if e< 0 and 
equals zero if e >0 

The dependence of Pr on e is approxhla­
ted by some of the functions r;v(e)from the 
multi-parametric family of functions descri­
bed in the next section. The parameters that 
specify p,av ( e) are found using the least­
square-fit method, i.e., by the minimization 
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of the integral of the square of the devia­
tion t\p, -p;vU)-pr (r·). The integral is taken 
over the nuclear volume with a constant 
weight factor. Such an approximation may be 
interpreted as an averaging over the angular 
variables. Then p~v( 0 may be called the 
average value of density rr«> at a given 
distance e from the nuclear surface. By 
substituting the so obtained function pav~) 
in the formulae (1) and (5) for the de{ini­
tion of the new potential we will close the 
iterational circle. For a first approximation 
a function from the same family is also to 
be taken. The repetition of the procedure 
till the coincidence of the initial and fi­
nal density obtained using eq. (6) results 
in the potential to be referred to as a sta­
tistically self-consistent one and which is 
proposed to be used as a shell-model pote:l­
tial. 

The problem of finding the self-consis­
tent solution in our approximations is redu­
ced to the problem of finding a fixed point 
in a space of finite dimensionality with pa­
rameters as coordinates. For the solution of 
the reduced problem one may use not only the 
conventional methods of nuclear physics. 

The approximation used may be improved 
by introducing the dependence of the parame­
ters that specify the function on the angu­
lar variables, but the approach becomes rather 
involved in such a case. 

3. RADIAL DEPENDENCE OF THE STATISTICALLY 
AVERAGED NUCLEON DENSITY 

An approximate expression for the den­
sity of both protons and neutrons will be 
sought in the form (the index specifying pro-
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tons or neutrons is omitted) 

Pav(r,z)~ 

1+TlU(r,z)-d)/(R+d)] /(l+e 
- p ---------

0 
1 

P(r,z)/ a 
+C 

P(r,z)la 

) ( 7) , 

where r
0 

is a scale factor, R is the radius 
of the sphere with a volume equal to that of 
the region inside the nucleus, a is the dif­
fuseness parameter, e(r, z) is the distance 
from the point with cylindrical coordinated 
r and z to the surface of the nucleus (see 
the preceeding section), T(x) is the poly­
nomial function of x equal to zero at x-0. 
The coefficients of T(x) are the parameters 
defining the radial dependence. The factor 
of T{x) is introduced to reduce the correla­
tion of the parameters with R and a (see 
discussion of this point in ref. 141 ). 

Parametrization (7) in the case of one 
parameter and without the factor of T(x), 
i.e. T(x) -px 2 , is known as a "wine bottle 
shape". In the case of two parameters, i.e., 
if 

2 2 T(x),.px +qx , (8) 

/20,21/ 
it was used in refs. for the descripti-
on of the density of a spherical nucleus, x 
being equal to rsph • 

To specify the radial dependence fur~ 
ther one should take into account higher 
terms in the decomposition (8). 

The reduction of correlation between 
the polynomial coefficients is achieved by 
the expansion of T(x) in terms of some ortho­
gonal polynomials 

10 

i\ 

'J 

,, 
'J 

M 
T(x)a ~ p Q {x), 

n•1 n n 
(9) 

where 
-- (0,2) 

Qn(x)~-v1+2nxPn_ 1 (-2x-l), (10) 

(a,{3) /22/ 
and Pn (t) is the Jacobi polynomial . The 
polynomj_al s Qn(x) are orthonormal on the seg­
ment -1.$ x -;;. 0 that corresponds to the nuc-
lear interior -R~ e~d . The number of 
terms in the sum (9) is chosen according to 
the desired accuracy of the approximations 
of density (6). But at very large M the strong 
correlation of the parameters makes the 
least-square method ineffective. The p 1 pa­
rameter appears to be too strongly correla­
ted with the rest of the parameters and it 
was taken to be identically equal to zero. 
The d parameter permits expansion of the re­
gion of the orthogonality of the Q n polyno­
mials slightly beyond the nuclear surface 
e- o . 

