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One-Phonon States in Deformed Nuclei for 
Isoscalar and Isovec~or Interactions 

The formulas describing one-phonon states of comp­
lex even-even deformed nuclei in the frame of RPA are 
generalized to simultaneous consideration of isoscalar and 
isovector multipole-multipole interaction. The formalism 
reported gives a united description of low-lying states 
and of several characteristics of giant multipole reso­
nances. Here we present a procedure of expressing the 
reduced probability B(EA; o+o -• I 1"

1 K 1 ) and energy 
weighted sum rule (EWSR) by means of strength functions 
averaged over some energy interval. This procedure makes 
calculations much easier allowing not to solve the 
seqular equa~ion foF tpe energies of one-phonon states. 
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In recent years much interest arises in 
experimental and theoretical study of giant 
multipole resonances in atomic nuclei. The 
investigations beyond the frame of the 
phenomenological approach/ 1 •2/ are imp or tan t. 
In the description of the structure of low 
lying collective states the phonons are 
used with characteristics calculated taking 
into account the multipole-multipole inter­
a c t ~ o n/:l , 4 · . F o r d e s c r i b i n g t h e r e g i o n o f 
giant multipole resonances one needs phonons 
which characteristics are calculated consi­
dering both isoscalar and isovector multi­
pole interactions simultaneously. 

In the present paper the formulas written 
for one-phonon states are generalized to 
the simultaneous consideration of isoscalar 
and isovector multipole-multipole interac­
tions. 

1. SECULAR EQUATIONS AND WAVE FUNCTIONS 
OF THE ONE-PHONON STATES 

To describe the giant multipole reso­
nances we introduce the phonons with iso­
topic spin T=O and T=l with Tz =0. In complex 
nuclei the collective vibrations with T=O 
and T=l are not independent and, hence, 
one should consider them simultaneously. 
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Following141 the Hamiltonian of the system 
has the form: 

H = H + H . + HQ I av paH ( 1) 

where Hav describes the average field, Hpair 

is the interaction resulting in the pairing 
correlations of superconducting type, H

0 
has the form 

I(KJA) +K(t) )[Q~/1 (n)QA/1 (nl+o{ll(p)QAI-l)(p)]+ 

(2 

H o=- J__j I 
T A,11> o 

+(K~A)_KiA) )[Q;I-l(n)QA/1 (p)+QA+I-l (p)QAI-l (n)JI, 

here o;l-l(n) is the multipole momentum ope­
rator of the neutron system (see (3.63) 1n 
ref. 141 ). I so scalar K~) and isovector K(~) 
constants of multipole-multipole inter­
action are connected with constants K~) 
K (A) and K(A) in the following way/ 4/: nn 

p p [I p 

(A) (A) (A) (A) 
Kn n = K pp = K 0 + K l 

(A) (A) (A) 
·Knp = KO - K l 

Let us introduce the phonon creation 
operator 

Q + = L I I t/1 g ,l( q q ' ) - ¢ g , A ( q q ' ) I, 
g 2 qq, qq qq 

where 

( 3) 

( 4 ) 

A ( qq ' ) = _1_ I 
v2 a 

a a , a 
q a q-a 

or ...l_ I 
.!'1 a a V£- a qa q'a 

aqa is the operator of quasiparticle absorp­
t i on , g =A 11 j , j b e in g t he n urn b e r of c o 11 e c -
tive states with given A11 , qa denotes the 
set of quantum numbers for a single-par-

' 

ticle state of the neutron and proton sys­
tem; sa is that for the neutron system, 
and ra is for the proton system;u=±l. The 
part of the Hamiltonian (l) for calculating 
one-phonon states can be written as 

H v = I t (q) B ( q q) -
q 

_ _l_ ~ ''IG ,.. [( 2_ 2)(•2 _ 2) 20i 20i' 20j 20j'l ( ' •>() .:.. ".:.. u v u , v , g g , , 1- w w , , 1-4 1\f1· .... . . , " ~ s , s s s s s s s s s s s s 
J J ·'· 

• 2 2 2 2 20j20i' 2oi 2oi· I r tGI[(u-v )(u,-v, )g g,, +W w ,, IQ,>(J.Q>(J·-· 
z,,· r r r r rr rr rr rr - J- J 

( 5 ) 

- !_ ~ I ( 1JAl tK (,\) )[ I u , u . , f g(ss' )g g ,f g (s s ')g g', 1-

2 (r H , () I s s , s s :-.2 ::-;2 s s 2 ~ ~;'l '-;2 

,. 
t -

rr', 
'2 r 2 

r--~ s~s 2 ~ 

f g (rr') g g, f g 
rr 

g ( r, ) g , 
r,, ? r ·> r .

