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Ofuwne 38aKOHOMEPHOCTH ¢parMeHTAlHM OAHOYACTHYHLIX COCTOSHRH
B NebOpMHPOBAHHLIX AApax

B pamxax cpepXTeKydeit Moaelld paccuHTaHa fpparMeHTau vsa 60/15WOro
4uCcia KBA3RYACTHHHLIX COCTOSHHH B sAapax peako3eMelbHofi obnacrn., Mccne-
noBaHa 3aBHCHMOCTb (parMeHTAUHH OT MONOXEeHHs, KBAHTOBLIX YHCEl OJHO-
YaCTHHYHOTO COCTOSHHS H XAPAKTEPHCTHK KO/NVIEKTHBHLIX BO3OyXOeHR#. Yka-
abiBaeTCHd HA OTKJIOHeHHe ¢OpMbi pacrnpefelleHHsi CHJIbl COCTOAHMSA OT Gpe#T—
BUTHepoBCKO#t $hopMbI,

Patora shinonsena p JlaGopatopud TeoperrHdeckoil ¢u3mku OWUHAU.
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Malov L.A., Soloviev V.G. E4 - 10330

General Regularities of the Fragmentation
of Single-Particle States in Deformed Nuclei

General regularities of the fragmentation of single-
particle states in deformed nuclei are studied in the
framework of a model based on the quasiparticle-phonon
interaction. The fragmentation is calculated for the hole,
gro .:nd and particle states in many nuclei from the begin-
ning, middle and the end of the region 150< A <190 . It is
shown that the shape of the fragmentation of single-partic
le states differs strongly from the Breit-Wigner distri-
bution. The fragmentation essentially depends omn the posi-
tion, quantum numbers of the single-particle state and on
the characteristics of collective excitations.

The investigation has been performed at the
Laboratoty of Theoretical Physics, JINR.
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1. The structure of nuclear states at intermedia-
te and high excitation energies is essentially defined
by the fragmentation, i.e., the distribution of the
strength of one-quasiparticle and many-quasipartic-
le states over many nuclear levels. Recently the
experimental investigation has been started for the
fragmentation of one-quasiparticle states in spherical
nuclei’!'*. The fragmentation of one-quasiparticle
states in deformed nuclei with the odd number of
neutrons is first analysed in paper "2/ . However,
the theoretical study of this phenomenon was based
on simplified assumptions (see, e.g., ref. '* ),
therefore a more rigorous consideration is necessa-
ry.

To study the fragmentation we use a model based
on the quasiparticle-phonon interaction’'*’ In ref. 5/
the model was generalized to the introduction of
spin-multiple forces and approximate methods for
solving its equations were developed. In ref.- . the
model was employed to determine the contribution
of quasiparticle-plus-two-phonon components to the
wave function of low-lying states. Preliminary re-
sults of investigations on the signle-particle frag- ,
mentation in deformed nuclei were reported in refs - (8,
while in ref. ' some methodical problems concern —
ing the calculation of the fragmentation and neutron
strength functions were studied.

In this paper for several deformed nuclei we
calculate the fragmentation of a large number of
hole and particle states in neutron and proton sys-
tems in the interval from (8-10) MeV below the



energy of the Fermi-surface up to (8-10) MeV
above it. And, as a result, we deduce some general
regularities of the single-particle fragmentation in
deformed nuclei.

2. The model and methods for solving its main
equations were described in ref. /9/.In this paper
we write only the formulae required for the under-
standing of the obtained results. In refs./7-8/ it
was shown that the fragmentation of one-quasipar-
ticle states in deformed nuclei may be studied
within a simplified model. The wave function of the
non-rotational state with the angular moment pro-
jection on the nucleus symmetry axis K and parity
7 of an odd-A deformed nucleus has the form:

¥ (K) = ——C! Stet +3C'a" +2D( o
1 \/2 poO’ po p P pO’
1)

where ¥y is the wave function of the ground state
of a doubly even nucleus having one nucleon less
than the studied one; i is the number of the state,
g=viuj, j being the number of the root of the
secular equation for the one-phonon state of multi-
polarity A . The set of quantum numbers for any
single-particle state is denoted by (vo) and for
states with fixed K” by (po) with o=*1.We are
studying the fragmentatlon of a certain state de-
noted by p,. In ref. /9/ it was shown that the study
of the fragmentation of state py requires taking
into consideration also other states p with the
same K7 . Therefore formula (1) contains the

terms Eépiap; . The secular equation symboli-

cally is written as follows:
Fpo(n ) o= 0, (2)
(cf. formulae (19) and (25) of ref. /9/ ), where 7

are the energies of non-rotational states with a given
K7 .

