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lMpopeneno o6obwenne dopmyn, onucriBaomWHX B pamkax RPA opHodoHon-
Hbl@ COCTOSHHA CNOXHLIX YeTHO-4YeTHbIX fdep C ONHOBPEMEeHHBIM YYETOM
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[ Bucoxoaoasyihennux COCTOSIHHIl W pana XapakTepuCTHK THUIaHTCKHX
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One-Phonon States in Deformed Nuclei for
Iscscalar and Isovector Interactions

The formulas describing one-phonon states of comp~-
lex even-even deformed nuclei in the frame of RPA are
generalized to simultanepous consideration of isoscalar and
isovector multipole-multipole interaction. The formalism
reported gives a united description of low-lying states
and of several characteristics of giant multipole reso-
nances. Here we present a procedure of expressing the
reduced probability B(EA;0+0->If'Kf ) and energy
veighted sum rule (EWSR) by means of strength functions
averaged over some energy interval. This procedure makes
calculations much easier allowing not to solve the

seqular equation for the energies of one-phonon states.
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In recent years much interest arises in
experimental and theoretical study of giant
multipole resonances in atomic nuclei. The
investigations beyond the frame of the
phenomenoclogical approach/!2/ are important.
In the description of the structure of low
lying collective states the phonons are
used with characteristics calculated taking
into account the multipole-multipole inter-
action’3*" . For describing the region of
giant multipole resonances one needs phonons
which characteristics are calculated consji-
dering both isoscalar and isovector multi-
pole interactions simultaneously.

In the present paper the formulas written
for one-phonon states are generalized to
the simultaneous consideration of isoscalar
and isovector multipole-multipole interac-
tions.

1. SECULAR EQUATIONS AND WAVE FUNCTIONS
OF THE ONE-PHONON STATES

To describe the giant multipole reso-
nances we introduce the phonons with iso-
topic spin T=0 and T-l withT,=0.In complex
nuclei the collective vibrations with T=0
and T=1 are not independent and, hence,
one should consider them simultaneously.



ticle state of the neutron and proton sys-
tem; so 1is that for the neutron system,

and ro 1s for the proton systemjo=*ftl. The
part of the Hamiltonian (1) for calculating
one-phonon states can be written as

H\, = 3 s(q)B(qq)—
q

FollowingM/
has the form:

the Hamiltonian of the system

H=Hav +Hpair+HQ' (1)

where H,, ~describes the average field, Hpair 1
is the interaction resulting in the pairing !
correlations of superconducting type, HQ
has the form
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H, ,\ﬂ>20 fxy +K )[Q)tu (n)Q/\ﬂ (n)+(&u(9)(Q/\sl(P)]+
2

+g - )QF (Q, )4y (p)Q, (w1,

I - 3 2 2wl _v2 ) q20ig20i", ,20] ﬂn

4 (/\y,2() }',{G'\I%Q,[(us VS)(L!S, vs’)qssqs's' P W L
S22 32 90§ 2057 20)  20f ]
*Gz?‘r‘[(ur_vr Wul —v )gr g7l ww Twll HQ?()J 20]
(5)

+ . . o’ ,
here Q) (n) 1s the multipole momentum ope- _L_L;((A)+KM)H 2 u ,u Lf8(ss")gB f° (s s')gh& ¢
2 , 1 ; sésgs a5 22 Sy
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Let us 1introduce the phonon creation (qi) %qq) g
g 8 5. 8
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g aq’ {¢ (aq”) %q’ (qq )4, (k) Gy and G, are the pairing constants.
where , The wave function of a one-phonon state
has the form:
Alqg’)= L% 0, a or L-%q a, , .
VI o 1o tae VZ o M0 ¥, (6)
Ag is the operator of quasiparticle absorp-
tion, g=Auj,j being the number of collec- . where ¥ denotes the phonon vacuum. Accor-
tive states with given Ay »qo denotes the ding to the orthonormalization condition of
set of quantum numbers for a single-par- eq. (6) we have:



zg w8 -28 (1)
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Following ref.’ we shall find the energy
wg of a one-phonon state with fixed Ay or
K7 by variational principle defined as: ,

oo LB s g8 wE, _2]}=0. !
8{<QgHng> 5 [qq,gqq,wqq, ] (8)
After some transformation one obtains the
following secular equation 'ﬁ
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which form coincides with that of eq.(8.134)
in ref. ““ Here
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Eq. (9) can be written as
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where X5-X®(n)+X8(p).Note, the influence of the
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on the first onff

values of constant KM>
Phonon states was 1nvest1gated in ref.
where the introduction of;qA)was shown
to cause the renormalization of the cons-
tantx without noticeable change of the
state structure Therefore only isoscalar
strength componenthA) wvas used, in further
calculations of the properties of low

lying states 1n isovector constant KQ)
being assumed to be zero. :

