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Простой метод решения обратной задачи рассеяния 

Предлагается новый метод приближенного восстановления по'данным 
рассеяния потенциала в виде кусочно-постоянной ("ступенчатой") функции-
Центробежный барьер (при Ы О ) и кулоновская компонента взаимодей­
ствия могут быть учтены точно. Метод допускает ряд обобщений. 
Проведены контрольные расчеты. 
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A Simple Method for Solving the Inverse 
Scattering Problem 

A new method of approximate reconstruction of a po­
tential as a step function from scattering 
data is proposed. The centrifugal barrier (for ' V0 ) and 
Coulomb component of interaction can be taken into 
account exactly. The method admits different generaliza­
tions. Numerical calculations for checking the method 
were performed. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1977 

© 1977 Объединенный институт ядерных исследований Дубна 



INTRODUCTION 
The reconstruction of a potential from 

scattering data can be performed by mul­
tiple solving the Schroedinger equation 
(or its analogue, for instance the phase 
equation) and selecting an appropriate 
form of potential V(r). That means, the in­
verse scattering problem is to be solved 
with the help of the direct one. Recent 
successful results along this line have 

• /12/ 
been published in' ' . 

In the present paper a more direct way 
is proposed to determine the shape of a poten­
tial from scattering data using the comp­
leteness relation of solutions of the 
Schroedinger equation. It is known that 
the Parseval equality (the completeness 
relation) is also necessary to use in order 
to obtain the basic integral equations of 
the inverse problem theory (the Gelfand-
Levitan-Marchenko equations)* . But in the 
method suggested in the present paper, the 
complicated integral equations are not 
required to be solved. 

* The inverse problem theory has been 
well developed during the last years (see 
Ъоок/3/ and review article / 4 / ). 
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Fig. 
The potential V s t was reconstructed from 

50 pairs of parameters ! E^ , ŷ  I the first 13 of 
which were determined by the solution of 
the direct problem (with V(r) ) and other 
37 were taken in quasiclassical approximation 
(with a single parameter /Vdr taken from 
asymptotic behaviour of E ). 
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In the proposed algorithm of the inverse 
problem solution the approximation of po­
tential V(r) by step function V (r) as is 

step 
shown in the figure is used. 

The advantage of an approximation of 
this type is a simple analytical solvability 
of the Schroedinger equation (ft -1): 

_J__4»"(r)+V(r)4' (r).EV(r); 
2 m (1) 

440)«0, 
in each interval [r j _< r< r ._t ] of the coor­
dinate axis, corresponding to one step of 
V.s , where V slep(r)»= const. So we have: 

Ч»(Е,г. <г<Г;_,) = А ; (Е)е~' )Г+В;(Е)е' ' Г ; ( 2) 

k i-V2m(E-V i ). (2') 

If the values Vj are known, the direct 
problem is easily solved (see for example ), 
the coefficients A| , Bj are determined 
from the conditions of smooth sewing of 
wave functions given on neighboaring inter­
vals at the points г£_j . 

The solution of the inverse problem is 
somewhat more complicated because besides A ;, 
Bi , also the unknown values Vj are to be 
determined. As the additional relations 
for determining A i } Bj,Vj we use the Par-
seval equality: 

IV (г)Ф* (г')+-1-7ч» (k,r)4»(k,r')dk-S (r-r' ), (3) 

where the asymptotic behaviour of 4> is 
determined by (h). The procedure of recon­
struction of Vj from the given behaviour 
of the wave function* outside the interac-
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tion region (the scattering phase shift is 
assumed to be known) is described in sect.2 
of this article. The inverse problem for­
malism is simplified in the framework of 
the R-matrix scattering theory, where 
instead of phase shift 5(E) as a continuous 
function of energy, the discrete set of 
constants: R-matrix resonance positions 
Ед and their reduced widths y£ ,are used 
as initial parameters in the inverse prob­
lem (sect. 3 ). 
/* The suggested method allows one to take 

(into account exactly the additional centri-
/ fugal barrier for partial waves with angu-
\lar momentum f>0, and also the Coulomb po­
tential . 

Instead of simple rectangular steps, 
the peaces of potentials of another shape 
for which the analytical solution of the 
Schroedinger equation is known, can be 
used to approximate V(r). 

Multichannel systems, as for example, the 
motiorj of a particle in the field of tensor 
forces, art described by the system of 
coupled Schroedinger equations. The in­
verse problem in this case is the matrix 
generalization of the single-channel forma­
lism. 

