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1. INTRODUCTION 

Every experimental method of Quantitative Texture Analysis (QT A) deals with 

samples which consist of some limited number of grains. In real samples this number 

can vary from hundreds to millions or even a larger number of individual orientations. 

As a result, grain statistics is one of the most important causes of statistical errors that 

affect the measured data. The whole list of these causes also includes the grain-size 

statistics, neutron (electron) counting statistics, etc. This leads to the problem of pole 

(orientation) density estimation on the sphere S2 (group S0(3)) with a constrained 

sample size. Some aspects of this problem were listed by Schaeben ( 1982) (see also 

references therein). 

This paper is one more attempt to solve the .mentioned problem on. the sphere in a 

self-contained and easy-to-use form. In the general approach, different errors (grain 

statistics errors, grain-size statistics errors, approximation errors) depending on the 

external conditions (measurement grid, geometry of the experiment, the detector 

window width or the integral kernel) and the texture were taken into account (Sections 

2-4). This approach was applied to the problem of optimal grid parameter estimation 

(Section 5) and to the problem of optimal smoothing (Luzin, 1997). This approach 

allows an extension for determination of other parameters in the optimal way, for 

example, the optimal measurement grid (optimal equidistributed pointset) on the sphere 

(cf. Cui et al., 1995). 

The advantage of the optimal measurement grid is apparent: the necessary 

measurement time is inversely proportional to the square of the grid step (further grid 

parameter). So a time-saving technique can be used, especially, in measurements of 

series of samples with close textures: 
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2. FUND.AMENT A~S 

The ODF / (g) is considered as the orientational. density 
1 

-
8 2 f(g) on the 

1C ' 

rotational group G = S0(3) and the PFs_ P1i; (.y), as: !p~ pole ~!:~s,ity 
4
~ f1i; (y), defin~d 

on the sphere S2
• The normalization properties are: 

1 
8te2 J J(.~)::Ig = 1 

G . ' 
4~ { P1i; (y)::Ico(y) = 1 . 

s ' 

The fact is that the specim~n measured. in the texture, experiment is obtai_ned by 

sampling from the sample multitude with a true ODF / 1 (g) and the PFs 'P4 (y). If the 

size of the specimen or ,qi~ number of gra!ns is N. then the specimen is described by the 

sampling ODF in terms of &-functions on S0(3) 

f'(g,N)= ~ fyno(gg;•), 
. . n=I 

N. 

V= L,Vn, 
. n=I . 

1 ' ' 
s1e2 ! o(gg;1 ~g = 1. (1) 

Also, for PFs. :w.e can write 

P~(y,N)= ;;±vno(y-yn), ·. -f-Jo(y-yn}1co(y)= 1. 
n=I 1C 52 

(2) 

Mathematically, experimenta~ PFs P; (f;, N) ar~ · 

P~ (Yi• N) = JP~ (y, N)K(y, Yj• {p })d co(y) ;; y i er; j = 1, .. ,1. (3) 
D.j 

Here r i~ the pr~deterntin~d measurement grid with J =# "f points. K(y, y i, {p}). i~ the 
. ' .. ..., ' ' ' .. ; , . 

integral kernel for the jth point with the }ocal support .Q; (for more details see 

Schaeben, 1982; 199,6). The:·dependen~e on Yj indicate that the integral:kemels may 

' 
differ from one another for different j. The {p} · is the set of parameters for ~e k,emel.. , 

• : ' • -· : ' : ,'' l i ; ' .~ • • ~. . r'! ' • r "i . '. t '. , .·. ; 

K(y, y i, {p}), r , {.Qi} are determined br t~~. ~-~tpctor sy1>~em, l}Dd, the, geometry of the 
. . 

[ih-1."c ;,;:,:p .. ,,IN!l 1;u=:t.TJT 1 
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texture experiment. In the simplest case, {n i} is a solid angle of the detector window 

for the jth points and 

K(y,yj, {P}) = {1/llnjll, 
0, 

yeni 
y~Qj 

when the detector has uniform sensitivity within the window. 