1 .... .... .... ..... 
I t u 

rr 
u 

r.l r,l 

t (K(Al -K(Al) ~ u .u , ffg(ss ')gg f g ,(rr ')gg, 
0 I s~ ~ ss rr ss' rr' 

rf g (ss' )g g ', x 
ss 

' x f g (rr ') g g , II Q + Q ,. 
rr g g 

rr 

w h e r e d q ) ,~ v C 2-;:--(E~)-=_A)2 , u , = u v , 
'1'1 q 'l 

fg(qq') :fA1lc;q') is the matrix element 
·- u , v 'I 'I 

from 

A J !! ·'· g g " g g r -'P, (, wn,:..:J ,-</J ,, --=-.-=-----(Y, t(-1 y, )•g ,-- 'l'l t-/>'1'1, qq ifqq qq 
2 rr-r ) "ll 1\'""fl '1'1 v \1 +uJL.o 

~and Gz are the pairing constants. 

The wave function of a one-phonon state 
has the form: 

Qt IV , ( 6 ) 
g 

where IV denotes the phonon vacuum. Accor­
ding to the orthonormalization condition of 
eq. (6) we have: 
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!. gg,, w g , = 2 0 , ( 7 ) 
qq, qq qq g,g 

Following ref. 141 we shall find the energy 
wg of a one-phonon state with fixed Ap. or 

K" by variational principle defined as: 

o!<Q H Q+>- ~~[ ~ gg ,wg, -2]1=0. 
g v g 2 qq, qq qq ( 8 ) 

After some transformation one obtains the 
following secular equation 

(K(A) ~~(,\) )Xg(n)-1 
0 I 

(K~) -K(~) )Xg (n) 

( 9 ) 
(K(~)- KI(,\) )X g(p) 

.=01 
(K~,\)+Ki,\) )Xg (p)-1 

which form 
in ref. 141. 

coincides with that of eq.(8.134) 
Here 

g () 
2 
~ fg(ss' )fg(ss' )u 2 ,c(ss') ( ) 

X n = k ss 10 
f2 (ss,) - w2 I 

g 
ss 

where 

fg (ss')=fg (ss')- r;(~o .,I dss')=ds) +d s'), (10,) 
g s,s 

yn 

g - ~ 4 c; - w; + 4 ~ ( s) ~ (s, ) 
Y-, 2 2 2 2 

n ss ds)(4f (s)-w )f (s')(4f (s')- w ) 
g g 

(10") 

T" g( )- ~ l(~s2)[4C:-w 2g+4~(s2}r;.(s2)-4~(s)~s2 )14-(s)i;.(si)], "') 
1 n s - k 2 2 , 2 I\ 10 s2s2 ds2 )[4f (s2 )-wg ]dsi)[4f~(s;) -wg] 

~(s)=E(s)-A . As can be seen from eq. (10') fg(ss') 
coincidens with fg(ss')

1 
if Ap. f, 20. 

Eq. (9) can be written as 

j=(w) =K~,\) Ki,\) (Xg(n)- xg (p)) 2- 0-K ~ )xg )(1-K <tlxg)=D I ( 9 ' ) 

where Xg=Xg(n)+Xg(p).Note, the influence of the 
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values of constant K~) on the first one-
. . . f /3/ phonon states was 1nvest1gated 1n re . 

where the in trod uc t ion of K ~,\) was shown 
to cause the renormalizatioh of the cons~ 
tant K~) without noticeable change of the 
state structure. Therefore only isoscalar 
strength component K&,\) was used, in further 
calculations of the properties of low 
lying states in isovector constant K~) 

. I 
being assumed to be zero. 

