


Introductlon ‘

* In récent yea.rs the issue concerning the ac tlnl value of the mean square ‘intrinsic charge
.~ radius (MSICR) (< r?,'>n) related to the internal structure of the neutron have been widely.
- discussed. [1 10}. What is the hlstory of the problem, and ultlmately, what is < rm >N
> equal to'7 ' :

1t is well known that in the hmxtmg case of low. energles the relatlon between the mean

squa.re cha.rge neutron radxus and neutron charge form factor GE(q ) is expressed by equatlon

BT e <rbow= s(dcs/dq Joo )

PR ~

: where q isa squa.red four-momentum transfer or beca.use the charge form factor is:

f Gs(q)~n(q)+q’n’/(4M’ DB @

L there Fl(qz) is the Dxrac form factor describing the spatial drstrlbutxon of a nuclear charge'

and associated with the Dirac maguetic moment, Fy(q?) is the Pauli form factor associated

with the spatxal drstrxbutxon of an auounlous magnetlc moment, fin 18 the neutron nlagnetxc :

) moment in nuclear magneton, it can be expresscd by

<rg >N— G(dFl/d'I )q _0+3/2;z"h2/(M2 2) ', OF

The ﬂrst term in (3) arises from the nuclear mtern'Ll structure a.nd it is dlrectly connected

" with the behaviour of the Dirac forin factor Fy"as a fuuctron of qz If < rm >N is the neutron .

o MSICR connected w1th the neutron mternal structure, then

: < ) >N— G(dﬂ/dq )qzao : > : (4)

As for the second term in (3), it:is of a magnetlc na.ture assoc1ated w:th the ”trembhng A

or."dancing” (z1tterbewegung) of the ncutron Wlllcll satlsﬂes the Dlrac equatlon and has an
““anomalous magnetlc moment. | 7 ' ; : : :

Since the neutron is the Dirac partrcle one should expect analogous effects for it. Thus S
ylf the neutron has an electromagnetlc structure, the apparent extent of the charge w1ll arise’
from the inner extent’ "and 'additional "smash” 'assocrated with the "trembling”." In order to -
L derlve information’ .concerning ‘the structure of the’ neutron from the experimental data fromf!

L ‘then-—e 1nteractlon, the contrlbutlon of the trembhng effect should be deterxnmed

More than 40 years ago Feshbach (lemonstrated [11] that the’ scattermg of electrons at e
energies of the order of magnitude of several tens of MeV (gR << 1, where ¢ = 2ksinf/2 is"
~ the recoil wave numbcr) makes poss:ble only the measurement of a sole parameter provndmg s
mformatron on the srze of the nucleus uamely of the MSICR determmed by the expressron. e

b :‘At about the same tlme Foldy (see review of ref [12]) found the relatlon between < rm >N‘ L
*. and @p., the measurable scatterlng leugth of a slow neutron on an electron (the so‘called n—e. .

- ’mteractron) s SR ,‘7 et : .
. Fra L < rm >N-- G(dF,/dq ),,z_o = Ii?tzz/(Mez)(a,.e - ap) L (6) o

: ‘where aF = fine 2/(2Mc2) = —1.468 x 10‘3 fmis the Foldy scattermg length related toa free C
neutron satlsfyrng the Dlrac equatlon and exhlbltlng an anoma.lous magnetlc moment The

Foldy effect depends on a combination of known constants, and to determine < r?, >y it
must be subtracted from the quantity a,..

It should be pointed out that in principle the information on the MSICR of the neutron
can be obtained from the experiments on the scattering of high-energy electrons (of a few
hundred MeV or more) on protons and deutrons providing the information on the form factor
Gg(q?). The arising uncertainty level, however, are fairly high-in such experiments and the
study of the low-energy neutron scattering is still the only direct source of 1nf0rmat|0n on
the MSICR of the neutron [9].

Besides the Foldy effect, however, there may exist a more 1nterest1ng klnd of interaction
between the neutron and the electron (Fermi,1947 [13]). This interaction (the first term in
(3)) is a consequence of the meson theory of nuclear forces. The neutron is surrounded by
a "meson cloud” ("fir coat”) which has a size of the order of magnitude of h/(mc), so in
the immediate vicinity of the neutron the presence of an electric field may be expected. If a
neutron and an electron come sufficiently close to each other, electrostatic interaction forces
are to arise between them, and these forces should be short-ranged. Such an interaction will
influence the quantities a,. and consequently, < r}, >n.

Since a,. and ar are both of the same order of magnitude, the determination of < rZ, >y
will require very precise measurements. Such measurements can be performed within the
framework of studies of the interaction of low-energy neutrons with heavy atoms.

As it has been established, the experimentally observed n — e interaction is mainly due
to Foldy effect. Moreover it has not been clear for a long time how essential the role is of the
internal interaction considered by Fermi between’the neutron and electron and how strong
it is.

The MSICR is a fundamental characteristic of the neutron, and its measurements permit
verification of modern theoretical ideas concerning nucleons (for instance, of the quark-bag
model, Skyrme model, Numbu-Jona-Lasinio model and others).

