


1. INTRODUCTION

- Every experimental method of Quantitative Texture Analysis (QTA) deals with
samples which consist of some limited number of grains. In real samples this number
can vary from hundreds to millions or even a larger number of individual orientations.
As a result, grain statistics is one of the most important causes of statistical errors that
affect the measured data. The whole list of these causes also includes the grain-size
statistics, neutron (electron) counting statistics, etc. This leads to the problem of pole
(orientation) density estimation on the sphere §2 (group SO(3)) with a constrained
sample size. Some aspects of this problem were listed by Schaeben (1982) (see also
references therein).

This paper is one more attempt to solve the mentioned problem on the sphere in a

self-contained and easy-to-use form. In the general approach, different errors (grain

statistics errors, grain-size statistics errors, approximation errors) depending on the

external conditions (measurement grid, geometry of the experiment, the detector

window width or the integral kemel) and the texture were taken into account (Sections

2-4). This approach was applied to the problem of optimal grid parameter estimation

(Section 5) and to the problem of optimal smoothing (Luzin, 1997). This approach
allows an extension for determination of other parameters in the optimal way, for
example, the optimal measurement grid (optimal equidistributed pointset) on the sphere
(cf. Cui et al.,, 1995).

The advantage of the optimal measurement grid is apparent: the necessary

measurement time is inversely proportional to the square of the grid step (further grid

parameter). So a time-saving technique can be used, especially, in measurements of

series of samples with close textures. . .

2. FUNDAMENTALS . . . . . - .

) 1
The ODF f(g) is considered as the orientational. density _87 f (g) on‘ the

' N
rotational group G =SO(3) and the PFs P, (¥) as.the pole density II;P"‘ (9). defined

on the-sphere 2. The normalization properties are: : -
L[ fepe=1, =[5 (Ha()=1.
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The fact is that the specimen measured. in the texture, experiment is obtained by
sampling from the sample multitude with a true ODF f*(g) and the PFs }P,,: (3). If the
size of the specimen or.the number of grains is N, then the specimen is described by the
sampling ODF in terms of 8-functions on SO(3)
. =N, - ‘l.' ~ : .
f (g,N)——ZV 5(ger'), V=2V, WJS(gg,,‘)dgﬂ. )
o 2

n=l - n=1
Also, for PFs we can write

N A \,l A. -. ~ _ . .
'P,,.’_(i,N)=$2;V,,6(5"—“,,), 'Ejé(y—yn)dw(y)ﬂ- @
n= s? . :

Mathematically, experimental PFs_F; (j}’] N ) are-’

B (5,N)= jP,;(y,zv)K(y,yj,{p})dm(y);—- jieTs j=lL.0. (3

] . ' Doy :
Here T"is the predetermmed measurement gnd thh J —#F pomts K(y, Vi {p}) is the
integral kemel for the ]lh pomt thh the local support Q (for more details see
Schaeben, 1982; 1996). The dependence on y 1ndlcate that the integral. kernels may

differ from one another for different ] The {p} 1s the set of parameters for the kemel »

(y, ¥ {p}) r, {Q } are deterrmned by the detector system
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texture experiment. In the simplest case, {Q j} is a solid angle of the dértc'ctor window

for the jth points and

K(5.5,.{0}) = {‘/"Q;" y eg | @

yeQ;
when the detector has uniform sensitivity within the window.
In this paper, we adopt this simplest model of texture measurements. Moreover, we

*define the set {Q j} as a Dirichlet tessellation connected with an equidistant grid T":

6, =kAB, k=1.,N,, Af9=nm/N,;
T={5,=(6:.0,).j= (k.D)}= k—lA ! /M
¢, I=1.,N,, Ap=2m/N,;
A8 AO A
Q; {ek——2—<e<ek ——,(p,-T(pS(p<<p,+%9}; J=1..J, J=N,N

This simplest Dirfchlet tessellation leads to th property I da)(ji) = i”ﬂ J" =4r,
‘ ' {a}} &
which, usually, is not fulfilled in the rea] experiment.
The main aim of the texture measurement is to evaluate the true pole densities
P;(3) by experimental PFs Py (57 ;N ) defined at the points y; € I'. Quantitatively,
this means that one needs to minimize some function which is the mtegral measure of

expected errors

R= somefunction(E{lP,,: (j:'j)— P,:(j”j,N)}), y;el. ‘ )
In this paper we are trying to solve this. We find the optimal value A8 = Ag for an
equidistapt grid T with {Q j} and K(.: ) as described above when the number of grains

N.is the parameter. As the R-value, we take the function analogous to RP-value

RPsP’> P(5,N lP 3)- BN r oo
SR O ey e =0

Conventional summing is performed with the sensitivity level £ =0Q.1.