(4) 

In this paper, we adopt this simplest model of texture measurements. Moreover, we 

· define the set { n i} as a Dirichlet tessellation connected with an equidistant grid r: 

r -{- -(e ) ·-(k )}-{(Jk =Me, k=J, .. ,N1, 6.(}=1r/N1; -Y·- k•</J1,l- ,I -1
· <p1 =l6.<p, l=I, .. ,N2 , 6.<p=21r/N2 ; 

{ 
6.0 6.0 6.cp 6.cp} . nj= 0k--:50<0k+-,cp1 --:5cp<cp1 +-; 1=1,.,,1, J=N1N

2
• 

2 2 2 2 

J 

This simplest Dirichlet tessellation leads to the property J dco(y) = I,lln ill= 41r, 
{nj} j=l 

which, usually, is not fulfilled in the real experiment. 

The, main aim of the texture measurement is to evaluate the true pole densities 

P~ (y} by experimental PFs P; (y i, N) defined at the points y i e r. Quantitatively, 

this means that one needs to minimize some function which is the integral measure of 

expected errors 

R = somefunction(E{jP~ (Yi)- P;(Yj,N~}), Yj er. (5) 

In this paper we are trying to solve this. We find the optimal value I!,.(}= 6.<p for an 

equidistant grid r with {n i} and K( .. ) as described above when the number of grains 

N is the parameter. As the R-value, we take the function analogous to RP-value 

( 
•(·-) •(- )) I ,f P~(yi)-P;(yi,N) _ . 

RPe,P,., yi ,P,., yi,N =p4,J •(-) , yier, 1=0, .. ,1. 
1=• P,., yi 

Conventional summing is performed with the sensitivity level E = O.l . 

Now we discuss two.approaches to this problem. 
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3. SIMULATION WITH GAUSSIAN DISTRIBUTION 

It is well known that the orientation 

g = [co,ii] = [co, ~.<p], g e S0(3}, 0 :5 co< 21r, 0 :5 ~ :5 1r , 0 :5 <p :5 21t' , 

can be presented as a point on the unit hypersphere S3 in the · four-dimensional 

Euclidean space 9t4 with hyperspherical coordinates 

(r,1/f,~,<p) = (lfl,~,<p}, r=l, 0:51/f :51t', 

where 21/f =co. The Euclidean coordinates of this point are r = (x1 ,x2 ,x3 ,x4 }, 

4 

'feS3 c9t4
, I,x/=.l. 

i=I 

Now consider a sequence of t rotations through a fixed angle A about a randomly 

oriented axis with random direction. Let p 1 (r} be the distribution density after t steps 

have been passed. Following Roberts et al.(1984) define the Brownian motion law as 

p,(r')= (p1_ 1(r)), r'.r e s3
• 

The operator ( .. ) implies the averaging of the function defined on S 3 over the two­

dimensional sphere with the center r' and the radius ½. It is easy to obtain the 

solution of the characteristic equation 

(</J;.)=A</J;., (6) 

where </J;. is the characteristic function and ')., is the characteristic value. 

Namely, only zonal harmonics of order l in terms of Gegenbauer polynomials Cl, 

</J, = cl(cosf) =-l-c,1(cosco) sin((l+I}f) 

cl(l} l+l 2 (l+I}sinco 
2 

provide the nonzero solution of (6) with the eigenvalues 
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A-1 =-1 cl( A) sin((1+1)A) 
I+ I I cos- - 2 2 -

(I+ I)sin A 
2 

(7) 

due to the property of zonal harmonics to be constant on the sphere S2 = SO(3) / SO(2). 

Tesseral harmonics satisfy (6) as well: each side of (7) vanishes. So the surface 

hyperspherical harmonic Z1 of order l. (a linear combination of zonal and tesseral 

harmonics) with a (I+ 1)2 -fold degeneracy is the averaging operator eigenfunction 

corresponding to the eigenvalue defined by (7). 

So, if the initial distribution density is a certain orientation g = [0,0,0], g E SO(3) or 

Po(r) = I,z1(r), r = (m ,t'J,<p) e S3
, 

/;Q 2 

then we obtain 

= 
P1(r)= L,A1Z1(i') 

/;Q 

p, (r) = I, .11,11z1 (r) = -
2 
I, (1 + 1) -----'---.,.:--=.- ----'--~. 