In finding the gil, andwg, functions 
qq gq . • 

one makes use of the normal1zat1on cond1~ 
tion of eq. (7) and after cumber transfor­
mations obtains: 

2 g f g (rr') u rr, d r r ') 
CJg, = v--y -

rr y p f2 ( r r ' ) _ w 2 
g g 

(11) 

- g , ...,.g 
w g, = V 2_ lt T (rr )urr ~- o , . Cp::::. ~ 

rr y p 2 ( , ) 2 r ,r ( ( r) w yg 
g f rr -wg g P 

I I ( 12) 

where 
(,\) (A) g 

g (KQ-KJ )X(n) ( ') 
y - 12 p-1-(K~,\)+K(t) )Xg(p), 

2 
_g ~ fg(rr') 4Cp-w~+4qr)~(r') , 
:::. = k ~-· 2'7"7 • (12 ) 

P rt' dr)(4f2(r)- CJJ ) dr')(4f (r') -w2) 
g g 

Ex.pressions for gg , , w g, look similarly 
ss ~s 

with replacement of cpl=; I yg I yg by en 
2g ,yg , Yng"" 1, which cotres;ond to n n 
neutrons. 

Here 

g 
g ) 1 Yp 

y = y (n)+ (yp) Yg(p = 4 (,\)_K(,\) 
g g Ko I 

aF(w) 
aw (13) 
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() 
~{fg(ss')uss'fdss')wg 1 aXg(n) 

Y n =.:. =- 1 (14) 
g ss'·[ 2( ') 2 ]2 4 aw ( ss - (L) 

g 

expression.for Yg(p) being analogous to 
exp. (14). If the isovector strength com­
ponen:t is absent (K 1(A)=0) then r;=l and exps. 
(11)-(14) have the form reported in chapter 8 

!4! of ref. . 

2. EA -TRANSITION PROBABILITIES 
r--1 

We shall obtain formulas for reduced pro­
babilities of E~ -transitions from the ground 
states of even-even nuclei to the excited 
states with Ir"f Kr. In case the multipolari­
ty A of the electrical transition coincides 
with that of a phonon of excited state, then 
following 141 we have 

+ 77 f 2 2 
B(EA;O o ... Ir Krl=(00.\ 11 1 IrKrl M I ( 15 ) 

2 -o o Y. (A> ~ J. 11 , ) g M =(--~) le ff (p)"" f. (rr g ,u , + 
2 e rr' rr rr (16) 

+e(,\) (n) ~ l 11 (ss')gg ,u , 1. 
eff ss' ss ss 

The effective electrical charges are 

(,\) (,\) 
eeff (p)=e +e pol (p), 

(,\) (,\) 
e eff (r.) """e pol (n ) 1 

(1 7) 

where according to111 

e(A) (p)=e(A) {T=O)-e(A) (T=l) 
pol pol pol 1 

e(A) {n) = e(A) (T=O) +e(A) (T=l). 
pol pol pol 

~~$ 
·i~ 

r 
' 

As is known for El -transitions the effec­
tive charges are 

(I) N (l) 
e e ff (p ) =- A e 1 e e £f ( n) =-

z 
- -- e 

A 
( 1 7' ) 

Using formula (11) we get 

1 2-o 11 o 112 (A> g g (,\) g 
M=-2 (--y-'-) [eeff (p) X (p)yp+eerr(n)X (n)). (18) 

g 

We perform some transformations of this 
expression considering exps. (9'), (12') 
and (13) 

M 
2 

= .:_~c:_ I (e (~: (p))
2 

Xg(p) [ 1- ( K~,\)+ K ~,\) ) X g (n) I + 
JF(w) c · · 
-aw-

+ (e(:/r (n))2 X g(n){ 1- ( J;l+K(
1
Al ) 0 (p)] t 

( 18 ') 

(Al () (Al () (Al lA) g ) g( ll -t2ecff n eeff p (K0 -K 1 )X (n X p . 

