

сообщения
 обьедииенного
 института ядерных исследований
 дубна

E3-92-255
V.G. Nikolenko, A.B.Popov
n,e-AMPLITUDE ESTIMATE
INDEPENDENT OF NUCLEAR
SCATTERING MODEL

The physical importance of $b_{\text {ne }}$ consists in the fact that it allows determination of the neutron mean square charge radius defined as

$$
\begin{equation*}
\left\langle r^{2}\right\rangle \quad=\frac{3 \hbar^{2}}{m c^{2}}\left(b_{n e}-a_{F}\right) \tag{1}
\end{equation*}
$$

where the Foldy's term $a_{F}=-1.468 \mathrm{mfm}$.
In spite of many year investigations of the $n, e-$ interaction amplitude (see table.1) one yet cannot state that the problem of estimating its value has been solved.

As the sign of $b_{n e}$ is negative, the $n, e-i n t e r a c t i o n ~ c a l l s ~ a ~$ visible fall of the scattering cross section (e.g. by 260 mb for Pb) due to the atomic form factor $F(E, \theta)$, which changes from zero to unity with decreasing energy from tens electron volts down to zero. It is by comparison of σ_{s} values at different E and θ that one can determine the $b_{n e}$ value.

Results with better statistics were obtained by four groups: from the energy dependence of the total scattering cross section of $\mathrm{Bi}[2]$ in the range of $0.1-4 \mathrm{eV}$, from the angular distributions of elastically scattered thermal neutrons [3,4], from the comparison of $b_{c o h}(0)$ and $b_{c o h}(E)$ in the interval from 1 up to 2000 eV [5,7-10], and from the neutron diffraction on the mixture of W isotopes with $b_{c o h}(0)$ close to zero [6]. After additional investigations by the authors of methods the results of [3,4] and $[5,7,9,10]$ have been obtained to show agreement.

All these results fallainta two groups, one with the $b_{n e}$

EM5 ЛНО ТЕKn
values near to $-1.55(5) \mathrm{mf} m[2,6,8]$, and the other to $-1,32 \mathrm{mfm}$ $[4,9,10]$, thus leading to opposite in sign estimates of $\left\langle r^{2}\right\rangle$

As to ref.[8] the obtained in this paper value of $b_{n e}$ differs from the estimates of refs [7,9] by nearly 10 errors. Note that this difference cannot be connected with any discrepancy of experimental data (in fact, the authors of [8] have used the data from [7,9]), but, as we have shown [11], it is connected with different mathematical descriptions of the measured effects. In our opinion the $b_{\text {ne }}$ estimates $[9,10]$ earn confidence if the initial data on scattering cross section and coherent amplitude are reliable. It should be emphasized that the difference between the values $-1.49(5)$ [2], $-1.55(2)[6]$ and $-1.31(4)$ [4,10] has not found any explanation yet. This evokes the necessity of analysis of the measurement and data processing methods as well as the staging of new control experiments.

In order to compare different methods of obtaining $b_{n e}$ we present, following [10,11,12], the scattering phase in the far from resonances region, taking into account the electro-magnetic interaction in the form:

$$
\begin{equation*}
\delta_{0}=-k\left(R_{e f f}^{\prime}+b_{n e} Z F\right)= \tag{2}
\end{equation*}
$$

$$
=-k\left[R_{0}^{\prime}+\frac{1}{2 k} \sum \frac{\Gamma_{n i}\left(E-E_{0 i}\right)}{\left(E-E_{0 i}\right)^{2}+\Gamma_{i}^{2} / 4}+R_{c}\left(E-E_{c}\right)+b_{n e^{Z F}}+b_{p} P\right]
$$

here $R_{\text {eff }}$ is the certain effective radius of nuclear scattering changing slowly with energy, F is the atomic form factor, P is the neutron-nuclear polarizability form factor, $b_{n e}$ is the $n, e-$ scattering length, b_{p} is the polarizability scattering length, E_{c} is the middle point of the investigated energy interval.