2 Theoretical analysis of n — e interaction manifesta-
tions ’

" The amplitude of the Dirac particle seattering by weak, slow-changing pure electrical
potential ¢(r) was obtained by Foldy [12] from the generalized Dirac equation:

7u(0¥/0z2,) + (Mc/R)¥ —1/(hc) i léﬁ;YquAu + 1/2#,#7;,7,,!&1"‘(614,,/81, - aAv/aIu)l =0
m=0 (7)

where the electromagnetlc ﬁeld is described by a four-dlmensxonal vector potent1a1 Ay(z) =
(A(r, t);ig(r,t)), = =(r,it), 7., isthe Dirac matrix, 0 = A—=1/c?9%/8t? is the D’Alembert
operator, and the coefficients €,, and g, characterize the inner electromagnetic structure of
the nucleon. In particular g is the total charge of the Dirac pa.rtlcle and po is the anomalous
magnetic moment for the Dirac particle. Other terms (m =1,2,3,. ) describe higher radial
moment in the distribution of the electric charge of the pa.rticle ‘a.nd the current. The coeffi-
cient ¢, is thus connected with the second radial moment of the cha.rge dxstrlbutlon or w1th

the MSICR of the neutron: ’
= (e/6) <l >n=1/6 / r*p(r)der* : (8)

At m =0 eqn (7) is reduced to the usual Dirac equation with electromagnetic potentials, the
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last two tgrms' of which have the form:
~ peh/(2Mc)(GH) — ipeh/(2Mc)(GE) ‘ (9)

The term that contains H is thevinteraction energy of the magnetic "d‘ipole of the neutron,
peh/(2Mc), and magnetic field, H, which causes the magnetic interaction. ":[‘he second terr'n
is the Foldy interaction which is due to the trembling of the Dirac particle with the‘ magnetic
moment peh/ (2M ¢). In the case of low momentum transfer ik only the ter.ms with m =0
and'1 are important and in the first Born approximation the scattering amplitudes from eqn
(7) has the form: . L o ; 5 . .
o fo(F) = ~Meo J(2782) / ezp(—ikR)$(F)dF © o)
(B = —M/(@nh)er + b/ (2ME)o + 1/2(h/(2Me)Veoleap(~iFF) 7* $(7)dF . (11)
For the neutron go = 0, o = Hneh/(2Mc), and at k — 0 one obtains the n—e scat’tering
length: o " ; ) i : -
, Gne = 2Me[R2(e; + ehz/(4M2cz)u,.) - ‘ - (12)
In this reltltibh- a deécribes the radial extent of the charge distribution in the ne‘utronv. The
term with in Tepresents the Foldy contribution due to the trembling of the particle with an
anomalous magnetic.moment pn. - . e _ -
Using eqn (8) expression (12) can be rewritten in the form (6). Note that the sign of
{,r?,,SN for an overall neutral object could be both positive and negative; it depends mainly
on the sign of a peripheral charge. ; :
Taking into account eqn (8) and comparing egs (1), (3) with (12) we find that: -

(dGp/dg?) =0 = 14.410,, R ¢ £

where a,; .is given in fm. Thus the study of the n — ¢ scattering allows one to. obtain the
information on (dGg/dq*)s2-0. o e

To conclude, we may say that two effects contribute to the experimentally mvestlgatfed
n — e interaction: one of them which is due to the Foldy scattering can be calculated, while

the other being of great,impé;tance and caused by the neutron inner structure has to be-

estimated experimentally. .
3 Experimental methods to study the n—e interaction

In the inte'raction of very slow neutrons with atoms when the process can be considered
to be pure elastic, the total n — e scattering length may be written in the form: :

(8) = aneZS(sind/X) s g

where @, is the n = e scattering length, f(sin6/)) is the atomic form factor.

" Precise méasurefnents of the n — e interaction were‘perfgimed by the middle of the 40s
and also in succeeding years., Those attempts were either based on asymmetry observations
in the séatfering of thermal neutrons or on studies of the energy dependence of the total cross
section in the electronvolt region.

The differential cross section for the coherent scattering of slow neutrons with the wave-
1éngth of the order of the size of an atom is described by the relation:

o(0) =| a + ai + Zf(5in6/N)ane |* 1)

where a is the coherent nuclear scattering length (~ 10 fm) and:
ar = 1/2Zpne’/(Mc*) = Z x 1.468 x 1072 fm (16)

where ar is the Foldy term determined in this case by the relativistic effect produced by the
interaction of the anomalous magnetic moment of the neutron with the electric field of the
nucleus with the charge Ze. ' :

Estimations show that the ratio Zanf(sin8/))/(a + ar) may amount to approximately
1% for heavy nuclei and therefore can be measired. For the neutron total cross section, using
the generally accepted S-matrix of scattering:

San = (1 —i) (T./(AE + iT/2))ezp(2i6p0r) eh))]

which does not take into account the small interresonance interference, and using the optical
theorem one can obtain for the case of the nuclear s-scattering:

ato,/(47r) =Imf(0)/k :.l/kzsintsosin(&o + 2%)»— 1/(‘2k)s;n(250 +2n0) Z +

1/43 xcos(260 + 2n0) + 1/4 " xcos(26, + 2n0) (18)
2 3

where &, is the phase shift of nuclear s-scattering, 7o = —kan F is the phase shift of n - e
scattering, F' = 1/2 {7 f(5inf/A)sin6dd is the angular integrated atomic form factor,

3 = X i TwAE;/(K(AE? +T2/4)),

2= Zg;'l‘f.j/(kz(AEf +05/4),

= Coluly /(AR +Ti) BT
i
The additional phase shift 7, was calculated using the first Born approximation. The calcu-
lations performed ‘using more accurate methods than the Born approximation method have
shown that the Born approximation fits our energy region adequately.®
There are two old methods of measuring the n — ¢ interaction. "One of them, originally
used by Fermi and Marshall in 1947 [14] depends upon the fact that in the scattering of slow
neutrons an asymmetric angular distribution due to f(sind/1) is observed.

" The main disadvantage of experiments of this kind is the necessity to correct for the effect
of the thermal motion of atoms in a gas. The main contribution to the correction is made by
the neutrons of large wavelengths in the very region where deviations. from the Maxwellian
distribution are expected. - In the most precise experiments the correction was determined
experimentally by performing measurements in argon and neon with the insignificant n — ¢
scattering,. . :

Precise measurements following the Foldy and Marshall metliod were performed at the
Argonne National Laboratory by Krohn and Ringo in 1965-72 [15]. The noble gases: xenon,
krypton, and argon were used. Measurements in neon were conducted to check the calculated
value for the asymmetry due to thermal atomic motion. The measured value for the correction
exceeded the sought-for effect for the xenon by four times and for the kryptou by 10 times.