As a result the reduced probability of the 
EA -transition can be written as follows 

+ 77 f 
B(EA;O 0~1 1 K

1
)=B(EA;0 •wg)= 

2 -o o (A> 2 g (Al 2 g 
= (00Ap.)I 1 Krl-JF:;-r~ l(e ff(p)) X (p)-t(e rr (n)) X (n)-

. \Wg) e e ( ) --- 19 awg 
\ 

(,\) (,\) (A) 2 (,\) (,\) (A) J g g 
-[Ko (eeff (p)-eeff (n)) +Kl (eeff (p)+eeff(n)J]X (n)X (p)l• 

P(w g) 

aF(~ 
awg 

In /S/ c ale ula t ions have been made for even­
even deformed nuclei in the frame of the 
superfluid model considering multipole­
multipole interactions. The results are in 
satisfactory agreement with experimental data 
both on energy of low-lying states and on 

9 



EA -transition probabilities. The charac­
teristics of states at intermediate and 
high excitation energy may also be investi­
gated in the frame of thi~ model. However, 
the two factors should be taken into ac-
e ount 1_

6
1: high density of highly excited states 

and a significant complication of their 
structure. Consequently, simple vibrational 
and quasiparticle states will be fragmen­
tated over many nuclear levels and the anhar­
monic ef~ects play a more important role. 
Therefore, highly excited states cannot be 
studied individually neither in experiment 
nor theoretically. However, in spite of the 
structure complexity, in the study of direct 
electromagnetic transitions into the ground 
nuclear state or photonuclear reactions one 
may consider that the one-phonon compo-
nents of the wave function are mainly res­
poncible for these phenomena. Thus, a simple 
harmonic consideration may give a correct 
qualitative and even quantitative descrip­
tion of these effects in calculating pro­
bability of electromagnetic transitions 
averaged over some energy interval. The inter­
val of averaging is defined by the experi­
mental resolution, the vibrational states 
fragmentation range, and by accuracy of 
calculations due to uncertainty of the 
model parameters. In principle, expression 
( 19 ) for B (EA : 0 -+ w g ) c an be s t r i c t 1 y us e d for 
such calculations, for example, for deter­
mining photoexcitation probabilities of 
giant resonances of different multipolari­
ties. For this, having a solution of the 
secular equation (9') one should determine 
the energies of all the excited states w 
with given K17 in the energy interval L\ g 

10 
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their wave functions, find corresponding to 
them values of B(EA; 0 -+w g) an do averaging 
over a chosen interval~'\. As a result we 
obtain the strength function hreA

1
w) de­

fining the averaged va~ue of a reduced 
transition probability via energy w: 

b (E A I w ) = _l.. I A B (E A: 0 -+ w )I 
L\ g Ll g (20) 

~L\ means summation over all the states 

in the energy interval L\ with a middle 
point w. However, the strength function 
b(EA 1 w ) can be obtained much easier, 
i.e., without calculating in detail the 
wave functions and energy of each state. 
Let us define the strength function b(EA

1
w) 

as 

b(EA 1 w)= I B(E.\; 0-+w )p(w-w ). 
g g g (21) 

F 11 . /7 I . h f . . o ow~ng the we~g t unct~on ~s taken as 

1 L\ 
p(w-w )=- . {22) 

g 277 (w-w )2-t{l'\/2)2 
g 

This function has maximum at w=wg and 
a fast tendency to zero at lw-wg I -+ oo. It 
is normalized as follows 

DO 

f p ( w-w )dw = 1 . 
-oo g ( 23 ) 

Different from (20) in (21) the summation 
is done over a total set of states g with 
given K". However due to the fast decrease 
of the function (22) when passing w from wg 
the following relationship holds 

w+ L\/2 
f b (E A I w , ) d w • :: I L\ B ( E A ; 0 -+ w g ) • ( 2 4 ) 

w-L\/2 g 

11 
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Using (19) and (22) the strength function 
(21) may be written as a contour integral: 

~ P(w ) 1 
b (E A, w ) = -- l --..&.:- ---:z--- = 

2" g a F ( w g l ( w -w g l + ( <"1/ 2l 2 
aw g ( 25) 