In finding the gk . and w® , functions
one makes use of tﬁg normalization condi-
tion of eq. (7) and after cumber transfor-
mations obtains:
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Expressions for g »w?E. look similarly
with replacement of Cp 5, y: ,yﬁ by C, ,
EE v E ,y =1, whlch correspond to
neutrons

Here
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Y (n )_ (fg (SS’)uss fc(SS’)mg 1 9X5n)
[f (ss ) - 2 ]2 4 Jdo ! (l)-l-)
expre551on for Y(m being analogous to
exp. (1l4). If the isovector strength com-
ponent is absent(KFLO)thenyg 1 and exps.
(11)- (lh) have the form reported in chapter 8
of ref.

2. EX ~-TRANSITION PROBABILITIES
—

We shall obtain formulas for reduced pro-
babilities of EA -transitions from the ground
states of even-even nuclei to the excited
states with “"f K;.In case the multipolari-
ty A of the electrical transition coincides
with that of a phonon of excited state, then
follow1ng/4/we have

+ 7
B(EA;00 o I¢"T K ()=(00ay |1 K,) M (15)

_,2-3 Q) [
M=o(Z222 zﬂ__){ (ME £ (rr” )g u o+ (16)

(M (n) 2 f#(ss )g . L
The effective electrical charges are

W) (A)
e (Pl=e+e pot (P)

17)
\) W) (
e (r) =€ ol (n),
where according to“/
Q)
pd(m— l(T m— p (T=1),

R0y o«) 0
e o (M =el (T=0)+epgl (T=1).

As is known for El -transitions the effec-
tive charges are

oD N (1 Z ,
e (P)= S Cenr (n)= - g (177)

Using formula (11) we get

2-5 1/2 @A)
M=_-(_ oy [ei'\[)f (p) X (p)yp+eerf ()X (n)]. (18)

Ye
We perform some transformations of this
expression considering exps. (9°), (127)
and (13)

—L"x( ‘“(p)) XEp) (1= (M N )X B(n) ]
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As a result the reduced probability of the
EAX -transition can be written as follows

B(EAI 0701 K )=B(EAIO o )=
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In/s/calculations have been made for even-
even deformed nuclei in the frame of the
superfluid model considering multipole-
multipole interactions. The results are in
satisfactory agreement with experimental data
both on energy of low-lying states and on




EA -transition probabilities. The charac-
teristics of states at intermediate and

high excitation energy may also be investi-
gated in the frame of this model. However,
the two factors should be taken into ac-
count/ﬁﬂ high density of highly excited states
and a significant complication of their
structure. Consequently, simple vibrational
and quasiparticle states will be fragmen-
tated over many nuclear levels and the anhar-
monic effects play a more 1mportant role.
Therefore, highly excited states cannot be
studied individually neither in experiment
nor theoretically. However, in spite of the
structure complexity, in the study of direct
electromagnetic transitions into the ground
nuclear state or photonuclear reactions one
may consider that the one-phonon compo-
nents of the wave function are mainly res-
poncible for these phenomena. Thus, a simple
harmonic consideration may give a correct
qualitative and even quantitative descrip-
tion of these effects in calculating pro-
bability of electromagnetic transitions
averaged over some energy interval. The inter-
val of averaging is defined by the experi-
mental resolution, the vibrational states
fragmentation range, and by accuracy of
calculations due to uncertainty of the

model parameters. In principle, expression
(19) for B(EA; Oawg) can be strictly used for
such calculations, for example, for deter-
mining photoexcitation probabilities of
giant resonances of different multipolari-
ties. For this, having a solution of the
secular equation (9’) one should determine
the energies of all the excited states o
with given K" in the energy interval A ,

