


1. INTRODUCTION

The problem of the optimal texture experiment was formulated by the author in
his other article (Luzin, 1997). It was shown that the optimal texture experiment can be
conducted if the texture is known. When the texture can not be initially estimated the
standard or an overabundant measurement grid is used to prevent loss of information.

How should the data from this experiment be processed? The one possible answer

is to smooth the directional data. Some successful attempts have been made to apply this

procedure for processing the probability density functions on the sphere (Traas et al., -

1993; Schaeben, 1996; Nikolayev et al., 1996). In this paper the smoothing procedure in
the form used by Nikolayev et al. (1996) is applied

J
N w.P(F,) 2
= j=t J R W’ o
Ph:m”mh(yk):“‘*jzj - ] Wj = exp ——(D—‘;- y (Dj =0"CCOS(yj.yk),
j=1 0 J

where @ is the smoothing parameter.

Usually raw pole figures (PFs) contain statistical noise. High degree of smoothing
however leads to loss of information. Only ‘optimal smoothing provides proper
smoothing when statistical noise is eliminated and, at the same time, oversmoothing is
avoided. In this paper, the main attention is paid to the fact that the optimal smoothing
parameter (degree of smoothing) depends on the size of the investigated sample (or the
number of grains) in the texture experiment and the sharpness of the texture. Both facts
are built into the consideration in the same way as it was done in (Luzin, 1997).

As a result the solution of the optimal smoothing problem is directly connected
with the solution of the optimal measurement problem when the texture is known
(Section 2). Optibmal smoothing can also be carried out in a self-contained way even if

the texture is not initially known (Section 3).

2. THE OPTIMAL SMOOTHING PROCEDURE

Let us take a sampling of size N from the sample multitude of orientations

described by some true ODF f'(g) and the corresponding PFs P, (5). The actual

-

distributions can be written as
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They yield the observed (experimental) distributions determined on a certain
measurement grid T = {yj} L i=1.,J:
- - = - - 2
Pi(5,N)= [BG.NK(.5,da5),  5.5;€5°,
ﬂj .
where K(3,5,) is the integral kemel which reflects the conditions of the texture
experiment.
The recipe for chosing the grid parameter for the given N in the optimal way was

already reported (Luzin, 1997). Next, the following problem is of particular interest. Let

us assume the experimental PFs 'Ph‘f. (y 1L N) are measured for the given number of grains

N and the fixed measurement grid I = {y j}. Can one improve the obtained data (in the

sense of RP-value) by the smoothing procedure? In this article the problem is
investigated directly by plotting quantitative dependencies of RP-value on the variables '
of interest. The simplest texture model of the Gaussian distribution with the center at
&=1{0,0,0} and HWHM=19.7° is used for further calculations.

The most informative is the behavior of the RP-value on the smoothing parameter
o and the equiangular grid parameter Ag when the number of grains N is fixed for the
given texture. This dependence is presented as the surface and sections of this surface in

Fig. 1. It should be emphasized that the minimum RP-value achieved by smoothing is
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Fig.1. The dependgnce of the RP-value on the smoothiné ;);z‘iré.lm'éter. aﬁd fhe gfid
parameter plotted as a surface (bottom) and as its sections (top).
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Fig.2. The dependencies of the RP-value before pole figures smoothing (dashed circles)
and the minimum achived RP-value after optimal smoothing (clear circles) on the grid
parameter of the net used. As an illustration, the pairs unsmoothed-smoothed pole
figures (100) are plotted.



precisely the Jimit achieved in the optimal experiment. So the use of optimal smoothing
on the fi xed grid leads to the same result as the optimal experiment with optimal grid.
This is actual only for gnd parameters less than the opttmal one For gnd parameters

greater than the optlmal one‘the smoothlng procedure can not decrease the resultant RP—
value. Flgure 2 illustrates the aforesald {N=5000 grains, Ap=5").