Now we discuss two-approaches to this problem.

3. SIMULATION WITH GAUSSIAN DISTRIBUTION

It is well known that the orientation
g =|o.i]=[w.9.0], geS50(3),

can_be presented as a point on the unit hypersphere §* in the -four-dimensional -

0fw<2m, 0<¥%<r, 0<@p<2m,

Euclidean space R* with hyperspherical coordinates
(rv.9,0)=(v.8,9), r=1, 0Sy<m,
where 2y = @ . The Euclidean coordinates of this point are 7 = (x;,X,,%3,%,),

. "4
FeS’c R4, Y &7 =1.

i=1
Now consider a sequence of ¢ rotations through a fixed angle A about a randomly

oriented axis with random direction. Let p,(F) be the distribution density after ¢ steps

have been passed. Following Roberts ef al.(1984) define the Brownian motion law as
p.(F)={p,(F), F.FeS’.

The operator {..) implieS the averaging of the function defined on $> over the two-

dimensional sphere with the center 7* and the radius % It is easy to bbtajn the

solution of the characteristic equation
(92)=292 » ' ’ : (6)

where ¢, is the characteristic function and A is the characteristic value.

Namely, only zonal harmonics of order  in terms of Gegenbauer polynomials C;,

(o (cos—al) sin((l + 1)9)
=———r=—C(/cosS— |=——— 2

o
[+1)sin—
( )sm2

’

provide the nonzero solution of (6) with the eigenvalues



' . A :
: A sm(( —2—)
Ayj=—— l(cos—) = - A 0

due to the property of zonal harmonics to be constant on the sphere S = SO(3)/ SO(2).

Tesseral harmonics satisfy (6) as well: each side of (7) vanishes. So the surface

hyperspherical harmonic Z;, of order / (a linear combination of  zonal and. tesseral .

' harmonics) with a (I+1)2 -fold degeneracy is the averaging operator eigenfunction

corresponding to the eigenvalue defined by (7).

So, if the initial distribution density is a certain orientation g = [0,0,0], g € SO(3) or

N Sy - (O
Po(’)=zzt(’)y r =(3,19,(p)es3,
then we obtain

=§2'IZI(F)

t
o . o | sin{(Z+1) sin{(I+ 1)@
=2 %z,(7)= 22 ( - %) ( . A)
1=0 10 (I+ l)sm(%) (1+ l)sm(%)
One can readily see that in the limit # — cowhen A is fixed, [-]— o0 forall 70 and

miform distribution is take place

In special convergence conditions t — eo, A — 0, A’t — const we get

2; I+l)exp{ 1+2)(A) }Singliza:/;/) ®)

The requirement

p(Zn—g,n —19,(pi7r) = p(g,ﬁ,(p),

which is valid for the orientational spaée leads to the symmetry of p(?) on §3
p(F)=p(-F), FeS'cR*
or to omitting of all odd terms in (8):

= > ~_sin @1+1)9% t
p(F)= 1,2(21+1)exp{—1(1+1)} (Sm(a/)/) = ) -

2

ThlS dlstnbutlon was also derived by Savyolova (1984) in terms of infinitely divisible

distributions. Following Savyolova (1984), the correspondmg distribution on the sphere

S§2 = R* can be written as

g)-
M

[}
<

p(3) = (21 +1)exp{~I(1+ 1)D} P (cosB), ¥=(B.p)e s>, (10)

i

where P,(cosw) are the Legendre polynomials.

For application, small finite values A <<1 and ¢>>1 can be taken to produce

numerically the circular limit distribution (9) with the parameter D = Azt/6. To do this .

one needs to set the initial orientation and then, subject it to a series of rotations through

a fixed angle A around the random axis in the followmg way
9, = arccos(2a, —1), @, =27-b,, 0<®, <7, 0<g,<n
where a,,b, €[0,1] are the random numbers.

N independent numerical experiments produce some specific sampling ODF in the

form (1), where N is the number of “grains”. Using the projection formula the

corresponding PFs P,;,_'(i,N ) can be calculated. If the grid "= {i j} and the integral

kernel K(i,ij,{p}) are predetermined the experimental PF P,:(j‘j.N) can be

calculated. Because the exact distributions f'(g) and P, () in the form (9) and (10)

are known, the corresponding R-value can be easily calculated. The R-value allows us to

make the following estimation using the mean value

R =1 SRR (5,575, ) .



where P,:"'(i N ) is the m-th independent realization of the simulated experimental PF

P,: (33 N ) . In the presented examples, M=10 was used.