To determine the single-particle fragmentation
in deformed nuclei, we use the direct calculational
method of averaged characteristics without a/ detail -
ed calculation of each state. Following refs. 8, 9/, we
construct the strength function of the energy distri-
bution of one-quasiparticle state po in the form

o2
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averaged with the weight

T L « @
2m (7/i —1) 2y (A2

The energy interval of averaging A specifies
the type of calculational results. For A very small
we obtain the envelopes of quantities ! ) for each
state 1, while for A large enough the averaged
values of those quantities. The choice of A is dis-
cussed in ref. /9/ ,here we take A = 0.4 MeV. As
a result of transformations performed in /9/, we
have

! i
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If wave function (1) does not include terms EE? . p(,
p

the function ()  is simplified to
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where «(py) is the energy of one-quasiparticle
state p, and

I 2
Pt
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Here  p(g)- <)+ w/-\” is the energy of the quasi-
particle-plus-phonon state, |', . defines the inter-
action of states p; and  through phonon Apj.

It is important that functions 1{3) and y{(3) depend
strongly on 7. Therefore the form of eq. (6) dif-
fers noticeably from the Breit-Wigner one. In

refs. /%% it is shown that the function ®, ()
follows the histogram obtained by summing of

(C i) )2 over the energy intervals A . Therefore
thé single-particle fragmentation in deformed
nuclei can be calculated by formula (5).

3. In numerical calculations we use the single-
particle energies and wave functions of the axial-
symmetric Saxon-Woods potential. The potential
parameters, pairing and miltipole-multipole inter-
action constants, and phonon number are taken

from ref. 97 In ref. /9/ it was shown that a large
number of weakly collectivized phonons strongly
influences the fragmentation of single-particle states
and neutron strength functions. Therefore the phonon

space cannot be greatly restricted in the calculations.

To clarify the general regularities the fragmen-
tation of one-quasiparticle states in deformed nuclei,
one should perform systematic calculations of the
fragmentation of a great number of one-quasiparticle
states in many nuclei. A part of the calculational

results is given in Figs. I to 6. Figure 1 shows the
fragmentation of states 400+, 5217, 6241, 5”12,

642, ,640° in Ut The general regularities of the
fragmentation are illustrated in Figs. 2-4 by func-
tions ¢, (4} for states 427 6337, 6247, 400",

615 i, 642:, 5217, 521: , 512, in '?sp, 100y |
""SYh., "W and in Figs. 5,6 for states 420°, 411: ,
47,(,),""1
62L4 1 H 512}
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Fig. 1. The fragmentation of one-quasiparticle_
states 400°, 5217, 624+, 512., 642:, 640 - in '"Ylf
The excitation energy 1 in MeV is plotted on an
abscissa in both directions from zero. On the left
is the fragmentation of the hole states, on the right,
of the particle states. The top figure represents
the {’unctz‘ons ®,,0) in MeV —! . The quantities
() are given. The bottom figure represents the

functions 71”—0)[,(»,,) for the values of p, given

in the top figure. For comparison the top figure
represents the strength distribution of the state
400 * by the Breit-Wigner law (dashed curve) with
the constant width 1= 1.7 MeV.
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Fig.2. The fragmenta-
tion of the one-quasipar-
ticle states 6421, 633"
and 624+ : the functions
o, () in 52 m (SO-
lid line), in Dy175
(dashed line), in Yb
(daﬁig-dotted line) and

in "°°W (dots). The
quantities ¢<(p ) for each
nucleus are denoted by
€1 , €9, €3 and ¢y,
correspondingly, and
are shown on the abs-
cissa. In the left part
the fragmentation of the
hole states is given,
whereas in the right
part, of the particle
states.