Different values of N produce surfaces analogous to the surface in Frg 1 with the
following features. The greater the number N the lesser is the optimal, smoothing

and the mlmmal achieved RP- value RP,;, =RP(®,, ).

min

parameter @,

From the multitude of - the above-mentioned surfaces (scanning by N) an

information about.,.,the dependence of ®,, and RP = RP(®,,) on N can be

min

extracted. It turns out that these quantmes have a very expressed behavior shown in Fig.

3 for the grid parameters A(p 5°,15°,30" and the gram numbers in the range N=100-

50000. Due to the fact that the optimal smoothlng parameter o,, and the minimal

opt

achieved RP-value, RP,, = RP(®,, ), are directly connected with the optimal
parameters of the optrmal grid problem, in the range of the smallesi values the curves

mopl (lpl

(N) and RP,, =RP, (N) coincide and are iindependent of the grid
parameter AQ. This._, branch appears as line in double logarithmic scale and is described

by A
A ' A
@, =7 RP =5

where the coefﬁcients A and A, depend only on the sharpness of texture and

numerically determined constants pandgare p= 03 qg=0. 17
The N-range where the linear law holds determmed by the grid parameter As Nis
getting larger. and larger and statlsncal €ITorS . decrease, the dependence on N deviates

from the linear behavior and tends to some limit. This limit corresponds to

approximation errors: and is specrﬁc for-the:chosen’ grrd For the glven gnd parameter

A the dependence on N beglns to deﬂect when N achleves the value Nop, for whxch "‘

the given grld parameter A¢ is close to the optimal one. Then in the 11m1t N> Nop, .
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Fig.3. The dependencies of the optlmaI‘smoothm g parameter (top) and minimum RP—value
(bottom) on the number of grains in the sample. (Dashed pomts are unsmoothed data)
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optimal smoothing parameter ®,, and the minimal RP-value RF,, achieve their

lowest level so and quality of PFs is scarcely affected by the optimal smoothing

procedure.

3. ARE THE OPI’IMAL SMOOTHED POLE FIGURES. OPI‘IMAL FOR
THE ODF REPRODUCTION AS WELL‘7

The question placed in the title bf this section is of prirﬁe iﬁterest for anybody
working in the field of QTA. In the frame of the outlined approach the influence of
smoothing on the ODF reproduction can be elucidated. ] .

Three sets of PFs are at hand after the ODF reproduction procedure: the exact
(true), experimental and the reconstructed PFs. Comparison of these sets for -various
smoothing degrees gives us information about the goodness of the smoothing procedure
for the purposes of ODF reproduction. The quantitative dependencies of all possible RP-
values (RP(exp,true), RP(exp,calc) and RP(calc,true)) are shown in Fig. 4 for the above
mentioned texture. The Bunge (series expansion up to L=22) method and the

component method were used. The optimal smoothing parameter ®,,, is described as
the position of the RP,,, (exp,true). From Fig. 4 the meaning of the optimal smoothing

parameter follows. ‘

In the component method O is when RP(exp,calc)=RP(calc,true). This means
that the set of calculated PFs is at equal distances from the experimental PFs and true
PFs sets and the RP-value is the measure of the distance. In the Bunge method, ®,,

coincides with the actual position of the RP,,,(calc,true). These results show the

advantages and validity of optimal smoothing.

4. SMOOTHING OF THE REAL EXPERIMENTAL DATA

Relatively simple dependencies of the optimal smoothing parameter ®,, and the

opt

minimum RP-value give us a hint as to how to apply the smoothing procedure to the real

8

¢35 1S
g0 X e g e ‘o
25 optimal smoothing
ES parameter .
@ 20
lﬁfg Kl ;k 'i—.; N
T 15 &7 ~AL
R 2
10 —
s e RGO e
hN-- A ~A- X "~.-_. _______ °
0 — T I T T ™ T T T T T T ";:T—‘_:Tj_;r_j

.00 10-:20 30- 40 50 607 7.0 80 90
smoothing parameter, deg

—>— RP(EXP,TRUE)

-@- RP(EXP,CALC), Bunge method

| - &~ RP(CALC,TRUE), Bunge method
--(- RP(EXP CALC), comp. method
-7\- RP(CALC,TRUE), comp. method

Fig.4. The comparison of reconstructed PFs and experimental PFs with respect to lhe

true ones. (N=5000 grains, 5°H5° measurement grid).



texture data. Since the optimal values can not be evaluated without knowledge of the
texture, i.e. before the experiment, the following alternative can be proposed.