4. EXAMPLES OF THE CALCULATED SHELL-MODEL 
POTENTIAL 

The shell model potential for 
208

Pb cal­
culated with different choices of the short­
range effective interaction (SEI) is shown 
in fig.l. For comr,arison, the usual Woods­
Saxon potential 12 1 is also shown. It is seen 
that the variation of SEI results in a change 
of the global features of the potential. The 
diffuseness of the nuclear surface is espe­
cially sensitive to the variation considered. 
The oscillations of the density inside the 
nucleus have a close correspondence to each 
other for different SEI. The results suggest 
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Fig.l. The statistically averaged·self­
consistent proton (to the left) and neutron 
(to the right) potentials in 208 Pb for diffe­
rent effective interactions. The solid and 
dash-dotted curves correspond to variants I 
and II of the short-range forces from ref ( 141, 
respectively, the dashed curve is variant C 
from ref. IISI, The long-range forces were 
taken from ref .1161. The dotted line repre­
sents the usual Woods-Saxon potential with 
parameters from ref. 1231. 

12 

f 

that after making a new fit of the SEI impo­
sing the condition of the good reproduction 
of the known global features of the potential, 
one may study the special variations of the 
potential because they are not very sensitive 
to the details of SEI. The parameters of SEI 
are known to be so far chosen by fitting the 
results of the nuclear matter calculations 
to the experimental data. 

The calculated spherically symmetric 
potential5 for a number of nuclei over the 
whole Periodic Table are shown in fig.Z. 
Variant II of SEI is taken from ref.114i.Thj 
long-range interaction recommended in ref. 

161 

was chosen (see eqs.(3,4)) , which is diffe­
rent from that used in ref./ 14/, Moreover, in 
this paper the effective nucleon mass inside 
the nucleus was considered to be equal to 
that in vacuum. Due to this variation, the 
global features of the potential shown in 
fig.Z are slightly different from those des­
cribed in ref. /l 4 /, the difference amounting 
to several per cent. 

It is seen from fig.2 that the oscilla-
tions of the potential in all the nuclei con­
sidered are, in a good approximation, nearly 
the same function of the distance from the 
border of the nucleus. To see this easily 
the figure was drawn so that the borders of 
all nuclei coincide. To be more exact, for 
each potential an approximating Woods-Saxon 
potential was found according to the proce­
dure described in section 2 for a particular 
case of M .o . The radii of the approximating 
potentials are made to coincide in fig.Z. 

The differences in the functional depen­
dence of the potential near the centre of the 
nuclei are not meaningful because in the 
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Vp [Mev] Vn[Mev] 
-10 -() 

-:20 -20 

-30 

-t.o 

-t.s 
-so ~ //IH/1 Jt-t.s 

r-50 ' 
-60 

I-60 

-so 
Rws -55 

Rws 

4 6 ~ r[fmljt-60 2 4 6 8 dfm] 

Fig.2. The statistically averaged self­
consistent proton (to the left) and neutron 
( t o t he r i g h t ) p o t en t i a 1 s i n t he n u c 1 e i 66 Zn , 
90zr IIBsn I40ce I70yb 20Rpb and 240pu that ' ' , ' ' 

are close to the valley of beta-stability. 
The values of mass number are shown near 
the curves. Variant II of the effective 
sho.rt-range forces from ref ,/I4/ was used. 
Each curve is shifted with respect to its 
neighbour vertically by 5 MeV and horizon­
tally till the coincidence of the half­
minimum radius of the equivalent Woods-Saxon 
potential (the definition is given in the 
text) with the vertical straight line denoted 
as Rws 
14 

case of spherical symmetry the difference ~Pr 
in this region contributes to the integral 
with a small weight and, as a result, the 
approximation to the density (6) is the 
poorest one in this region. In addition, the 
property of the exact density that its deriva­
tive over r vanish~s on the symmetry axis is 
not built into the approximation (7). 

To calculate the potentials shown in 
figs. 1 and 2 an approximation (7) was used 
with 14 parameters ( R and a included, and 
d taken to be equal to zero). The self-con­
sistent parameters vary smoothly over the 
whole Periodic Table. To accelerate the con­
vergence of the self-consistency process the 
interpolated values of the self-consistent 
parameters were used as initial values in 
the neighboring nucleus. 

