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A Simple Method for Solving the Inverse
Gcattering Problem

A new method of approximate reconstruction of a po-
tential as a step function from scattering
data is proposed. The centrifugal barrier (for f¥0 ) and
Coulcmb component of interaction can be taken into
account exactly. The method admits different generaliza-
tions. Numerical calculations for checking the method
were performed.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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INTRODUCTION

The reconstruction of a potential from
scattering data can be performed by mul-
tiple solving the Schroedinger equation
(or its analogue, for instance the phase
equation) and selecting an appropriate
form of potential V(r). That means, the in-
verse scattering problem 1is to be solved
with the help of the direct one. Recent
successful results along this line have
been published in/1:2/,

- In the present paper a more direct way
is proposed to determine the shape of a poten-
tial from scattering data using the comp-
leteness relation of solutions of the
Schroedinger equation. It is known that

the Parseval equality (the completeness
relation) is also necessary to use in order
to obtain the basic integral equations of
the inverse problem theory (the Gelfand-
Levitan-Marchenko equations}* . But in the
method suggested in the present paper, the
complicated integral equations are not
required to be solved.

* The inverse problem theory has been
well developed during the last years (see
book/3/ and review article /¥ ).
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Fig.
was reconstructed from

The potential Vsu-p
50 pairs of parameters!E, ,y,} the first 13 of
which were determined by the solution of
the direct problem (with V(r) ) and other
37 were taken in quasiclassical approximation
(with a single parameter [Vdr taken from
asymptotic behaviour of EA Y.
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In the proposed algorithm of the inverse
problem solution the approximation of po-
tential V(r) by step function V_ {r) as is
shown in the figure is used. P

The advantage of an approximation of
this type is a simple analytical solvability
of the Schroedinger equation (h=1):

W)+ V()W (r)=E¥ (1);
Zm (1)
'«P (0)’01

in each intervallr; <r<r, ; ] of the coor-
dinate axis, corresponding to one step of
v , Where V {r)=const. So we have:

step step 5
—ik;r ik;r
Y(E,r; <r<r;_)=4; (E)e ! +B, (Ele Yo (2)
k,=y2m(E-V; ). (22)

If the values V; are known, the direct
problem is easily solved (see for example
the coefficients A;, Bji are determined
from the conditions of smooth sewing of
wave functions given on neighbouaring inter-
vals at the points r;_,

The solution of the inverse problem is
somewhat more complicated because besides A,,
Bi , also the unknown values V; are to be
determined. As the additional relations
for determining A;, B;, V; we use the Par-
seval equality:

/6/ )

b}

SOV ()42 fY (e, W (ko )k= B (r—r"),  (3)
n 7 0
vhere the asymptdtic behaviour of ¥ is
determined by (4). The procedure of recon-
struction of V; from the given behaviour
of the wave functionV¥ outside the interac-



tion region (the scattering phase shift is
assumed to be known) is described in sect.2
of this article. The inverse problem for-
malism is simplified in the framework of
the R -matrix scattering theory, where
instead of phase shift 8(E) as a continuous
function of energy, the discrete set of
constants: R -matrix resonance positions

E) and their reduced widthS)f ,are used
as initial parameters in the inverse prob-
lem (seect. 3).
//"The suggested method allows one to take
finto arcount exactly the additional centri-
{ fugal barrier for partial waves with angu-
‘lar momentum >0, and also the Coulomb po-
[Eential.

"7 Instead of simple rectangular steps,

the peaces of potentials of another shape
for which the analytical solution of the
Schroedinger equation is known, can be

used to approximate V(r).

Multichannel systems, as for example, the
motion of a particle in the field of tensor
forces, arc described by the system of
coupled Schroedinger equations. The in-
verse problem in this case is the matrix
seneralization of the single-channel forma-
lism.

The numerical calculations were performed
in order to verify the developed method.
The regularization following the Tichonov
tb_ory’/? was uscd for stabilizing the al-
sorithm of the potential reconstruction.