= I = 2[sin((l+I)½)]' sin((l+l)o/z) 

1; 0 4n- /;o (l+l)sin(½) (l+l)sin(o/z) 

One can readily see that in the limit t ➔ oo when A is fixed, [· •-]' ·➔ O for all / ct; O and 

niform distribution is take place 

p(i')=~-
4n-

In special convergence conditions t ➔ oo, A ➔ 0, A2t ➔ const we get 

p(i')= 4~2 I,(l+l)exp{-1(1+2)(A)2 !_}sin((l+l)o/z) 
" /;o 

2 3! sin(o/z) · 

fhe requirement 

(8) 

p( 27r - ~ ,n- -t'J,<p± 7r) = p( ~ 't'J,<p)' 

6 

';' 

,.... 

which is valid for the orientational space leads to the symmetry of p(F) on S 3 

p(r) = p(-r), re s3 c 9\ 4 

or to omitting of all odd terms in (8): 

1 = sin((2l + 1)3/z} 
p(f).=-, L,(2l+l)exp{-l(l+l)D} ( ) 

2 

21r- 1; 0 sin o/z . 
A2t 

D=-· 6 . (9) 

This distribution was also derived by Savyolova (1984) in terms of infinitely divisible 

distributions: Following Savyolova (1984), the corresp~nding distribution on the sphere 
' ' 

S2 c 9\ 3 can be written as 

p(y) = -
1 

I,(2/ + J)exp{-l(l + l)D}P,(cos/J), .v = (/3,<p) E S 2
, 

47r /;{) . 
(10) 

where P, ( cosm) are the Legendre polynomials. 

For application, small finite values A << I and t >> I can be taken to produce 

numerically the circular limit distribution (9) with the parameter D = A2 r/6. To do this 

one needs to set the initial orientation and then, subject it to a series of rotations through 

a fixed angle A around the random axis in the following way 

t'Jn =arccos(2a"-1), <fJn =21r·b11 , 0~t'J,, ::;,r, o::;<p,, <n 

where a
11

,b
11 

E [0,1] are the random numbers. 

N independent numerical experiments produce some specific sampling ODF in the 

form (I), where N is the number of "grains". Using the projection formula the 

corresponding PFs P{ (y, N) can be calculated. If the grid r = { y i} and the integral 

kernel K(y, .Yj, {p}) are predetermined the experimental PF Pi; (.vi, N) can be 

calculated. Because the exact distributions f 1 (g) and Pi: (.v) in the form (9) and ( I 0) 
' 

are known, the corresponding R-value can be easily calculated. The R-value allows us to 

make the following estimation using the mean value 

R1 ""~f RP(e,P;, (Yj ),P,:,111 (.vj.N)) 
M ,n;J 

(11) 
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I. 

where p4.m (y j, N) is them-th independent realization of the simulated experimental PF 

P4 (y j, N). In the presented examples, M= IO was used. 

In Fig. I these mean RP-values are shown by circles on the dependence of the 

equidistant grid parameter for N=500 and N=5000. For these numerical experiments a 

simple texture model with only one Gaussian component was chosen. The center of 

Gaussian is g = {0,0,0}. The width parameter D = 0.042 was determined using t = 400 

and A = 0.025. This corresponds to HWHM of the component = 19.7°. The examples 

of PFs with this texture are shown in Fig. 2. 

4. ESTIMATION OF THE R-V ALUE. 

Another approach is based on the R-value estimates (5). From (2)-(4), it follows that 

p; (Yj• N) = Ip~ (y, N)K(y, .Yj,{p})dro(y) =~-II I ·II J f,vno(y- yn)iro(y) = 
!l QJ n-n=I J J 

I,v" 
41r y.en; 41r nj 41t' ( ) 

=11°jll-v-=llnJN=ll0 jllwj N · 

Here, we take a model of material with equal grains ( Vn = V0 , V = NV0 ) to exclude the 

effect of grain-size statistics from the consideration. (In the case when the grains are 

distributed in accordance with some grain size distribution with the parameter V0 (the 

center of distribution) and the parameterllV2 (dispersion of distribution), an additional 

term proportional to the LlV/V0 appears in the previous equation). The quantity nj i~ a 
. . . 

random variable and means the number of grains with poles Yn E Q j. Let us also 

introduce the integrated true PFs defined at the points of the grid y j E r: 