Let us make it clear that the method of 
determination of the radial dependence des­
cribed above is applicable to any nuclear 
shape. In particular, nuclei for which the 
spherical shape does not correspond to stable 
equilibrium are shown in fig.Z. In contrast 
to the Hartree-Fock method, in our case there 
is no difficulty in calculating the potential 
for the nucleus with an unclosed subshell. In 
this connection it is interesting to compare 
our method with the rather artificial method 
of averaging over subshells used in ref. ~4 / 
for supplementing of the definition of the 
self-consistency procedure. 

A variation of the potential with defor­
mation was studied in the nucleus uopu . The 
shape of the nucleus was taken to be a Cas­
sinian oval with a distance between the foci 
specified by the parameter f (see ref.IIWfor 
details). The nucleon-nucleon interaction 
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was chosen as in spherical nuclei discussed 
in connection with fig.2. The parameter d 
was equal to 2.0 fm. 

From the results shown in fig.3 it fol­
lows that the conclusion drawn earlier for 
the spherical nuclei that the potential in 
good approximation may be considered to be 
a universal function of only the distance 
from the surface is also valid for the defor­
med nucleus. It is seen from fig.3 that this 
function varies very weakly with deformation. 
It should be noted, however that the accuracy 
of the approximation, which can be measured 
as a mean squared deviation ~Pr (see sect.2) 
is slowly deteriorating with deformation, 
especially for protons. 

As a hypothesis, let us say that such 
a deviation of the proton density Pr (r) from 
the averaged value p av(f) (see sects. t. and 3) 
is connected with th~ distortion of the nuc­
lear field by the Coulomb potential inasmuch 
as the latter has less deformed equipotential 
surfaces that the former. 

One may get some improvement of the ap­
proximation by introducing different surface 
shapes for the protons and neutrons ; however 
this point has not been studied quantitatively. 
The noticeable diminution of the oscillation 
of the potentials as functions of z , if 
0 :s z s. 4 fm, r is small and f is close to . 
0.5 (see fig.3), is a consequence of the fact 
that in this domain the distance between a 
point and the nuclear surface is almost inde­
pendent of the position of the point. 
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-30 

-40 

-50 
Rws 

-60 ~ ~ R-..s 

0 2 ~ 6 8 10 12 r[fm] 2 4 6 8 10 

Fig.3. The statistically self-consistent 
proton (to the left) and neutron (to the 
r i g h t ) p o t en t i a 1 s in 240 Pu . The c u t s of the 
potential along the z-axis at very small r 
( r, 0.5 fm, the lower five curves) and along 
the r -axis at very s rna 11 z ( z , 0 . 5 f m, the 
upper five curves) are shown. Each curve 
corresponds to different deformation which 
changes within each transition from the lower 
curve to the upper one at first from t = 0.5 
through 0.0 with a 0.1 step and then from 
0.1 through 0.5 with the same step. Each 
curve is shifted with respect to its neigh­
bour vertically by 2.5 MeV and horizontally 
till the coincidence of the nuclear border 
(denoted by vertical straight line and sym­
bol Rws in the figure). The deviation of the 
neutron spherical potential (the central 
curve to the right) from the universal fun­
ctional form is connected with the inaccuracy 
in the approximation to the density near the 
nuclear centre, which is discussed in sect.4. 
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5. CONCLUSION 

A method for definition of the radial 
dependence of a nuclear force potential has 
been described, which permits the fixing of 
the surface shape and a study of only the 
radial variations of the potential. A defini­
tion is given for the radial dependence in 
a deformed nucleus (see sect.2). 

The potential is consistent with statis­
tically averaged nucleon density which is 
further averaged over the angular variables 
with the least-square-fit method (see sects. 
2 and 3). The so defined radial dependence 
of the potential is shown to be almost the 
same (except for the small region around the 
nuclear centre) for a number of spherical 
nuclei and only weakly changes with dPfor;na­
tion (see sect.4). The potential is expected 
to be useful for calculations by the Stru­
tinsky method of nuclear masses, surface sha­
pes and fission barriers. 

However, the effective nucleon-nucleon 
interactions used in the present paper should 
be slightly re-adjusted to reproduce accura­
tely the global features of the potential. 

The authors would like to thank Prof. 
V.G.Soloviev for his constant interest in the 
work, and Dr.I.N.Mikhailov for stimulating 
discussions. 
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