2. RECONSTRUCTION OF A POTENTIAL FROM
PHASE SHIFTS AND BOUND STATE PARAMETERS

The unknown potential is for simplicity
supposed to have a finite range a: V({r2a)=0.
The wave function ¥ outside the interaction
region has the form (we consider at first
the casel = 0 )*:
ik

Y(E,r>a)=e  —S{k)e¥ , ifE>o0, (L)

P
Y(E ,12a)=C, e ", for bound states.(L?)

- 2i8 (k)
The quantities Slk}=e ' s ko ,C, are

assumed to be known, and it is required
to determine ¥ and V for r<a.

From the continuity condition of wave
function ¥ and its first derivative ¥~
at point r=a, using the expressions for ¥
in the form (4), (4°) for r>a and (2), (2°)

for r;<r<ry =a ve get
i ik
e kT _snje o, i E>0
-ikja ikya .
AI(E)e +}31(E)e - ~a (5°
C,e " , ifE=E <0
n
ik | ikga _ (kle™ sstie *TLifE>0
Kp ~Hu? .
2™ HE=E,<0

1

The relations (S), (6} can be considered
as a system of two linear algebraic equa-
tions for the coefficients Aj,B1. Solving
(s), (6), we find, for each value E,
these coefficients as functions of the pa-

* For numerical calculations it is con-
venient to operate with real valuec and one
can take ¥ in the form: ¥ = Asin(kr+d).



rameter V; . The desired value of V| is

fixed by the Parseval equality (3) if ¥ in
the form (2} with coefficients A (E) and

B (E) expressed through V , is substituted
into {3). Tn order to avoid the integration
in (3) over the infinite continuous spec*-
rum, the Parseval equality for free waves

2 [ sinkrsinkr’ dk =8 (r=r") (7)
L)

should be subtracted from eq. (3). Taking
into account, that for the energy values
E>E . ,which are much larger than the po-
tential absolute values (E Lax>>1V]), the
wave function ¥ s approximately equal to
the free wave ¥ =¥ ), we get:

V2mE qay
F= SW(R, W (E ")+ —— [1W(E,)W¥E,r )~dsinkr.sinkr " Idk=0.
" v o (8)

For rj<r<a , r4r” the expressionF in the
left-hand side of eg. (8) is a function of
parameter Vj,and is equal to zero if V] is the
value of the first step of unknown poten-
tial. Instead of zero point forF we can
look for a required value Vi.from the minimum
condition fcr the expression

IF(Vl,r,rW|+lF(Vl,nr’W|+ R 2 JAAAS |

or_HF( ﬁr,rﬂzﬁﬁ (9).
So the first step of solving the inverse
scattering probiem is completed. Proceeding
in the same manner and using instezd of (5},
{6) the continuity conditions of ¥ and ¥’

at other points r;, the values V; can be de-
termined also for other intervals of the
interaction region.
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3. RECONSTRUCTION OF A POTENTIAL FROM
R -MATRIX RESONANCES AND THEIR REDUCED
WIDTIIS
For the potentials of finite range a it
is convenient to use the fact, that the

solutions of Schroedinger eguation (1) with
the homogeneous boundary conditions at r=0

and r=a:
U(0)=0; U’(a)/U(a)=B =const (10)
foras a discrete set of Hamiltonian eigen-~

fvnetions Uy()®U(E, r)A=l,2,..., satisfying the
completeness condition in interval (0,a):

%UI\(r)U,\(r =8 (r—1" ). (11)
Due to this fact the scattering data are

parametrized by a discrete set of constants
E, ,)f. So, for an R-matrix (which uni-~

quely determines an S-matrix) we have:
A F1
= M = -.—-—__U .
R(E) z:\ EoE Y\ \/2ma 5 (@) (12)