In Fig. 1 these mean RP-values are shown by circles on the dependence of the
equidistant grid parameter for N=500 and N=5000. For these numerical experiments a
simple texture model with only one Gaussian component was chosen. The center of

Gaussian is g = {0,0,0}. The width parameter D = 0.042 was determined using ¢ = 400

and A =0025. This corresponds to HWHM of the component = 19.7°. The examples

of PFs with this texture are shown in Fig. 2.
4. ESTIMATION OF THE R-VALUE.

Another approach is based on the R-value estimates (5). From (2)-(4), it follows that

Pe yl’ iny 7 N)K(y'yj {p})da)(y) HI;I J'lzz‘;vns(y"in)dw(y)=
ZV : . .

4T y,eq; g n; - 4Arm )

el v el o]

Here, we take a model of material with equal grains (V, =V,, V = NV,) to exclude the
effect of grain-size statistic§ from the consideration. (In the case when the grains are
distributed in accordance with some grain size distribution with the parameter V; (the
center of distribution) and the parameterAV2 (dispersion of distribution), an additional
term proportional to the AV/V, appears in the previous equation). The quantity #; isa
- random variable and means the number of grains with poles Yo €Q;. Let us also

mtroducc the mtcgratcd true PFS defined at the points of the grld y; i el:

P;., )’, JP;., )’)K)’)’nv{P}dw ()= “ "JPA, (YHo(7) = Il

Q;

,u”"'

where p; = Prob{}' € Qj}.
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Fig.1. The dependence of the R-value on the grid parameter for different numbers of grains.
Top: lines with the error-bars are the R 1-estimates, lines with the signs are the R2-estimates.
The R1-estimates for the real experimental conditios of the NSHR-spectrometer are shown
by stars. Bottom: lines with the signs are the R2-estimates, liries with the error-bars are the

- R2-estimates averaged over 100 random mesorientations of the texture component and the

measurement coordinate system.



So the R-value can be estimated as

2

ii E ‘P';(yi)—P':(ii’N)

T ' P':(S;i) |
g 8GR Heon)} (R6)-R() el

Awe) A 7)) 2

R=

The first term depends only on the true distribution and its integ}als and reflects the

goodness of the approximation with singular integrals. Due to the fact that for Bernoulli

trials with N e\}ents,
E{n;}=Np;i Dln;}=Np;(1~p;): E{w;}=p;s Dlw;}=p,(1-p,)/N,
the third term vanishes and the second can be further evaluated: ‘

E{(Wf ‘”f)z} _Dlwi} _11-p .

i p; N p;

Finally, we obtain the R-value estimate,

. i |

- 1< ' P,;(j?) 11-p;

R, =— 1—-———— ldoly — . 12
2 J.Z ;[ P;:(?,) a)(y) +N P, : a2)

j=1 i

To illustrate the numerical results, the same texture model as in the previous case
was taken. The results are also presented in Fig. 1 to enable quantitative comparison of
the two approaches. As it can be seen, the second approach gives us a sufficiently good

estimate. It should be noted that the second approach is a more time-saving one.
5. OPTIMIZATION OF MEASUREMENT GRID: RESULTS

The obtained estimates give us .the .possibility of investigating some- problems

connected with the ‘accuracy of PFs measured in texture experiment. The following

problems can be solved..

10
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Fig. 2. Examples of the pole figures { 100} "measured” on different grids. The grid parameters
are shown on the top left of the pole figure. The label "E" is for the exact pole figure.
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Fig. 3. The dependence of the R-value on the number of grains and the gri& parameter
plotted as a surface.
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Fit Results (comp. width=0.070)
Y = -0.180556 * X + 1.94881
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Fig. 4. The dependenée of the optimal grid parameter and the corresponding minirr}al R2-
value on the number of grains on the double-logarithmic scale. Both curves can be linearly

approximated .
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1. Let the texture sharpness be specified (at least approximately) and the nufnber of
grains be evaluated in the investigated specimen. From: these data the optimal
measurement grid parameter can be determined.

2. For the given measurement grid parametevr and esvtimated sharpness of the texture the
necessary-number of grains in the investigated specimen can be indicated to aéhit;ve the
prescribed level of the expected R-value. | .

3. If the measurement grid is prescribed and the‘nu1r;ber of grains is known the upper
limit of the sharpness can be determined. Measurements of specimens with a sharper
texture lead to loss of information (or smoothing of_thé texture data).