Measures weré taken to remove admixtures, especially light ones, because even in small
amounts they may greatly distort the result of the experiment. '



As a result it was obtained that:
ape = (~1.33£0.03) x 1073 fm (20)

In [9] the possibility of errors was noticed, now present in [15]. The reasons for them to arise
are mainly the following:
1. very weak asymmetry of the neutron scattering on noble gases in comparison with
the_ strong' symmetry of neutron-nuclear interactions (so in [15] 0.5 per cent of the
. asymmetry effect of the n — e interaction is measured with the error of +2.5%)

2. since the effect under measurement is so weak, experimentators must be absolutely sure
that no side effects affect it (e.g., caused by p-resonances, admixtures of light gases,
etc.) - ° o

3. large values of corrections introduced in the experiment. So the neutron. energy-
dependent correction for the scattering asymmetry caused by gas thermal motion ex-
ceeds the measured effect for xenon by a factor of 4, for krypton by a factor of 10,
etc. ' ‘ k

The second method of studying the n—e interaction was used by Havens et al. [16]. It consists
in observing the dependence of the total scattering cross section on the neutron wavelength
near 0.1'nm. The nuclear scattering must remain constant, while the form factor f(sinf/A)
is the cause for the change in the total scattering cross section with A. In' Ref.[16] molten
lead and bismuth were used as scattermg materials. The total cross section was measured at
A =0.03 - 0.13 nm.

The most exact value for a,. obtained by this method is [17]:

tne = (—1.56 £ 0.05) x 107 fm (21)

The error is statistical. The correction for the Schwinger scaftering as well as that for the
contribution for the resonance scattering was not included.

~

4 The current situation in the study of neutron MSICR.

Two groups of experimental data

In order to study the n — e scattering and the polarizability of the.neutron, in 1976-86
Koester et al.[5]-(Garching, Germany) carried out very precise measurements of the neutron
coherent scattering length using a gravitational neutron refractometer by the method of
reflection of neutrons from bismuth and natural lead mirrors. This interesting apparatus was
proposed by Maier-Leibnitz and was built at the FRM reactor in Garching by Koester [18].

The basic equation for the measurements of coherent scattering lengths using the neutron
gravity refraciometer: ; )
S beoh = gmzh,/(27rNﬁ2) ' (22)
where N is atomic densxty (atoms per cm3), b, is the neutron coherent scattermg length,
h, is a height of falling of the neutron.

" All quantities in (22) either are well- known fundamental constants or can be precisely
measured. Thus it allows the high-accuracy determination of b which is virtually limited
by the experimental errors of the measurements of h, and N only.

‘For liquid bismuth and liquid natural lead it was obtained: .
bp: = 8.5307(25) fm ' " (23)
bpb = 9.4017(20) fm ‘ (29)

The obtained results were _compared by Koester et al with the data from measurements of
cross-sections for bismuth and natural lead at neutron energies above several electronvolts [5].
The total cross-sections were measured by transmission through melted lead and bismuth at
neutron energies corresponding to the resonances of rhodium (1.26eV'), silver (5.19 eV), tung-
sten (18.8 ¢V) and cobalt (132 eV'). The measurements were carried out with a continuously
operating resonance detector consisted of rotating discs made from resonance-absorbing foils.
The upper sections of the discs were activated in the neutron beam, while the activity of the
diametrically opposite sections was recorded with a 4 detector. This arrangement ensured a
high statistical accuracy for the measurements. The combination of two identically rotating
foils was used. The first foil'in the beam counts the sum of resonance and nonresonance ac-
tivation whereas the second one only spoils the nonresonance activation. Thus the dlfference
of the countxng rates is proportional to the neutron current of the resonance energy.

" These measurements were repeated later at two following energies: 1.97keV and 143 keV.
The neutrons: of 1.97 keV were obtained with the help of filters using theé ‘method of the
double-resonance scattering. The foil from the ®3Cu isotope serves as a resonance scatterer
near the reactor core. The neutron emerges with an average energy of 1.97 keV at the angle
of w/4 through the beam tube." After the flight' path of about 7 m the beam is:scattered
again by the 8°Se target at the resonance energy of 1.97 keV. Initially scattered neutrons
with other energies are suppressed by the filter combxnatxon of Sc B4C and Coin the beam
line. ‘ o :
Cross section measurements at'a median energy of 143 keV were performed in the sxllcon
filtered fission neutron beam of the converter facility [19] at FRM. .

The obtained results should be corrected for the elastic incoherent scattering, the Schwinger
scattering and the solid-state effect in order to account for the effects connected with the state
of a sample under measurement and the scattering energy dependence caused by resonances.

The total neutron cross section 0;;; may be written accordmg to- Ref [5]

0tot = 47 | Reb(E) + Imb(E) |* +0in(E) + a,c;.(E) + az(E) + awl(E) (25)

where 0y, is the nuclear incoherent, o, is the spin-orbital Schwinger scattering, o, is the

solid state and oy is the angular momentum interaetion ! > 0 cross sections.
The real part represents the coherent scattering amplitude:

Reb(E) = —R'e(E) + br(E) + b Z[f(E) - h(E)] + bg(E) ‘ (26)

where R’ is the nuclear potential radius, e(k) = 1 — (kR’)’/G + (kR’)“/120 — ey bpe =7
—a,.A/(A+1), f(E) is the angular averaged atomic form factor, R(E) = 1 — (kRN)’/5 +
2(kRn)*/135+ .. pg(E) is the neutron electric polarizability scattering amplitude, §(E) =
1—n(kRn)/3 + (kRN)2/3 — ., Ry =0.12027A4'210"*2 cm is the charge radius of nuclei,
br(E) is the amplitude of contribution of all resonances.” The authors of Ref.[5] believe that
the Imb(E) yields only an absorption cross section. It is not quite correct.