Let the number of grains be known and the grid be fixed. The first approximation
of the texture can be done by the component method of ODF reproduction. Then, the
optimal values can be evaluated and the procedure of optimal smoothing can be
performed. After that the smoothed PFs can be used for the second approximation of the
texture and the next estimate of the optimal smoothing parameters. This iterative

- procedure provides the lowest level of statistical errors.

5. CONCLUSION

In this paper, smoothing of the pole density data defined on the sphere was
investigated with respect to grain statistics (the number of grains in the samplé). It turns
out that for the minimum RP-value between experimental and true PFs exists when the
smoothing parameter varies. This optimal smoothing parameter provides the optimal
smoothing procedure and minimizes the statistical errors connected with grain statistics.

The validity of optimal smoothing is confirmed for two ODF reproduction methods

(Bung and component methods).
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Tysun B. E3-98-330
OHTHMHBaHHH TEKCTYPHBIX HBMCPCHHﬁ.

OnTuManpHOE CrilaXKHBaHHE

Panee HaMu ObI/IM M3M0XEHBI OCHOBHBIE NPUHLMIEI KOTHYECTBEHHOIO NMOAX0AA
K PELIEHHIO 3alaud ONTHMUW3aUMH TEeKCTYPHBIX H3MepeHHil. B HacTtosueil paborte
MUTOXeHbl JarbHeiilllie NPOIBUXEHHS B JAHHOM HalpaBIEHUH.

Pa3BuTelit KOJMHYECTBEHHBI MOAXOA 3J€Ch NPHMEHEH MUl pEleHUA 3amaduu
ONTHMaNbHOrO crnaxusanus. [lokazaHo, KaK NapaMeTp ONTHMAILHOTO CIIIAXKHUBAHUA
3aBHCHT OT CTaTHCTHKHM 3epeH, T.e. OT 4HC/la 3epeH B obpasue. [IpeanoxeHa cxema
MU ONTHMATBLHOTO CIVIaXXMBaHUA pEaIbHBIX AAHHBIX TEKCTYPHORO 3KCNEepUMEHTa
(nomocHuix ¢uryp). B

Takxke oOcykKnaercs npUMEHeHHe NpPOLEIyphl ONTHMAIBHOrO CrIaXHBaHHSA
Mo OTHOWEHHIO K OCHOBHOH 3azaye KOJWYECTBEHHOTO TEKCTYPHOTO aHanu3a (Boc-
CTaHOBNEHHIO (PYHKLHH pacnipese/iecHHs OpHEHTALMIA).

Pabora Beinonuena B JlaGopatopuu HelTpoHHoH ¢u3nuku uMm. U.M.Dpanka
Ousn.

MMpenpuyt O6heAHEHHOro HHCTUTYTA AfepHEIX ucwienopanuii. dybna, 1998

Luzin V.
Optimization of Texture Measurements.
Further Applications: Optimal Smoothing
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In our previous paper (Luzin, 1997) the basic principles of the quantitative
approach to optimize the texture measurements were obtained. This paper is
the report of advances in this.

The quantitative approach is used to solve the smoothing problem. Smoothing
by singular integrals with an integral kernel used by Nikolayev et al. (1996) is used
in this paper. 1t is shown how the optimal smoothing parameter depends on the grain
statistics, i.e. the number of grains in the sample. The algorithm for optimal
smoothing of real pole density data (pole figures) is proposed.

Also, the application of optimal smoothing for solving the central problem
of quantitative texture analysis (QTA), i.e. orientation distribution function (ODF)
reproduction, is discussed. '

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR. : ‘
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