The Parseval equality in form {11), sim-
plifies the solution of the inverse problem
in the framework of R -matrix theory (re-
construction of V(r) from E, ,¥¢ ). The
corresponding procedure is similar to that
described in the preceding section: it 1is
only necessary to replace the integrals
over *the energy variable by sums over A. So,
the amplitudes A ’BIA are expressed as
functions of V;ror E,>V,

A, sink ,a +B1Ac°5ku°'u,\(°)'>’,\ 2ma (13)
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k]A[A l)\coskmu--B])\sinkmcllau)" (a) =By, v 2ma (14)
instead of (5), (6). The similar equations
have to be written for E,<V, (we must only
use exponentially increasing and decrea-
sing solutions instead of oscillating ones
sinkp r 5 cosk,r ).

The value of parameter V],is determined
by minimizing the expression

Amax

FP=t 3 (U,0U, )-8, b, ¢ N (15)

4. CONTROL CALCULATIONS

The proposed method of approximate sol-
ving the inverse scattering problem was ve-
rified by numerical reconstruction of a
number of potentials of different shapes from
the sets of R -matrix parameters E, > yf
corresponding to the lowest part of the spect-
rum.

At first the direct problem was solved:
for definite potential V(r) the set [E,,y3}
with E\<E was determined. Than, ac-
cording to the procedure described in sect.3.
the approximate stepr potential V“cph)=v(r)
was found.

Since the recconstruetion of a potential
belongs to uncorrectly determined problems,
the algorithm of calculation of the values

step Was regularized following Tichonov /7.
So, instead of the minimum of the expression
F2 of type (15) for every step, we can

look for the minimum of
2
p2+asvi_v h (16)

i-1
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Addition of the tern alvrvhfreduces too
large variations in potential values Vstep ON
the neighbouring steps (i.e,stabilizes the
solution of the inverse problem). The coef-
ficient s has to be chosen sufficiently
small. in order to distort not too strongly
the relatiou which follows from the Par-
seval equation and which determines the
value of V, .

As an example, the results of calcula-
tions for a particular shape of a potential

are shown in the figure.

5. DIFFERENT MODIFICATIONS OF THE METHOD

A hetter approximation may be achieved if
the auxiliary potential is not reguired
to be piecewise constant (V(r)=const for r <r<r; ).

Thus, in particular, the first potential
step can be substituted by a tail of some
potential decreasing with ra+« which depends
on a single free parameter (for example,
Vir Z”)=We#”,where VI orp; or some coninec-—
tion between V,and p; is fixed) and for
which the Schroedinger equation is solved
analytically. Let f(r} and g(r) e such two
linearly independent solutions. Then, the
wave function ¥ can be represented forxr,
in the form:

W(rzrl)zAlfh)+Blg(H (17)

and the coefficients A} and B; caa be ex-
pressed through the known scattering matrix
and the free potential paramet:r, which is
determined from the completeness condition,
as it was shown in the preceding sections.
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Simple steps can be substituted dy the
potentials dependent on several parameters
in all the other coordinate intervals
lr;0r;y 1 assuming the analytical soivabili-
ty of the corresponding Schroedinger equa-
tions. For example, we can choose V(r <r<r, )=
=C; +V,e®i' and require that the three para-
meters C; , V; , pu; are connected by two
conditions: the continuity and the smooth-
ness of the sewing at r=r;; of parts of
a potential in the neighbouring intervals.
Then the single free potential parameter
is fixed by the completeness condition as
before.

It is clear that the step approximation
does not prevent to take into account exact-
ly the centrifugal barrier f(f +1)/r2 and the
Coulomb forces ze/r, because the addition
of potential energy V,, which is constant
in the interval[rpri_,] does not break the
analytical solvability of the Schroedinger
equation forrig rsr;

The authors are grateful to I.V.Amirkha-
nov, E.Z.Christov, F.A.Gareev, A.M.Denisov,
Ja,A.Smorodinsky, A.A.Suzko, A.G.Visotsky,
E.P.Zhidkov for usefull discussions of the
problems related to the topic of the pre-
sent work.
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