155

65 175
Eu, '°’Ho , Lu

and '8°Re. The fragmentation is calculated for the
hole, ground and particle states in nuclei from the
beginning, middle, and end of the region 150<A <190
The fragmentation is not shown here for the one-
quasiparticle states with the energy by 10 MeV
further than that of the Fermi surface, since in
these cases the basis of single-particle states
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should be extended and the effect of the continuous
spectrum should be considered.

The results at the bottom of Fig. 1 allow one to
understand some peculiarities of the fragmentation
of quasiparticle states, the reason for noticeable
deviations of the distribution form from the Breit-
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Fig. 3. The fragmenta-
tion of one-quasiparticle
states 4001, 6157, and
642 - in gm, 105Dy,

cl ““Yband '85W ; the no-
n 6624 tation for the particle
and hole states is the
same. The other notation
is the same as in
fig. 2.
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Wigner one. At the bottom we give the strength
functions
.2
I PoB
(17) =AX 5 9
i (p(g)—r;) +HA/2)

which characterize the energy distribution of Ip .

It is clear thatl’, - | 71—<b (ndy =31 pmay specify
(o]

(&) o

the strength of interaction of the quaSIparticle state
po Wwith all quasiparticle-plus-phonon states g .
This interaction certainly defines the degree of
the fragmentation of state p,. Note that @, 1) coinci-
des with the width I’ introduced in /3/ and is
simply related to the quantity ['()) given by (7)
for one . From Fig.1 it is seen that (|)|~(7)) is not
constant therefore the distribution of the strength
of quasiparticle states essentially differs in form
from the Breit-Wigner one. Maxima of the function
¢+(y) are due to large matrix elements or to
strongly collectivized phonons (sometimes, with
both the factors), corresponding to poles p(g) in
a given energy interval.

At low and intermediate excitation energies
( ~ 1-3 MeV) ¢)(;)) is small. It increases with
excitation energy and thus determines the streng-
thening of the fragmentation of states py with
increasing quasiparticle energy <(pg). This streng-
thening is illustrated in Figs.2-6 for many states.
For instance, Fig. 2a shows the fragmentation of
the state 642* . In '®3Sm and '°°Dy state 642"
lies near the Fermi surface and is fragmented
weakly. In 175 yp  there appears a tendency of
growing fragmentation. In 18°W  the state 642 *

is fragmented essentially stronger. A still more
striking example of strengthening the fragmentation
with increasing excitation energy is the strong frag-
mentation of state 521t in !75Yb  and 185W as

compared to the weak fragmentation of this state in
1539m  and 1° "Dy (Fig. 4a). In Fig. 3b the fragmen-
tation of state 615 is shown. This level is the
particle one in all the nuclei we consider here. How-
ever, with increasing atomic number the energy of
the Fermi surface approaches the level 6151 , the
value of ¢ (615") diminishes, and the fragmentatlon
of state 615+  is weakened in 8w and '7°Yb as
compared to the strong fragmentation in 1536 .

In certain cases the energy dependence of d)|~(w/)
may be considered to be proportional to the state
density or approximately to 2 (for n - 3MeV)as
is assumed in It should be noted that for
higher energies the assumption of the smooth de-
pendence of ®|(y) on energy does not hold, though
there is a tendency of the increase of ®'(;) with
energy that accounts for the strengthening fragmen-

tation with increasing energy observed from Figs. 1-6.

From Fig. 1 it is seen that at energy- (1-2) MeV
®y()) is small in magnitude therefore the states
with small «(pg) are weakly fragmented. Around
(80-90)Y, of the strength of such states is concen-
trated on a single level (e.g., states 512., 6247 in
91 in Fig.1, all states in Fig. 2, state 400 1
for '"*Sm in Fig. 3, etc).

The Figures show that the remaining (10-20)Y,
of the strength of states are fragmented over a
large energy interval. From Fig. 2 it is seen that
additional peaks in the distribution of quasiparticle
component (‘2 are defined by the fluctuation of
dp(n) In some cases the state with large ¢(p,)

(e g., 400" for !8°W in Fig. 3) appears to be frag-
mented relatively weakly if the value of ®~(y) is
small in the energy interval near ).