The numerical calculations were performed 
in order to verify the developed method. 
Ihe regularization following the Tichonov 
tb,ory / 7 / was us;?d for stabilising the al­
gorithm of the potential reconstruction. 
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2. RECONSTRUCTION OF A POTENTIAL FROM 
PHASE SHIFTS AND BOUND STATE PARAMETERS 
The unknown potential is for simplicity 

supposed to have a finite range a: V(r>a)-0. 
The wave function 4* outside the interaction 
region has the form (we consider at first 
the case t - 0 )*: 

ЧЧЕ,г>а)-е ~"кГ -S(k)eikr , if E > О, (Ц) 

4*(E ,r>.a)-Cne ", for bound states.(U') 
a , > 2iS(k) _ 

The quantities Slk)«e , к n , O n are 
assumed to be known, and it is required 
to determine Ф and V for r<a . 

From the continuity condition of wave 
function V and its first derivative 4*' 
at point r»a, using the expressions for V 
in the form (U), (U !) for r>a and (2 ) , (2' ) 
for г j < г < г. « a we get ie- i k a-S(k)e i k a , ifE>0 

-* i ( 5 

С e n , ifE-E <0 n n -ik.a ik,. (k[eika
 +S(k)eik4ifE>0 

k,[A,(E)e '-B,(E)e ' W (6) 
(lie"*" 3 ifE-En<0 i ' n 

The relations (5)» (6) can be considered 
as a system of two linear algebraic equa­
tions for the coefficients A ] , 3 ] . Solving 
(5)> (6), we find, for each value E, 
these coefficients as functions of the pa-

* For numerical calculations it is con­
venient to operate with real values, and one 
can take Ч1 in the form: Ф = A sin(kr + 5 ). 
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rameter V; . The desired value of V] is 
fixed by the Parseval equality (3) if f in 
the form (2) with coefficients A (E) and 
В (Е) expressed through V , is substituted 
into (3). In order to avoid the integration 
in (3) over the infinite continuous spect­
rum, the Parseval equality for free waves 

— f sin к r sin к г' dk * й (r— r ') (7 ) 
"• 0 

should be subtracted from eq. (3). Taking 
into account, that for the energy values 
E>E m a : <,which are much larger than the po­
tential absolute values (E r n a x » | V | ) , the 
wave function *P is approximately equal to 
the free wave (ф = Ч" ), we get : 

V2mK m av 
F^ 5Ч'(Еп,г)Ч'*(Е ,r')+-L_/i4'(E,r)4'*(E,r')-4sinkr.rinkr'|dk=0. 

n n 2тг о (8) 
For Г]<г<а , r^r' the expression F in the 
left-hand side of eq. (8) is a function of 
parameter Vj.and is equal to zero if Vj is the 
value of the first step of unknown poten­
tial. Instead of zero point forF we can 
look for a required value Vi.from the minimum 
condition for the expression 

|F(Vj ,r,r')|+ iFtV^r.r")! + ... ; г'.г".../ г 
° Г /|F( Vir,T')|2dr'. { 9 ) 

So the first step of solving the inverse 
scattering problem is completed. Proceeding 
in the same manner and using instead of (5)» 
(6) the continuity conditions of *¥ and V 
at other points r;, the values V ; can be de­
termined also for other intervals of the 
interaction region. 
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3. RECONSTRUCTION OF A POTENTIAL FROM 
R -MATRIX RESONANCES AND THEIR REDUCED 
WIDTHS 
For the potentials of finite range a it 

is convenient to use the fact, that the 
solutions of Schroedinger equation (l ) with 
the homogeneous boundary conditions at r«0 
and г-а : 

U(0)-0; U '(a)/U (a).B-const ( 1 0) 

forui a discrete set of Hamiltonian eigen-
fvnctions Û (r)iU(Ê ,r),A-l,2 satisfying the 
completeness condition in interval (0,a): 

£ U. (r)U. (r')-S(r-r'). (11) 
X Л Л 
Due to this fact the scattering data are 

parametrized by a discrete set of constants 
Ед ' У\ • S o ' f o r a n R-matrix (which uni­
quely determines an S-matrix) we have: 