10

their wave functions, find corresponding to
them values of B(EA; 0w ,) an do averaging
over a chosen intervalA. As a result we
obtain the strength function b(EA,w) de-
fining the averaged value of a reduced
transition probability via energy o:

b(E)\,w)=-k§AB(E)\;0->wg ), (20)

%A means summation over all the states

in the energy interval A with a middle
point w. However, the strength function
b(EA, @ ) can be obtained much easier,
i.e., without calculating in detail the
wave functions and energy of each state.
Let us define the strength function b(EA )
as

b(EA,m):EB(E/\;O—»wg)p(m-wg ). (21)

8

Following/7/the weight function is taken as
plo-o )= Lo A (22)

27 (w-0,) H(A/2)%

This function has maximum at w=w, and
a fast tendency to zero at |w-wg +00. It
is normalized as follows

_EP(w—mg)dw:l. (23)

Different from (20) in (21) the summation
is done over a total set of states g with
given K”. However due to the fast decrease
of the function (22) when passing w from wg
the following relationship holds

w+A/2
w_fA/zb(EA,w')dw': EgAB(EA;O—»wg ). (24 )

1



Using (19) and (22) the strength function
(21) may be written as a contour integral:

A Plw,) 1
b(EA,w) ==~ 2 A =
AR 27 & aF(a_)g_) (O.)-a)g)2+(A//2)2
P | (25)
p(z) >dZ

'

-A. 1y
27 27i C, F(z) (4-2)24(A/2)2
the contour of integration Cg is shown
in the figure. The equation (25) is obvious
since function

t(z)=—p(z)p(a)—z) o . (26)
F(z .
in points z=¢, has poles of first order

(see egs. (97) and (13)). Taking into ac-
count that function t(z) 1is meromorphic and
consequently, the sum of residuals with
respect to all its singularities including
the point at infinity is equal to zero, then
b(EA,w) may be written in the form:

bEAw) = [ = -f - [ - . (27)
('g (lm CE CI—{-(‘.‘2
Here it is taken into consideration that
the function t(z) 1is holomorphic in points
z=*¢(qq" ). The integral over contour Cw
€quals zero, since for |z]-» = the integrant
is proportional toz*. The strength func-
tion b(EA,w) has physical sense at w>0
only. With that one can easily see that

Plw,)
- & L 28
c~ 27 & 9Flwg) (4,0 )21(A/2)2 (28)
8 do o g

12

Imay[nazy aris @

Real axis

Complex 2z -plane and integration con-
tours for function t(z) (26). Poles of t(z)
are shown on the real axis at z=w and o_
and Z=wii-é. 8 8

i.e., it decreases monotonously =~ - and
can be neglected at large enough values of
w. The equation (28) gives the greatest
contribution when calculating the reduced
probabilities of the lowest states. However
in this case the number of levels is small
and one may use an exact expression (19).
Direct calculations have shown that the
contribution of (28) to (27) is negligibly
small even at w equal to the energy of the
lowest phonon.

13



In (27)f is the contour integral around
) Cr+Gy . :
p01nt§ Zy 9= @ *iA /2 which are the poles of
the first order of the function plw=-~z),
and consequently of t(z). Finding residuals

directly in points z;, , finally, one obtains.

bEX,w)== | -A_ 5 res(Plz) 1 !
Ci+G 27 1.2 F(z) (w-2)°+(A/2)2

2=miiA/2

z]’
1 2

=—(00Au | LK, ) (2 -5
. kK)o wo VX (29)
1

s
x Im}

(A ’
(1- KO)Xg)ﬂ—K?)Xg)— Ko %4 (Xg(nﬁ-xg(P»z

X[(e:'}f) (P))2xg(P)+(e(f?f) (n))2Xg(n)—

B B A, ) 2
XX ") 07 (e A ph-e 4 0”4 < Wie ) (), eh) 2y
wx+iA /2

3. SUM RULES AND PHOTOABSORPTION
CROSS SECTIONS

In th§ study of the giant multipole reso-
nances different kinds of sum rules appear
to be useful. They allow one to estimate the
degree of collectiveness of giant reso-
nances. It can be shown that if the operator

of EA -transition is represented in the
form

s N

Q gM(Qg+Qg), » (30)
wvhere Q; and M are defined by (4) ana (16)
then ' ’

S =2 M -" ——1— ) 0 2
A . wgB(E/\,O (()g)— 2 <[Q '[HV ,Q]]) =€ (2"8#’0 )X(3l )
xHeQ)@»22(u £8(cr” 2., a, 2 g
1 2 (e o (rr ) elrr )+(ee” (n)) E,(uss,f (ss'))zc(ss')!.
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This is the model dependent energy-weighted
sum rule (EWSR). It permits to find the
strength share for EA -transitions for
states in a certain interval of excitation
energy.