P~ (Yj) = 1/4 (y)K(Y,Yn ,{p})dco(y) = ll~jll l P4 (y)ico(y) = ll~l(j, 

where Pj = Prob{y E Q j }. 
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Fig. I. The dependence of the R-value on the grid parameter for different numbers of grains. 
Top: lines with the error-bars are the RI-estimates, lines with the signs are the R2~estimates. 
The RI-estimates for the real experimental conditios of the NSHR-spectrometer are shown 
by stars. Bottom:· lines with the signs are the R2-estimates, liries with the error-bars are the 
R2-estimates averaged over 100 random mesorientations of the texture component and the 
measurement coordinate system. 
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So the R-value can be estimated as 

R=-:,."L E · h; Yi Ph; yi,N _ 1 J' I {[P.•(- )- ·(- )]
2

] 

}=I' P.'(- ) -h; yj 

1 J' 

-=-I, 
( P~ (5\ )- P; (yJ

2 

E{(Pi -wJ} ( P~ (Yi)- P; (Yi)) E{(Pi - wi )} 

( 

2 + . 2 +2 ( ) J' j=I P~(yi)) ' .·· pi p~ Yi pj 

The first term depends only on the true distribution and its integrals and reflects the 

goodness of the approximation with singular integrals. Due to the fact that for Bernoulli 

trials with N events, 

E{nJ=Npj; D{nj}=NpAl-pj); E{wj}=pj; D{wj}=pAl-pj)/N, 

the third term vanishes and the second can be further evaluated: 

E { ( w j - p j )1} = D{ w j} = ...!._ 1- p j 
2 Pj 2 Pj N Pj 

Finally, we obtain the R-value estimate, 

R2 =~± i[s[1-. ~~~)]dm(y)]
2 

+...!._~ 
J j=I ~ l.l; Ph;(yj) N pj 

(12) 

To illustrate the numerical results, the same texture model as in the previous case 

was taken. The results are also presented in Fig. 1 to enable quantitative comparison of 

the two approaches. As it can be seen, the second approach gives us a sufficiently good 

estimate. It should be noted that the second approach is a more time-saving one. 

5. OPTIMIZATION OF MEASUREMENT GRID: RESULTS 

The obtained estimates give us the possibility of investigating some problems 

connected with the accuracy of PFs measured in texture experiment. The following 
• <. .•, 

problems can be solved. 
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Fig. 2. Examples of the pole figures { JOO} "measured" on different grids. The grid parameters 
are shown on the top left of the pole figure. The label "E" is for the exact pole figure. 
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Fig. 3. The dependence of the R-value on the number of grains and the grid parameter 
plotted as a surface. 
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Fig. 4. The dependence of the optimal grid parameter and the corresponding minimal R2-
value on the number of grains on the double-logarithmic scale. Both curves can be linearly 

approximated . 
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I. Let the texture sharpness be specified (at least approximately) and the number of 

grains be evaluated in the investigated specimen. From, these data the optimal 

measurement grid parameter can be determined'. 

2. For the given measurement grid parameter and estimated sharpness of the texture the 

necessary number of grains in the investigated specimen can be indicated to achieve the 

prescribed level of the expected R-value .• 

3. If the measurement grid is prescribed and the number of grains is known the upper 

limit of the sharpness can be determined. Measurements of specimens with a sharper 

texture lead to loss of information (or smoothing of the texture data). 

The first problem is the focus of our attention. It turns out that the measurement grid 

parameter and the minima_) R-value which corresponds to this optimal parameter 

depend, in the simplest way, on the number of grains. The results for textures with two 

different sharpnesses,are presented in Fig. 4. This figure quantitatively describes the 

evident behavior of the R-value when the number of grains changes. The following rule 

is quantitatively confirmed: the only way to enhance the accuracy of measured PFs is to 

increase the number of grains in the sample. These also provide quantitative support for 

the rule: the sharper the texture the finer must the grid be; but in spite of the fine grid the 

accuracy of the measured PFs is worse than for a less sharp texture. 