The Parseval equality in form (ll), sim­
plifies the solution of the inverse problem 
in the framework of R -matrix theory (re­
construction of V(r) from E^ , ŷ  ). The 
corresponding procedure is similar to that 
described in the preceding section: it is 
only necessary to replace the integrals 
over the energy variable by sums over A. So, 
the amplitudes A,A , В., are expressed as 
functions of Vj for E>>V, 

A usink ua +B ucosk 1 Aa-U x(a)«y AV2ma ( l 3 ) 
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i n s t e a d of ( 5 ) , ( 6 ) . The s i m i l a r e q u a t i o n s 
have t o be w r i t t e n fo r E><V. (we must on ly 
use e x p o n e n t i a l l y i n c r e a s i n g and d e c r e a ­
s i n g s o l u t i o n s i n s t e a d of o s c i l l a t i n g ones 
sinkj^ г , coskj^r ) . 

The v a l u e of p a r a m e t e r V,, i s d e t e r m i n e d 
by min imiz ing t h e e x p r e s s i o n 

F 2 H T (UA(r)UA ( r ' ) -U A (r)U A (r')M2 (15) 

k. CONTROL CALCULATIONS 
The proposed method of approximate sol­

ving the inverse scattering problem was ve­
rified by numerical reconstruction of a 
number of potentials of different shapes from 
the sets of R-matrix parameters E A , yA 

corresponding to the lowest part of the spect 
rum. 

At first the direct problem was solved: 
for definite potential V(r) the set |E A,y Ai 
with E ^ E m a x was determined. Than, ac­
cording to the procedure described in sect.3. 
the approximate step potential V . (r) = V(r) 

•̂  ^ ^ step 
was found. 

Since the reconstruction of a potential 
belongs to uncorrectly determined problems, 
the algorithm of calculation of the values 
Vst was regularized following Tichonov / 7 / . 
So, instead of the minimum of the expression 
F 2 of type (15) for every step, we can 
look for the minimum of 

F 2 + a\ V. -V. j !.2 (16) 
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Addition of the term a\ Vj-V^^reduces too 
large variations in potential values V s t e p on 
the neighbouring steps (i.e,stabilizes the 
solution of the inverse problem). The coef­
ficient a has to be chosen sufficiently 
small, in order to distort not too strongly 
the relation which follows from the Par-
seval equation and which determines the 
value of Vi . 

As an example, the results of calcula­
tions for a particular shape of a potential 
are shown in the figure. 

5. DIFFERENT MODIFICATIONS OF THE METHOD 
A better approximation may be achieved if 

the auxiliary potential is not required 
to be piecewise constant (V(r) = const for Г[ <r<r. (). 

Thus, in particular, the first potential 
step can be substituted by a tail of some 
potential decreasing with г -»™> which depends 
on a single free parameter (for example, 
V(r >r i ) = Vi е^|Г, where V| or p \ or some connec­
tion between V| and /* j is fixed) and for 
which the Schroedinger equation is solved 
analytically. Let f(r) andg(r)te such two 
linearly independent solutions. Then, the 
wave function* can be represented forr>r, 
in the form: 

4» (r >r • A, f(r)+B ,g(r) (17) 

and the coefficients A[ and В, сал be ex­
pressed through the known scattering matrix 
and the free potential parameter, which is 
determined from the completeness condition, 
as it was shown in the preceding sections. 
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Simple steps can be substituted by the 
potentials dependent on several parameters 
in all the other coordinate intervals 
lri <ri_i 1 assuming the analytical solvabili­
ty of the corresponding Schroedinger equa­
tions. For example, we can choose V(i. <r<r._,)« 
-Cj+Vje'^i' and require that the three para­
meters C; , Vj , 11 ; are connected by two 
conditions: the continuity and the smooth­
ness of the sewing at r»rj.j of parts of 
a potential in the neighbouring intervals. 
Then the single free potential parameter 
is fixed by the completeness condition as 
before. 

It is clear that the step approximation 
does not prevent to take into account exact­
ly the centrifugal barrier f(f+l)/r2 and the 
Coulomb forces ze/r, because the addition 
of potential energy V., which is constant 
in the interval [г., г ._j ] does not break the 
analytical solvability of the Schroedinger 
equation for r.< r<r. . . i — - i — I 

The authors are grateful to I.V.Amirkha-
nov, E.Z.Christov, F.A.Gareev, A.M.Denisov, 
Ja .A. Smorodinsky," A.A.Suzko, A.G. Visotsky, 
E.P.Zhidkov for usefull discussions of the 
problems related to the topic of the pre­
sent work. 
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