As has been shown earlier 1%/ and is confirmed
by the present calculations for the single-particle
states lying near the energy of the Fermi surface,
the distribution maximum is shifted from 0.5 to
1.5 MeV towards low energies with respect to «(p ).
This shift is a result of the quasiparticle-phonon

11
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Fig. 4. The fragmentation of the one-quasiparticle
states 5217, 521:, and 512 in 1538m, 165Dy, ,

175Yh  and !8°W The notation is the same as in fig. 2.

interaction. If the energy of a single-particle state
is by 2 MeV higher than that of the Fermi level,
the distribution maximum fluctuates near t(po)- For
instance, from Fig. 6b it is seen that the main
maximum of the strength distribution of the state

523 , in !°°Eu is somewhat shifted with respect
to (p,) towards large excitation energies. The
same holds also for the main maximum of the
strength distribution of state 521" in !85W

( Fig. 4a). State 642, in '®°W (Fig. 3c) is
fragmented almost symmetrically with a center
close to the quasiparticle energy ¢ (642:).

Specific features of the fragmentation are a
long tail and, as a rule, the presence of several
peaks, in addition to the main distribution maximum.
These peculiarities may turn out to be essential
in calculating the spectroscopic factors in nuclear
transfer reactions and neutron strength functions.

The fragmentation of a quasiparticle state de-
pends on the projection of its angular momentum
onto the symmetry axis. As a rule, with increasing
K the fragmentation decreases. This is explained
by decreasing number of matrix elements, especial-
ly, those which define the coupling with the most
collectivized phonons with A =2 and 3. Calculations
do not display the dependence of the fragmentation
on the state parity.

In most cases there is a center of the strength
distribution with a maximum close to energy ¢{pg)
However, there are cases of a very strong fragmen-
tation when the state strength is distributed more
or less homogeneously over a very wide energy
interval. Usually those states are so strongly
fragmented which have the single particle energy
far from the Fermi level (by order (5-10) MeV)
ggge the fxl':%gmnetation of state 642. in !°3Sm ,

Dy and !">YbinFig. 3). In some cases @, (1)
splits into several large peaks, and at energy e(po)
a minimum of the strength function may appear
(e.g., state 4001 in !7PHf | Fig. 1, 624" in

1538m, , Fig. 3¢), 512 - in 165Dy, Fig. 4c),
402 . in !°°Eu, Fig. 6a)).

The fragmentation has been calculated also for
odd-Z nuclei. The general regularities of their
fragmentation are the same as for odd-N nuclei,
however, the fragmentation is weaker. The reason

13
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Fig. 5. The fragmenta-
tion of the one-quasipar-
ticle states 420,411

and 411+ in " Eu(solid
line); in '°"Ho (dashed
line) in '*7Lu (dash-dot-
ted line) and in %5 Re
(dotts), the values of clpy)
for each nucleus are gi-
Uenby €1, C9,¢3 and(,a, y
correspondingly. The
other notation is the same
as in fig. 3.
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Fig. 6. The fragmentation
of the one-quasiparticle
states 402+, 523+ and
5121 in 155Eu, 165Ho,
175Lu and 185Re. The no-
tation is the same as in

fig. 5.
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is a smaller state density and decrease in matrix
elements. The quantities ', for proton levels, on
the average, are by a factor of 2-3 smaller than
those for neutron levels. Thus, e.g. the fragmenta-
tion of state 523: (Fig. 6b) in all considered odd-Z
nuclei is weaker in contrast with that of the state
642 , (Fig.3c) in odd-N nuclei though the quasipar-
ticle energies of these states are close in magnitude.

15
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4. Tt is generally accepted and widely used that
the strength distribution of the single-particle state
at intermediate and high excitation energies has
approximately the Breit-Wigner form with the
center which coincides with the single-particle or
quasiparticle energy of a given state. The width of
this distribution is considered to be either the con-
stant or smooth function of the excitation energy.
In ref. /% it is postulated that this width is pro-
portional to the energy squared. The fragmentation
of a given state is usually assumed to be indepen-
dent of its quantum characteristics whether it is
particle or hole state. It is also assumed that the
structure peculiarities of a certain nucleus slight-
ly influence the fragmentation. In ref. 73/ it is
shown that for the equidistant spectrum with con-
stant matrix elements the fragmentation of the
single-particle state has the Breit-Wigner form.
However, the result strongly changes if the spectrum
differs from the equidistant one and the matrix
elements are not constant. Our calculations have
shown that the fragmentation of the state strength
is highly complicated. The fragmentation essenti-
ally depends on the position and quantum numbers
of one-quasiparticle states and on the collective
characteristics of nuclear excitations. The form
of the distribution in many cases differs from the