Especially interesting is a so-called
model independent energy-weighted sum rule.
Neglecting the exchange and dependent on
velocity forces and performing summation
over excited levels below meson-creation
threshold one obtaines the following sunm
rule for A>1 ,T=0,1 (see, for example,M/ )

@r+)) ZeM? QA2
4n 2m 0

—_— b —» -— A
S’\~ ? wgB(E/\, 0 mg)-3

S (32)
=4.8M(3+A) —Z-B(EA) (MeV ),
A2/3 s.p.
where Bo=roA]/,3r0=1.2fm . B(E,\)s.pz. %—l(%\— )2 RZO'\ e?
is the single-particle probability of EA -
transition. Here summation is done over all
transitions to one-phonon states with all
possiblep at a given A. For example, for
A=2 the left hand part of (31) comprises the
transitions to the states with I,"' K; equal
to 240,21 ana 22"
In the case of El -transition EWSR has
the form
2,2

. 9 €K Nz
Sl=§mgB(E1.0+wg)=§—”—T—A—. (33)

which transforms into a well-known Tomas-
Reihe-Kiinsum rule for the dipole photoab-
sorption cross section

2 2
o0 2n“e“h NZ .o NZ
1= % (@ldo=2 op, )= Sg—— T =60 S (MeVamb) (34 )

15



if one minds the relationship between the
photoabsorption cross section at g level and
the probability of electrical transition

W M

ag
O

2,hec |2 ‘
(IH/\((Ug)=77 (—(‘Z) T]W(EA, 0 —x(ug ): (35)
Hw(EA; 0 vey )=8r—AtL (3)2)\-”8(&\.0 o)

AP TP W TTITR A 0-0,). (36)

In sbtme cases we may find useful the
relationships between the photoabsorption
cross sections and the probabilities of the
corresponding electrical transitions for
the lowest multipolarities:

0.282 B(EL;0 m")[ezofm]=4.04mgB(El;0 @, ) [MeV.mb |
(37)
B(E2;0 ¢ )

[MeV. mb]
- 4 9 R
0.101.10 l%f’B(E3;0»a%)[ékfm]:1.44-1042Q18(E3;0 v )

-6 3 2 -
UPI/\(&)E’): 0.217.10 (ugB(EZ;O'»(ug)[e -fml:3.12-10 ()(u

3
o
[l

[MeV.mbl

The above described procedure for deter-
mining the strength functions for reduced
probabilities of electrical transitions
b(EA @), as is seen from formulas (31)-(37),
may be applied for obtaining the energy-
welghted sums S, (31) and photoabsorption
cross sections op, (35) in dependence on the
energy. Corresponding formulas can be easily
derived if the relationship between the
values S andr@“,andEHEA;O»w") defined by
(31)-(37) is taken into account. For
example, for the energy-weighted sum we get:

16

. - P(
S/\(w)=?wgB(E/\,O—»wg)p(w-wg):Tlr—Im-—zFT;)E)—-I . (38)
zZ=w +iA/2
/10/

In refs. using eq. (29) the reduced
probabilities photoexcitation cross sections
of giant dipole, isoscalar and isovector
E2- and E3 -resonances were calculated for
a large number of deformed nuclei.

The present method/“/is more advantageous
in application in comparison with convential
method. The latter means a solution by
a computer of a great number of complex
equations in order to find directly the
energy and wave functions of nuclear excited
states. Our method takes several orders
shorter computational time, final result
being the same. This method can be used in
the study of other processes taking place
in spherical and deformed nuclei, in parti-
cular, in the study of excitation of giant
resonances in reactions with different
particles. The application of this method
may give a possibility of investigating
highly excited/§£ates of nuclei of a more
complex nature .
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