P(z) · dz 

F (z) (:-=--;)2~(1\/ 2) 2-' 
-A-._1 f 
- 2 TT 2rr i c g 

the contour of integration Cg is shown 
in the figure. The equation (25) is obvious 
since f.unction 

t ( z ) = _?(z) p ( w- z) 
F(z) ( 26) 

in points z= wg_ has poles of first order 
(see eqs. (9'J and (13)). Taking into ac­
count that function t(z) is meromorphic and 
consequently, the sum of residuals with 
respect to all its singularities including 
the point at infinity is equal to zero, then 
b(EA,w) may be written in the form: 

b(EA,w) :=I 
c 

g 

-I 
c 

00 

- f 
c_ 

g 

- I (27) 
c 1 +G2 

Here it is taken into consideration that 
the function t(z) is holomoq)hic in points 
z = ± ( ( qq ' ) . The i n t e g r a 1 over c on t o u r C oo 

equals zero, since for Jz J .... oo the integrant 
is proport i anal to z-4 

. The strength func­
tion b(EA,w) has physical sense at w> 0 
only. With that one can easily see that 

12 

I 
c­g 

A__ l p (~ ___ !_ __ __:_ __ , 

2rr g aF(wg) (w+w )2+(<"1/2)2 
--- g 

(28) 
aw g 

lmaginazy axis@ 

Wti-j 

Qc, 

Real axis 

Complex z -plane and integration con­
tours for function t(z) (26). Poles of t(z) 

are shown on the real axis at z=w and u> _ 
d + . L'1 g g an Z=w_ 1-. 

2 

. • -2 
1.e., 1t decreases monotonously -w and 
can be neglected at large enough values of 
w. The equation (28) gives the greatest 
contribution when calculating the reduced 
probabilities of the lowest states. However 
in this case the number of levels is small 
and one may use an exact expression (19). 
Direct calculations have shown that the 

contribution of (28) to (27) is negligibly 
small even at w equal to the energy of the 
lowest phonon. 

13 
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In (27) f is the contour integral around 
f: I+ C~ . . 

points z 1 2 = w ±it'1 /2 which are the poles of 
the first order of the function p( w -z), 
and consequently of t(z). Finding residuals 
d ire c t 1 y in point s z 1 ,2 , fin a 11 y , one obtains . 

h(EA,w )"'- f =A !. res[Thl --~-'?\2] 
r: 1+c2 211 1,2 F(z) (w-z) +(.1/2) z =w±iL\/

2 
1,2 

1 2 
= -- ( o o A ll 1 I r Kr ) ( 2 - o ) x 

71 ll·o 
r--1 (29) 

x Iml-------------
( (A) g)( (,\) g) 
I- K 0 X I- Kl X - K 0 K I 

·----------------x 
(X g (n)- X g (p )) 2 

(A) 2 g (A) 2 g 
x[(erff(p)) X (p)+(erff {n)) X (n)-

- Xg(n)X g(p)[ K (,\) ( e (,\) (p)-e (A) (n)} 2 + K(A)(e (A) (p)+e(A) (n)) 2JJ1 
0 df eff I eff eff 

w-•(rJ+ iL\ /2 

3. SUM RULES AND PHOTOABSORPTION 
CROSS SECTIONS 

In the study of the giant multipole reso­
nances different kinds of sum rules appear 
to be useful. They allow one to estimate the 
degree of collectiveness of giant reso­
nances. It can be shown that if the operator 
of EA -transition is represented in the 
form 

"' + Q = !. M ( Q +Q ), g g g (30) 

where Q~ and Mare defined by (4) and (16), 
then 

. I "' "' 2 S, =!.w B(EA;O-+w )=-2 <[Q,[H ,Qll>=e (2-o 
0 

)x( ) 
1\ g g g v ll• 31 

xl(e(f,\f) (p))
2

!., (u ,fg(rr' ))
2
drr')+(e(Af)f (n))2I (u ,fg(ss'))2dss') I. 

e rr rr e ss , ss 

14 

This is the model dependent energy-weighted 
sum rule (EWSR). It permits to find the 
strength share for EA -transitions for 
states in a certain interval of excitation 
energy. 