The obtained o, should be corrected for the scattenng energy dependence of bg caused
by resonances which may be calculated. For Bi resonance data are available only” up to
about 260 keV, for the isotopes of Pb -up to 1-2 MeV, some bound level parameters (at



negative energies) are also given {20]. In order to reduce the uncertainty caused by the lack
of information on other bound levels and on data for the high energy region the authors of
Ref.{5] calculated the resonance scattering term bp ~ 3°; g;Tn; AE;/(E(AE? + T'/4)) using
the information on known levels and changing I'); by So < Do > and E; by « < Do >, where
So is the strength function, < Dg > is the mean level distance, z is the integer number. This
part of the processing procédure does not seem to be sufficiently correct. We will discuss this
question a little bit later. As a result the following value for the n-e scattering length was
obtained in Ref.[5] for natural lead and bismuth: '

ne = (—1.32£0.04) x' 107 fm : (27

However, a proéessing procedure which is not exactly correct, however, casts some doubt
upon this value. . . .

In this situation it would be.very useful (as it.was noted in [7]):to measure the neutron
transmission for the double-magic *®Pb isotope which has very rare resonances. The **°Pb
isotope provides by far the best properties for a heavy isotope to separate the potential scat-
tering from the resonance scattering contribution. It has a negligible thermal absorption cross
section ¢, = 0.48(3) x 1072 x 1072 ¢cm?. In ?°Pb there are only p-wave and d-wave reso-
nances below 500 keV: Preliminary results of the previous 2% Pb measurements are published
in Ref.[21]. - o o , : .

Let us consider the work of the Dubna group [7].- Precise measurements of the total
neutron cross section of bismuth in the electronvolt energy region were carried out at the
IBR-30 pulsed reactor in-JINR. They covered the energy region from 1 to 90 eV and were
performed by the time-of-flight method over the flight path of 60 m using both a liquid sample
and a solid sample 18 mm thick. The background measured with the help of rhodium, silver,
and tungsten plates (resonance energies of 1.26, 5.19, and 18.83 eV, respectively) placed in
the beam, was 0.3-0.4% at 1-6 eV, and no.more than 1.5% at about. 20 ¢V. The energy
dependence of the total cross section for the interaction between neutrons and bismuth is
shown in Fig.1. The same figure shows the values for o,y measured at Garching [5].

To obtain information on the n-e scattering length the corrections for thie Schwinger
scattering and solid state effects were introduced into oi,; they did not exceed 0.8%. The
data were processed using the following expression: ‘

y = 0ui(E")/(47) — a2, (E) = a*(Z* = 2ZF') - 2a04(E)(Z ~ F') + (); - le')[acah(E)—

—a(Z - F)+ 1/4@5 BRSO MENCES (28)

where acon(E) = —beon(E)A/(A+ 1), a = —an., Y, and ¥, are expressed using (19);
the electric polarizability of the neutron is taken equal to zero. The numerical value for
beon = 8.5307(20) fm is taken the same as in Ref.[5]. , ’

In the energy range £ << -E; and I'; << AE; for the-term }~, — 37’ containing resonances
one can use the following expansion into E'/E series:

n=y-3 =‘E'Z: girﬁv;/(k.{E?) +(E'Y? Zgarﬁ;}(kﬁE?) +o=E'Foy(E')/(r < Ty >)
L ' ’ ' ‘ | 1 (29.)
=140 - 1/22212 +1/422: =1/43 915,/ (K E}) ~ 1/4(3_ g:Twi/ (ki)' (30)

s T

Introducing the numerical values for o, and < T, > into €q.(29) one obtains:
=Y -3 =06x10™ x 1072E ¢cm : (31)
1 T

The estimates show that the contribution of p; into y is 10-15 %, but the lack of information on
resonance levels with negative energies does not allow one to find its exact value. Therefore,
this contribution was changed to fit experimental data best and appeared to be equal to
—0.0023 x 10~ cm?/sr. '
Experimental data were processed by the least square method. The results are summarized
below:
Garching data: @, = (~1.57%0.10) x 107> fm;

Dubna data: ay, = (~1.55+ 0.11) x 10~ fm. (32)

The obtained data are in best agreement with the results of the neutron diffraction measure-
ments carried out with a tungsten single crystal [22,23}. . '

It seems attractive to find a method with a more significant effect under measurement. The
most promising direction in'the study of the n-e interaction is the investigation of thermal
neutron diffraction from single crystals of tungsten which was proposed and developed in
Dubna [22-25]. ' '

The tungsten isotope, %W, is well suited since its neutron scattering length in the thermal
energy range is small and negative because of the interference between resonance and potential
scattering [24,25]. The coherent scattering length of neutrons from a mixture of tungsten
isotopes enriched with 88\ is determined from:

beok = R~ AT/ (2ko Eo)(1 + E/Fo) + aneZf(sin6/)) = a + aneZf(sin /)  (33)

where T, is the neutron width of the first resonance of 186, Eo is the neutron energy cor-
responding to the first resonance of %W, ko ='2r/)o is the wave number, and 8 is the
%W content in the mixture. Precise measurements of the neutron scattering length us-
ing a mixture of tungsten isotopes containing 90.7% of "W were performed by the Chris-
tiansen filter method on a beam of cold neutrons (< A >~ 1.5nm) in Garching and yielded
beon = (—0.46620.006) fm [26], the absolute value of which was an order of magnitude smaller
than the corresponding value of b, for a natural mixture of isotopes, and it also had the
opposite sign. In the diffraction experiments two single-crystal balls made of two different
isotopic mixtures, being 5 mm in diameter each, were employed. One mixture contained
90.7% of 18W (b, = —0.466 fm), the other (beon = +0.267 f171) was prepared from the first
one by 'adding 14% of natural tungsten. The experiments were mainly staged at the IBR-30
pulsed reactor and at stationary reactors. At a given wavelength the integral intensities I(zy
of eight reflections were measured: (110), (200), (220), (310), (400), (330), (420), (510).