6. CONCLUSION 

In this paper, the influence of grain statistics on the accuracy of PFs measured in the 

texture experiment was investigated. Two approaches to quantitative analysis of errors 

related to the number of grains in the investigated sample were proposed. So, the main 

regularities of grain statistics are established. The problem of optimal measurement grid 

is solved. Although the question whether or not the optimal measurement grid is also 

optimal for the ODF reproduction yet needs to be answered, it is proved that optimal 
;. 

measurement grid is useful for the problems required only PFs. However, there are some 

hints that the optimal measurement grid is really useful for ODF reproduction (Luzin, 

1997). 
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Moreover, the main idea of this paper allows extension to different objects which 

come from the ODF (e;g. properties averaged with texture). List of poss'ible applications 

is here: 

• It is possible to investigate the statistical relevance of ODF just in the same way :t5 it 
was done for PFs:;This is, 'especially; appli~able. in the OIM-method. It should be 

noted that the resuits obtained for PFs can not be directly extended t~ ·the ODF. F~r 

example, the optimal grid for PFs needs not be optimal for the grid of ODF. 

• Also;·the tolerance of different ODF reproduction methods can be established since 

the'error bounds for ODF and PFs can b~ simultaneo~sly determined. 

• The other possible application is comparison of material properties of samples with 

. poor grain statistics. It should be of particular ~si~tance in the strai~ ~eilsurements 

when the ~mall gauge vo!'ume is the principal fe~ture of the.experiment. 
' • Both approaches allow taking into consideration grain-size statistics. In the first 

approach, it is necessary to append the distribution over the grain size (volume). In 

the second approach, an additional term appears in ( 12). 
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JlyJHH B. 
OnTHMHJaQmI TeKcTypHbIX HJMepeHHH. 
MeTo,1(. OnTHMaJJhHhIH napaMeTp ceTKH 

E3-98-329 

B TeKCTypHOM 3KcnepHMeHTe Bcer,!(a HJMeplHOT o6pa3Qhl, K0TOpbie C0CTOJIT 
HJ orpa·1w1eHHoro 'lHCJia JepeH. I103TOMY 3KcnepHMeHTaJJhH0 onpe).(eJieHHhie 
q:>yttKQHJI pacnpe).(eneHHJI opneHTauuif' (<l>PO) H noJIIOCHhie cjmrypbI (IT<l>) Moryr 
OTJIH'laTbCJI OT peaJJbHO CYllleCTBYJOlllHX. BoJHHKaeT Bonpoc, HaCK0JihK0 xopmuo 
3KCnepHMeHT B0CITp0HJB0).(HT HCTHHHbie pacnpe).(eJieHHJI. L(aHHaJI CTaTbJI n0CBJlllleHa 
HCCJie,!(0BaHHIO CTaTHCTH'IeCKOH ,!(0CT0BepH0CTH TeKcrypHbIX ).(aHHhIX, nonyqaeMblX 
B 3KcnepHMeHTe. 

ITpe,!(JIO)KeHbl ).(Ba Il0,!(X0).(a ,!(JIJI perneHH.? Il0CTaBJieHHOH npo6JieMbl. O).(HH 
HJ HHX 0CH0BaH ua HCil0JihJ0BaHHH npoQe).(ypbl M0).(eJIHp0BaHHJI opHeHTaQH0Hlmro 
rayccosoro pacnpe).(eneHmr. BTopoii - Ha aepol!THOCTHoii ouenKe KOJIH'lecrneHnoro 
pa3JIH'!HJI HCTHHHhIX H 3KCnepHMeHTaJJbHhIX IT<l>. 

Pa6om BhmonHeua B Jla6oparnpHH Heihpmrnoii q:>HJHKH HM. 11.M.<l>paHKa 
0115111. 

IlpenpHHT O61,e}lHHeHHOfO HHCTHTYTa JIJlepHblX HCCJJe}l0BaHH". Jly6tta, 1998 

Luzin V. 
Optimization of Texture Measurements. 
Method. Optimal Grid Parameter 

E3-98-329 

In texture experiments one always measures a sample with some constrained 
number of grains N. It is clear that the orientation distribution density (ODF) 
and pole densities (PFs) mea'>ured for this limited N may differ from actual ones. 
How well do texture measurements reproduce the actual distribution densities? 
The statistical relevance of such measurements is the main area of interest 
in the present paper. 

Two approaches to solve the mentioned problem are proposed. One is 
the numerical simulation of the given distribution as the normal (Gaussian) 
distribution. The other is based on some estimation of the expected RP-value 
between the actual and experimental PFs. 

The investigation has been performed at the Frank Laboratory of Neutron 
Physics, JINR. 
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