Breit-Wigner one.
For comparison see Fig. 1 which shows the

strength function of the distribution of the quasi-
particle state 400°' as the Breit-Wigner curve with

the values ~A-1'G)- 1y = 1.7 MeVand <y e

=~ 0.11 MeV, the values of A-1Gp) and w7) being
averaged over the interval (0-10) MeV. It is seen
from the figure. that the calculated strength distri-
bution of the state 400" differs from the Breit-
Wigner distribution. The deviation from the energy
of the fragmentation maximum of the state 400°
is considerably larger than y,.

The performed calculations indicate to the deci-
sive influence of the low-lying most collective pho-

nons on the fragmentation of quasiparticle states.
The contribution of many other phonons results in
smoothing of sharp peaks and broadening of the
distribution.

5. Based on the performed calculations, let us
formulate general regularities of the fragmentation
of signle-particle states in deformed nuclei. They,
mainly, confirm our preliminary conclusions on
the fragmentation /7-8/ obtained from the study of
the fragmentation of several states in some nuclei.
They are the following:

1). The form of the distribution strongly differs
from the Breit-Wigner one. As a rule, in addition
to the main maximum, there appear several additio-
nal maxima.

2). The shape of the distribution function is
mainly defined by the position of the signle-particle
state with respect to the Fermi level. If the signle-
particle state is near the energy of the Fermi
level, then 80-909 of the state strength is concen-
trated on the lower level with the given K7. With
increasing quasiparticle energy the fragmentation
is increasing, the distribution function becomes
wider the main maximum is decreasing and the
additional maxima are increasing. At e(pg)~
=~ (5-8) MeV the state strength is fragmented in a
wide energy interval.

3). The distribution function is nonsymmetric
with respect to its largest value due to a slower
decrease towards high excitation energies. Even
for the single-particle states lying near the Fermi
level, the distribution tail extends farther than the
nucleus binding energy. In many cases the distri-
bution maximum is near «(p;). For the states with
small «(p,) the distribution maximum is displaces
towards lower excitation energies.

4). The fragmentation depends strongly on K.
With increasing K the fragmentation, as a rule,
decreases. The fragmentation depends weakly on
the state parity.

17
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5). The values of additional maxima are
mainly determined by asymptotic quantum numbers
of single-particle states and by the collectiveness
of low-lying vibrational states of a given nucleus.

6). The fragmentation of single-particle states
in odd-Z nuclei is somewhat weaker than in odd-N
ones.

The deviations from the above pointed regulari-
ties of the fragmentation are observed in some cases
of large values of «¢{py). They are the following:

i) strong fragmentation without clearly observed
maximum,

ii) instead of the maximum near c(p,) there appears
a minimum, and the state strength is divided into
two or three fragments;

iii1) the weak fragmentation of individual states
even with sufficiently large values of ¢(p,) corres-
ponding to these states.

Note, that the presence of large single-particle
components (‘% in some high-lying states, as a
rule does not fe‘ﬁd to large local maxima in the
neutron strength functions and cross-sections of
direct reactions. This is due to the fact that these
quantities are defined by the total influence of many
one-quasiparticle states y and by the expansion
coefficients of the one-particle wave function over
the spherical basis (see (33)-(36) in ref. ¥ ).
Therefore, the fluctuations are essentially weaken-
ed.

It should be noted that the influence of the
quasiparticle-plus-two-phonon components on the
fragmentation of single-particle states is evaluated
only inaccurately. This will, obviously, result in
some smoothing of the highest maxima and deep
minima. There are reasons to suppose that the ge-
neral regularities of the fragmentation formulated
above will not be changed. One should further in-
vestigate the role of the wave function components
containing the quasiparticle-plus-two- and more

phonons in the fragmentation of single-particle
states.

In conclusion we should like to emphasige that
the concrete form of the fragmentation 'of single-
particle states is the basis for calculating thg neu-
tron strength functions and the strength functions
of one-nucleon transfer rea/cltli ns qf the type (.,p),
dt), dn), d, 3He). In ref. it is shown that
the consideration of the fragmentatlgn appears to
be very important for the investigation of the re-
action (na)on deformed nuclei.
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