Since tungsten is of paramagnetic nature, the magnetic scattering must not contribute
to the Bragg reflection and the integral intensity of the diffraction peak corresponding to an
(hkl) reflection is determined from:

e I(hkl) = C[[a + Zf(hk()(sin G/A)a"e]2 + [1 - f(hk,)(sin 0/))]2'72 cot? 9].4(;,1;0 X
x exp[-2B(sin8/2))/(sin20), = (34)
where C.is the constant coefficient and Aturyy is the factor taking absorption in the crystal

into account. The second term in this equation describes the Schwinger scattering, v =
1/2p,Z€*/(Mc?). The equation (34) shows that the quantity:

(Z(nsty sin 26 exp[2B(sin G/A)z]/(A(;,H)C_) — y2cot*d[1 — Jorn(sin 0/ 0))/2 =



= a+ Z fryane = beon : (35)

is to be a linear function of Z f(uu) with a slope determined by a,.. Further all the experi-
ments performed at various installations have shown that it appears impossible to describe
the results obtained for these two mixtures by a linear function of Z f(s4;) at one and the same
value for an.. As no simple cause for the deviation of experimental results from eq(35) was
found, Alexandrov and Ignatovich [27) advanced the hypothesis-that additional scattering
contributes to the diffraction peaks. The additional scattering is caused by the scattering
of neutrons on the domains of ordered magnetic moments which exist in the investigated
tungsten sample. Later on this hypothesis was confirmed in other experiments as well. The
activation analysis has shown that the tungsten samples under investigation contain a mi-
croadmixture of cobalt (several fraction of a per cent). Tungsten atoms form nagnetic clusters
around cobalt atoms. In other words the tungsten could be in a heterophase state which is
characterized by the symmetry properties of both the paramagnetic and ferromagnetic phases
simultaneously. It should be noted, however, that magnetic admixtures are not a necessary
condition for the formation of the heterophase state. The heterophase fluctuations which
. take place over a vide range of temperatures [28] are also important here.

If the magnetic cluster formation phenomenon is taken into account, eq(34) will take the
form:

I(hk') = C([a + Zf(hkl)’(sin 6/(/\)(1,{;]2 + [1 - f(hk,)(sin 19/,\)]272cot20 + P2)A(hkl) X
" x exp[=2B(sin 8/1)?]/ sin 26, : (36)

where p = 2/3f%a%,, and fyr and apr are the magnetic form factor and the magnetic scattering
amplitude, respectively. Thus the problem of determining ay,. from diffraction experiments
with tungsten single crystals is reduced to the determination of the dependence of the trans-
ferred momentum of the fys magnetic form factor. This dependence together with the value
for a,. were found from the available diffraction data. For the latter:

ane = (—1.60 % 0.05) x 10~ fm (37)

which is in agreement with the result (32) obtained by measuring the total cross section
of bismuth at the IBR-30 reactor. The results of all measurements are presented in the
Table. From the Table it follows that the most accurate experiments ‘fall into two groups:
the measurements of Refs.[1,5,15] lead, in accordance with eq.(6) to < rZ ‘> > 0, which
contradxcts the modern theory (see below), and the measurements of Refs.[7,17,22,23] lead
to < r?, > < 0 which confirms it.

Recently, Leeb and Teichtmeister (2] have analyzed the results [5,7] of the low energy
(< 150 eV) total neutron-atom cross sections. They have confirmed that the discrepancy
between the a,. values is due to different ways of treatment of the resonance contribution.
They beheve that the a,, value which is less negative than the correspondmg Foldy value
(that is < r}, > > 0) is more favorable.

leolenko and Popov [3] have tried to explain the difference between {5] and [7] by the
fact that inter-resonance interference terms are neglected in the analyses of Ref.[7]. However,
as is shown in Refs.[4,6,29] the result of [3] cannot be considered sufficiently correct. Though
€q.(28) does not contain any evident terms which do account for the inter-resonance interfer-
ence, this one has contributed to the p; term. The value of p} = —2.3 x 10~ cm?/sr was
determined in {7} by fitting experimental data and due to this fitting procedure it contains
the inter-resonance interference term.
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Meanwhile one can evaluate analytically the contribution of the inter-resonance interfer-
ence effect. There are well-known § matrices that do account for this phenomenon:
1.[30,31] , :
Sun = [1+1 YTV T32 Asv] exp(~2ikR); (38)
AN

where the reciprocal of A has the components:

(A )aw = (Bx— E)oaw — 2/221‘1/2 Ty, (39)
and the ¢ index runs through all channels
2032 :

: San = exp(—2ikR)[1 + iz(anj +Bni)/(pi — E —ivj)], (40)
where 3 ;(anj+ifn;) = T; I",,,, ¥; ﬂ,., =0, p;= ReE',, v = —-Im]:j,, E‘ is the complex energy
of j-th resonance (at Bn; = 0 E E; —iT;/2). At B,; = 0 we have 0t = 2rg(1 — ReS,,,)/k?
as the sum of Breit-Wigner’s terms taking into account only the interference between the
potential and resonance scatterinig.