Especially interesting is a so-called 
model independent energy-weighted sum rule. 
Neglecting the exchange and dependent on 
velocity forces and performing summation 
over excited levels below meson-creation 
threshold one obtaines the following sum 
rule for A>l ,T=O,l (see, for example/81 

SA=!. w B (EA; 0 -+w )=3 A(2A+l) Ze~2 R~A-2 
g g g 471 2m 

=4.8A(3+A)2 _z..._B(EA) (MeV), 
(32) 

A2/3 s.p. 

I /3 2A+ 1 3 2 2,\ where R0=r
0
A , r 0 =1.2fm , B(EA) = --(-

3 
,-) R

0 
e2 

s.p. 471 +A 

is the single-particle probability of EA­
transition. Here summation is done over all 
transitions to one-phonon states with all 
p o s s i b 1 e p. at a given A. For ex amp 1 e , for 
A= 2 the left hand part of (31) comprises the 
transitions to the states with Itr K1 equal 
to 2+0, 2+ 1 and 2+2 191. 

In the case of El -transition EWSR has 
the form 

s ~ 9 2 2 
1 = -4 wgB (El; 0-+ w ) = _ ..!.JL N Z 

g g 811 m A ' ( 3 3 ) 

which transforms into a well-known Tomas­
Reihe-Kunsum rule for the dipole photoab­
sorption cross section 

"" 2 
2 2

1i NZ NZ 
aE 1=f o (w)dw=!.o 1(w )= 17 

e -A =60-A (MeV-mh),(34) 
- 0 E 1 g E g me 

15 
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if one minds the relationship between the 
photoabsorption cross section at g level and 
the probability of electrical transition 
0 •w : 

g 

? tJ c 2 
a (w )=11-(---) nw(EA; 0 •w ). 

EA g uJg g ( 3 5 ) 

A+l Wg 2Atl 
1iw(EA;O •rtJ )~811------.,(-) B(EA;O •w ). 

g A [( 2A + 1 ) ! ! I - en g ( 3 6 ) 

In ~me cases we may find useful the 
relationships between the photoabsorption 
cross sections and the probabilities of the 
corresponding electrical transitions for 
the lowest multipolarities: 

a (w h 
f:A g 

') 

0.282rv B(El;O >w )[e-.frrd=4.04ro B(E1;0 •rv )[MeV.mb I 
g g g ~ 

( 3 7 ) 
:-6 :l 2 -6 :l 

0.217.10 w B(E2;0-.uJ)[e .fmi=3.12.1Q <LJ B(E2;0 •rtJ) g 
" " '"' " r 

[Mev. mbl 
0.101 .w- 1 ~Ji B(E3;0-•w )[e2 ·fml ~ 1.44-I0- 11:> B(E3;0 •ro ) 

g (J CJ' 

'"' " 
[MeV.mbl 

The above described procedure for deter­
mining the strength functions for reduced 
probabilities of electrical transitions 
b ( EA ,<ll ) , as i s s e en from form u 1 as ( 31 ) - ( 3 7 ) , 
may be applied for obtaining the energy­
weighted sums~ (31) and photoabsorption 
cross sections aFA (35) in dependence on the 
energy. Corresponding formulas can be easily 
derived if the relationship between the 
values SA and a~:A• and B(EA; 0 •w g) defined by 
(31)-(37) is taken into account. For 
example, for the energy-weighted sum we get: 
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S,\(w)=Iw B(EA;O ... w )p(w-w )=.Lim z.P(zLI. (38) 
g g g g 17 F (z) 

z=w+ i~/2 

/10/ . ) In refs. us 1.ng eq. ( 29 the reduced 
probabilities photoexcitation cross sections 
of giant dipole, isoscalar and isovector 
E2- and E 3 -resonances were c ale ulat ed for 
a large number of deformed nuclei. 

T d /ll/· he present metho 1.s more advantageous 
in application in comparison with convential 
method. The latter means a solution by 
a computer of a great number of complex 
equations in order to find directly.the 
energy and wave functions of nuclear excited 
states. Our method takes several orders 
shorter computational time, final result 
being the same. This method can be used in 
the study of other processes taking place 
in spherical and deformed nuclei, in parti­
cular, in the study of excitation of giant 
resonances in reactions with different 
particles. The application of this method 
may give a possibility of investigating 
highly excited ;Y:fftes of nuclei of a more 
complex nature · 
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