‘The first problem is the focus of our attention. It turns out that the meésufement grid
pérameter and the minimal R-value which ‘coriresponds to this optimal parameter
depend, in the simplest way; on the number of grains. The results for textures with two
different sharpnesses.are presented in Fig. 4. This figure quaﬁtitatively describes the
evident behavior of the R-value when the number of grains chahges. The followingi rule
is quantitatively confirmed: the only way to enhance the accuracy of measured PFs is to
increase the number of grains in the sample. These also provide quantitative support for
the rule: the sharper the texture the finer must the grid be; but in spite of the fine grid the

accuracy of the measured PFs is worse than for a less sharp texture.
6. CONCLUSION

In this paper, the influence of grain statistics on the accuracy of PFs measured in the
texture experiment was investigated. Two approaches to quantitative analysis of errors
related to the number of grains in the investigated sample were proposed. So, the main
regularities of grain statistics are established. The problem of optimal measurement grid
is solved. Although the question whether or not the 6ptimal measurement grid is also
optimal for the ODF reprodtiction yet needs to be answered, it is proved that optimal
measurement grid is useful for the problemg required only PFs. However, there are some
hints that the optimal measurement grid is really useful for ODF reproduction (Luzin,
1997).
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Moreover, the main idea of this paper allows extension to different objects w!lich
come from the ODF (¢:g. propertics averaged with texture). List of possible applications
is here. o ' ' o -
¢ Itis possible to investigate the statistical rélevance of ODF'just in the same wh'y as it

was done for PFs:"This is, ‘especially, applicable in the OIM-method. It should be
noted that the results obtained for PFs can not be directly extended to the ODF. ’Fb‘vr'
example, the optimal grid for PFs needs not be obtimal for the grid of ODF. ‘ ‘
e ' Also; the tolerance of different ODF reproduction methods can be established s'ince‘
the error bounds for ODF- and PFs can be Sirﬁditaneohsly determined. ;
e The other possible application is‘ comparison of material propertiés gf sa\mpl"es.\:)vith
" poor grain statistics. It should be of péﬁicul‘érva.:ssi"sténcé in the strain rﬁtefzisilrements
when the small gauge volume is the principal feeitufe of the'exf)eriment. S -
. B(;th approaches allow tvak‘ing into rcdnsidération grain-size ‘stat.istics. In thé ﬁrét
approach, it is necesséry to append the disﬁ’ibution over'i.t;e ‘gl"a_in size (volume). In

the second approach, an additional term appears in (12).
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Jly3un B. E3-98-329
OnTHMH3aUHMA TEKCTYPHBIX H3MEPEHMIA.
Meron. OnTHManbHbIil napamMeTp ceTku

B TexcTypHoM 3KcnepuMeHTe Bcerna M3aMepsioT obpa3Lbl, KOTOpbIE COCTOST
M3 Orpa’iHiYeHHOr0 vyHcia 3epeH. [1osToMy SKCMEpHMEHTAILHO ONpeneNeHHbIe
tynkuns pacnpenenenns opuentaunii' (PPO) u nomiocHsle duryper (TIP) moryr
OT/IHYATECA OT PEAbHO CYLIECTBYIOIUMX. BO3HMKAET BONpPOC, HACKOABKO XOpPOLIO
9KCNIEPHMEHT BOCTIPOH3BOANT HCTHHHBIE pacnpenenenns. lauHas cTatbs nocesieHa
HCCIICI0BAHHIO CTATHCTHYECKOH IOCTOBEPHOCTH TEKCTYPHBIX J@HHBIX, TOMydaeMbIX
B 9KCIIEPHMEHTE.

Ilpeqnoxenst mBa momxoma ANs pelleHHs MOCTAaBIEHHOI npoGnemsl. OpHH
M3 HUX OCHOBAH Ha MCMO/b3OBAHHH MPOLENYPH MONENHPOBAHNS OPHEHTALHOHHOIO
rayccoporo pacnpeseneHus. BTopoii — Ha BEpOATHOCTHOI OLEHKE KO/HYeCTBEHHOTO
PajHYMA UCTHHHBIX U 9KCAEepUMEHTaNBHBIX [1D.

PaGora eomonneuwa B J'Ia60paT0pun HeWTpOHHOH ¢u3nku uM. U.M.Dpanka
OHSIH.

[penpunt O6LEAMHEHHOrO HHCTHTYTA SICPHBIX HCCTEIOBAHM'™, Hy6ua, 1998

Luzin V. E3-98-329
Optimization of Texture Measurements.
Method. Optimal Grid Parameter

In texture experiments one always measures a sample with some constrained

number of grains N. It is clear that the orientation distribution density (ODF)

and pole densities (PFs) measured for this limited N may differ from actual ones.
How well do texture measurements reproduce the actual distribution densities?
The statistical relevance of such measurements is the main area of interest
in the present paper. :

Two approaches to solve the mentioned problem are proposed. One is
the numerical simulation of the given distribution as the normal (Gaussian)
distribution. The other is based on some estimation of the expected RP-value
between the actual and experimental PFs.

The-investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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