From eq.(38) one can express {6,29] the inter-resonance term to oy:

Oint/(47) = 94/ (4k’)[E TLAE(Y TS /(AE;))/(AE}+

M . J#E

o+ 1/4(1" + AE; EF JAE;)?)] + (a similar term for the other spin) (41)
J#

At energies far from the resonance energy, owing to the fact tha.t I' =T, + T, the term
containing ['nily; in eq.(41) does not vary with energy (e.g., for bismuth at energies below
50 eV), the second term containing I';I',; is much less than the first one (for bismuth it is
40 times less at an energy of 10.eV). Since in Dubna work [7] the p; term does not depend
on energy either, one cannot affect the result of the a,. determination in [7] by introducing a
constant term, g/ (47) . Calculations of oint/(47) based on (41) were performed for bismuth
with the known resonances 0 < Eo; < 265 keV [20]. They have shown that the additional
interference term at an energy of about 10 eV makes oe/(47) = 0.0086 x 10~%* cm?/sr (the
total cross section of bismuth at this energy is 4o = 0.74 x 10724 cm?/sr, i.e. nearly 90 times
larger).

5 On the controversy about the intrinsic charge radius
of the neutron. Discrepancy between the Garching
‘and Dubna results

As you know from the above-mentioned section there is a controversy in the physical
community about the value of intrinsic < rZ, > for the neutron. Part of physicists believe
that the value of < an, >= —1.309 x 10=3 fm is true. The other part has another point
of view, i.e. < @, >= —1.577 x 10~° fm. From the standpoint of an experimentalist
the question of the < an, > value is to be solved by an experiment, e.g. by comparing o
measured at different energies with b, measured at very small energies (hke in Ref.[7]). This
kind of measurements is carried out at the moment by the Dubna-Germany-Czech Republic

" collaboration [33,34].
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The results of the Garching experiments [5] and Dubna experiment {7] are at the center of
the controversy. Different ways of data treatment caused a discrepancy of not more than 1.5
uncertainty in values for a,. in these experiments. Therefore, strictly speaking one should look
for contradictions between the works [5] and {22,23] but not between [5] and [7]. Nevertheless,
strange as it may seem the discussion mainly goes around the latter two works.

By formulas (25) and (26).one may obtain for the s-wave scattermg (at e(k) =1,AE >>
T'/2 and R = sin26,/(2k)) :

Otot/(47) = (Geon + Oin + 04)/(47) =
= sin? 8o/ (K?) — sin &o/(K)[X g+ TwAE/(AE? +T%/4) + ¥ g_ T.AE/(AE? + T*/4)]+
_ - -

H1/(4R)[ 9 ToAE/(AE T4+ Y g_TuAE/(AE*+T?/4) + 03/ (47) +04 /(47), (42)
+ -

where g4 =1/2(2J +1}/(2] +1), J =1+1/2, I = 9/2 (for Bi).
From [7] it follows that:

am/(47r) = sin &;/(k"’)—sm50/(k2)[E:g+I1 AE/(AE2+F2/4)+ZQ T.AE/(AE*+T?/4))+

+1/(4k") D 94T /(AE +T7/4) + 30 g-T/(AE* +T?/4)] + 0, /(47). (43)
+ - -

The first two and the last terms in eqs.(42) and (43) coincide, while the others are different.
The first reason for this difference is the fact that eq.(43) was derived on the basis of a gen-
erally accepted S-matrix of scattering (17), which does not take into account inter-resonance
interference. As it was shown above, however, taking this phenomenon into account cannot
influence the result of a,. determination in [7] ‘

So, from [7,17,22,23] it follows that < r?, >y < 0. What kind of error comes into [5]?

Let us compare the formulas (42) and (43) for bismuth at the energy of 10 eV taking into
account resonances with the energy Ep; > 0 and the addiktio‘nal inter-resonance term:

1/(4F)[3 04 TnAE/(AE? + T*/4) + 3 g_TWAE/(AE? + T*/4)] + 050 /(d) =
v + - L

= (0.0113 + 030006) x 107 cm?/sr = 0.0119 x 10~ ¢m?/sr (44)
1/(4k’)[2 9+Th/(AE* +T%/4) + Zg— W/(AE*+T%/4)] + a,-nz/(47r) =

(0 0029 + 0. 0086) x 107 em?/sr = 0.0115 x 107 cmz/sr (45)

Thus, if the contribution of the oin:/(47) term is taken into account, expxessxons (44) and
(45) give practically the same results (at Ey; > 0) :

There is some difference, however, between work [5] and [7] in their approach to calculation
of the contribution of negative energy resonances (Eo; < 0) and unknown resonances to
the total cross section. In [5] this contribution of one bound and unknown levels has been
calculated using the average parameters of s-wave scattering: the strength function, So =
0.65 £ 0.15, and the mean level distance < Dy >= 4.5 + 0.6 keV [20]. In this situation I
think an error may easily creep in, since a resonance at Eg; < 0, e.g., may be at a distance
| Bor'|<< Dg > from the point E = 0 and it will'hardly be possible to estimate its inflience
on the term b with any accuracy, because the uncertainty in the determmatxon of Sp is large
(on the order of +23%).
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In [7] we have used a more realistic method consisting in varying the p, parameter. This is
the main reason for the discrepancy between the results of Garching and Dubna obtained for
bismuth. The treatment of the experimental data of [5], taking into account the parameter

= —0.0023 x 10~ ¢m?/sr found in [7] by the least square method, will lead to a 1.2 times
increase in the absolute value of Qne, 1.€., tO @pe = ~1.57 x 1073 fm (see (32)).

Thus, to my thinking, the values of ay, obtained in [5,15] are not grounded enough, and,
consequently, the actual < r2, >< 0 (if eq.(6) is correct]. This conclusxon is in agreement
with the measurements [7 17,22], but it disagrées with the result of the analy51s of available
data made in [2] that favors a value of Gne which is less negative than the Foldy scattering
length

6 Influence of resonance scattering

There is a possibility to calculate p; + 0in /(47) directly.
It may be shown from exps.(30) and (41) that:

Pt a;,.,/(47r) = q+9-/4[E Toif/ (ki E;) — zrni/(kiEi)]z"l"

+ g+/(4K%) E T../AE; ZIX,,/AE + (a similar term for the other spln) - (46)
J# ) .
The second and the fourth terms in eq. (46) may- be negatlve Thexr-sxgns depend on
the influence on them of the neighboring levels with E; < 0. Thus, there exists no direct
argument in favor of excluding the possibility of the negative sxgn for ps + 0ine/(47). For an-
even-even nucleus (9+=1,9-=0): : :

P+ a.,.t/(47r) = 1/(4k’)ZF"./AE Y y/AE; (47)
J#i . . . .

Calculations carried out for E = 1€V, two known resonances of 26 Pb (507 keV and 1735keV
[20]) and one negative dummy- -resonance (—1910keV') introduced in Ref.[35] give the following
result: py + Oine/(47) =~ 6.7 X 10~7 x 1024 cm?/sr. Thus, for nucléi of 28 Pb the contribution
of resonance scattermg is practlcally compensated by the contribution of inter-resonance
interference scattering. One can also calculate the P18con term (see (28) and (29)): pracor =~
—1.3 x 1077 x 10=** cm?/sr, i.e. is also very small. Therefore, the €q.(28) may be rewritten
for the case of 2P} as:

y—am(E')/(m a2 \(E) ~ —zaamh(E)(z F) 48)

i.e. we can make an 1mportant conclusxon in case of 2°st the va.lue of a,, will not be
influenced by any resonance scattering. g

For bismuth the situation is much more complicated: p, + a.,../(47r) may be smaller than
zero (as it follows from. [7]). One has, to be very careful, however, when" speaking about
P2+ Oint/(47) as bemg independent of energy, because the second and the fourth terms in
€q.(46) depend on energy as 1/EY/2, Companng values of p; + 0t /(47) and p;™ at a neutron
energy of about 1eV one can also see that the calculated value is about 4 x 10~ em?/sr larger
than the experimental one. This difference may be explained by the influence of unknown
negative energy resonance levels (E; < 0) of bismuth which were not taken into account under
the calculations.
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7 Comparison of measured intrinsic charge radius with
its theoretical value '

Now about a comparison of the experimental results with modern theoretical ideas which
follow from the old meson theory by Yukawa. ‘

‘The mean square intrinsic charge radius of the neutron is a fundamental characteristic of
the neutron, and its measurements permit verification of modern theoretical ideas concerning
nucleons. Knowledge of the signs and values of the anomalous magnetic moments of the
neutron and proton permits establishing a qualitative picture of the p(r) distribution in the
nucleon. This point is illustrated by Fig.2 [36]. Note that the sign of < r¥, > in the case of an
object, which, as a whole, is neutral; may be either positive or negative. This depends mainly-
on what charge is to be found at the periphery. Thus, for instance, the charge distribution
in a neutron, depicted in Fig.2, should provide for the sign of < r? >y being negative.’ This
distribution was already known before 1955:57 [36]. In the 50s it was also known that in the
old meson theory the process n — p+ 7~ gave rise to a negative tail for the intrinsic neutron
charge distribution. In all old static models, however, the core of nucleon was not understood
and its properties were not calculable. ’

This problem was solved by modern ideas about the nucleon, e.g. by modern quark models.
During the last few years attempts were made to solve the quantum chronodynamics (QCD)
equations: In the absence of exact solutions it is natural to rely on phenomenological models,
which incorporate features expected from QCD. Of all these models the bag model is the most
attractive. The bag model has its beginning in the late 60s, when P.N.Bogoliubov described
phenomenologically a system of relativistic massless quarks moving freely inside a spherical
volume. The development of Bogoliubov’s approach has yielded the MIT (Massachusetts
Institute of Technology) model. The main features of the MIT bag model have proven to
be essential for the construction’of the modern quark model of the nucleon, that is Cloudy
Bag Model (CBM) proposed by Thomas, Theberge and Miller (see, e.g.. [37]). In this model
the nucleon consists of a spherical static cavity with radius R filled with three massless free
quarks. The/qv{xav,'rk's ‘inte'ra.ctvvqi‘th a pion field on the surface of the bag. This surface is the
source of a field of negative pions acting at a distance of the order of &/(mxc) > R. In the
absence of pions CBM is identical to the MIT model. The latter violates the chiral symmetry,
and since chiral symmetryis a property of QCD itself, this gives us quite justifiable concern. .
By introducing a pion field coupled to the quarks on the bag surface, one can restore the
chiral symmetry. The CBM has been developed in response to this difficulty, and in CBM
the nucleon is far from being point-like, having a radius of about one fermi. This model
has produced a number of remarkable results for the properties of single hadrons, e.g. the
magnetic moments of the proton, neutron, and other ‘members of nucleon octet, the form
factors, the polarizabilities, the charge radius and so on. -~ * a o

The value < r?; >%7> 0 contradicts the present-day understanding of the neutron’not
only in CBM but in other theories about the nucleon’(see, e.g.[38-40]), which is essentially
based on’ the old Yukawa meson theory as well. By apglying these concepts physicists can

precisely calculate within' the framework of the ‘static models under the assumption of a-

motionless (not recoiling) heavy nucleon (M oo) the value < rf, >y= [ p(F)r*d®F and’
to obtain < r2, > <0 (see, ¢.5.[41943]). This velue cannot include the Foldy term which is
equal to zero at M — oo , and it seems to be correct to compare the calculated result with
<ri >¥" obtained after the subtraction of the Foldy scattering length from the measured
a,. value.
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Fig.1. Dependence of oy, of B on the neutron energy<E:;f, Ref.[7]; 0 ,Ref.[5).
Curves 1 and 2 are calculated for two groups of parameters: 1, a,, = —1.6 X
107%fm, @, = =4.5 x 1073fm?, 2,a,, = -1.6 X 1073 fm, 0, =T X 1073 fm®

v

plr) a.

Fig.2. Expected electric charge distribution inside the nucleon:
a) the proton; b) the neutron
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lead (72.5%% Pb)

Table

Authors, Method Magpnitude of —~age X (10°)fm  Ref
year effect, ne/tot

P.Dee, Recoil electrons — <1000 —
1932 in cloud chamber —
E.Fermi, Neutron scattering ~ Ao/o = 0.5% 100 + 1800 —
L.Marschall,  on noble gases

1947

W.Havens, . Total neutron cross Ao /o = 1.5% 1.91£0.36 —
et al,, _section on lead

1947-51 and bismuth

D.Hughes Neutron total AB/O = 50% 1.39£0.13 —
et al., reflection from

1952-53 0, ~ Bi mirror

M.Hamermesh Neutron scattering ~ Ao/o =0.5% 1504 —
‘et al,, 1952" ° “on noble gases \

M.Crouch Neutron scattering - Ao /o & 0.5% 1.43 % 0.30¢ —
et'al, 1956 - on noble gases ‘ ‘

E.Melkonian = Total neutron cross  Ao/fo = 1.5% 1.56 £ 0.05* (171
et al., 1959 section on bismuth

V.Krohn, Neutron scattering . Ac/fo = 0.5% 1.30£0.03 (15]
G.Ringo, on noble gases :

1966-73 ‘

L.Koester Total neutron cross ~ Agfo =1.2% 1.32£0.04 (5]
et al., gection and atomic

1970-88 scattering length

on bismuth and lead

Yu.Alexandrov Neutron diffraction =~ Acg/o 2 20% 1.60 £ 0.05 [2223)
et al,, on a tungsten-186

1974-85 single crystal

Yu.Alexandrov Total neutron cross  Ao/o 2'1.2% 1.55£0.11 (7]
et al., 1985 section on bismuth ‘

S.Kopecki Total neutron cross ~ Aofo 2 1.2% 1.35+0.04 [1]
et al,, 1994 section on rediogenic

* Without correction for Schwinger scattering and resonance scattering.

16

O‘w'ing to the n = 'p+ 7~ process, there appears a negative tail in p(7) (see Fig.2), like in

the old static models; by new quark models (e.g. CBM) there also exists a negative 7~-meson
tail, which'is just what causes the negative sign of < r?, >n. It is practically impossible to
obtain < r? >x > 0 following modern concepts. If the results of Refs.[1,5,15] are correct,
then a serious revision of our understanding of the structure of nucleon is necessary.

Being a specialist in experimental physics, I do understand that issues of the value of a,,"
and, consequently, of the sign of < r} >y must be studied experimentally. But, honestly,
really do not understand why, from a theoretical point of view, the sign of < r?, >y has to

be positive. oo
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AneKcaanos IO.A.°

OUSUW.

_ k - E3-95-60
Hpoénema cpenﬂexnanpamqﬂom BHy’I‘peHHCI‘O S i
3apSAAOBOrO paguyca HEWTPOHA , S
O6cysxnaercs 3HauCHUE CpCZ[HCKBaHpaTH‘{HOI‘O BHyTpeHHeI‘O 3apSNOBOTo
paauyca HeitTpoHa. Tabnuna pasanuHEIX IKCIEPUMEHTANLHBIX JAHHBIX JUIMH |
PacCESHUs ™ HEHTPOH-3IEKTPOH [PUBOAMTCS. - IKCNEPUMEHTAIbHEIE IaHHbIE
MOXHO paszrenmb Ha [BE TPYNNbl: CPEAHEKBAAPATHYHBIA PajMyC HEHTpoHA
(rm)N > 0 n( IN-< 0. O6cy>xnalo'rc91 BO3MOXHbIE NPUUNHLI pacxoxaeHus:

3KC1’ICpPIMeHTaJIbeIX HaHHBIX, IOJYYEHHHIX B IIy6He (OUSAHN): n- I‘apxm{re

- (Tepmanus) meTonoM nponyckanus. Tlokasano, 4To BBEACHUE IHEPTETUUECKH

HE33BHCUMOIO MEXPE30HAHCHOIO HHTep(bepeHunom{oro WICHA B JaHHEIE Oy,
nonylleHHble B Ily6He HE MOXXCT H3MCHMUTb nonyquHbm pesynb'ra'r PesyanaT

( )N <0 noz(TBepxu(aeT COBpeMCHHhIe Teopernqecxne npencranneﬂmr 0 HyK-

JIoHE, pesynmar (rm)N>0 Haxomrrcsr B’ npomsopetmn C conpeme}mon
TTeopneu ‘ . ' . :
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Pa60Ta anonnena B. .IIa6opaTopnn HCHTpOHHOH (bnsmm M. I/I M CDpaHKa

: Hpenpuur QﬁenMHeHHoro thruryra smepubrx prcc_.neupaaxmﬁ.'llyﬁna,' 1995 o

;Problem of the Neutron Mean Square

Alexandrov Yu.Al e . "E3-9 5-60- "f :

sic ChargeRadlus e R , :
,he value of the ‘neutron mean square 1ntr1ns1c charge radlus (MSI

i 1s d1scussed The experlmental data table of the n-e scattermg le
s a, 1s presented The expenments can be d1v1ded mto two grox,

> 0 and (rzn)N < O A possible’ reason for the d1screpancy between
ts of the Garchmg (Germany) and Dubna d INR) determmatron of a
ansmlssmn method is dlscussed Itis shown that mtroductlon intoo
rgy- mdependent mterresonance mterference terms does not affect