At low energies coherent cross section can be written (after

Table 1

Year	$b_{\text {ne }} \quad \mathrm{mfm}$		Reference
1947	-0.1 (1.8)	Fermi, Marshall	
1951	-1.91(36)	Havens et.al.	[2a]
1952	-1.5 (4)	Hamermesh et.al.	[18a]
1956	-1.41(29)	Croch et.al.	[18b]
1953	-1.39(13)	Hughes et.al.	[1]
1959	$\begin{aligned} & -1.56(5) \\ & -1.49(5) \end{aligned}$	Melkonian et.al. reanalysis in [7]	[2b]
1966	-1.34(3)	Krohn, Ringo	[3]
1973	$\begin{aligned} & -1.30(3) \\ & -1,33(3) \end{aligned}$	reanalysis in [7]	[4]
1973	-1.427(23)	Koester	[5]
1974	-1.55(2)	Alexandrov et al.	[6]
1976	-1.378(18)	Koester et.al.	[7]
1985	-1.59(4)	Alexandrov et.al.	[8]
1986	-1.32(4)	Koester et.al.	[9]
1988	-1.31(4)	"	[10]

Fig. 1 The description of the Pb data. The curves are the fits by formulas $(2,3)$ without resonance, $n, e-$ and polarizability terms.

Fig. 2 The description of the Bi data. The experimental points are corrected for n,e-scattering (see the text). the curve is fitted under the same conditions as in fig. 1.

Fig. 3 The set of coherent amplitude data for Bi .
making corrections for Schwinger and incoherent scattering, and for solid state effects) as

$$
\begin{equation*}
\sigma_{s}=\frac{\pi}{k^{2}}\left(1+\mu^{2}-2 \mu \cos 2 \delta_{0}\right) \tag{3}
\end{equation*}
$$

where

$$
\mu=\exp \left(-\frac{1}{2} \sum \frac{\Gamma_{n i} \Gamma_{i}}{\left(\mathrm{E}-\mathrm{E}_{0 i}\right)^{2}+\Gamma_{i}^{2} / 4}\right)
$$

In $\left[7,9,10\right.$] the problem of $b_{\text {ne }}$ determination was reduced to precise measurement of $\sigma_{t}(E)$ in the eV region ($1-2000 \mathrm{eV}$), followed by introduction of corrections for the capture cross section, Schwinger and incoherent scattering, and solid state effects, and comparison of the obtained coherent amplitude $b_{c o h}$ (E) With the coherent amplitude $b_{c o h}(0)=R_{\text {eff }}^{\prime}(0)+b_{n e} Z$ measured with high precision at $\simeq 5.10^{-4} \mathrm{eV}$. (Note that $F(0)=1$).

As is shown in [11] the discrepancy between [7,9] and [8] is conditioned by not taking into consideration the interresonance interference in the expression for $\sigma_{s}(E)$ when it was accounted for in the expression for $b_{c o n}(E)$ in [8]. This increases the difference between $b_{c o h}(E)$ and $b_{c o n}(0)$ (and consequently the module of $b_{n e}$).

In refs. [10] and [11] there are used similar approachesias to the assumption of the independent of E nuclear scattering radius, when the energy dependence of the potential scattering cross section (and therefore of $b_{c o h}$) is determined by the form $\sin ^{2} \delta_{0} / K^{2}$ and by the dependence of δ_{0} / k on E expressed only 1 ina the functions $F(E)$ and $P(E)$. However, this is not so, because of the far lying resonances, which cannot be taken into account directly but can be accounted for by (2) via the parameter- R_{c}, So in [12] it was shown that for ${ }^{208} \mathrm{~Pb}$ the term $R_{c}\left(E-E_{c}\right)$ taking fnto
account the far lying resonances makes a 12% contribution to the part of σ_{s} linearly dependent on $E(\approx 20 \mathrm{mb}$ at 40 keV) and a 20% contribution to that proportional to E^{2}. The strong resonance 507 keV makes only a 1.7 times greater contribution. The remaining dependent on E part of σ_{s} is connected with the constant part $R_{\text {eff }}^{\prime}$. Thus for Pb one cannot ignore the $R_{\text {eff }}^{\prime}$ dependence on E as it was done in [7-11]. For $B i$ the term with R_{c} provides the additional slope of 7 mb between 1 and 130 eV when the -800 eV resonance is taken into account.

So far as different descriptions of nuclear scattering lead to considerable variations of $b_{n e}$ estimates (-1.59 [8] and -1.31 [10,11] for $B i$), it is desirable to have an estimate of $b_{n e}$ more independent of nuclear scattering models.

The possibility of "nonmodel" estimate of $b_{n e}$ is based on the following. Let's make use of the fact that the solid state corrections at 50 eV are less than 0.5 mb and the atomic form factor F decreases fast with increasing neutron energy, and so at 50 eV the contribution of n , e-interaction into the cross section makes only 3% of its maximum value. Therefore, in the tens eV region the correction for $\sigma_{\text {ne }}$ with an accuracy of $2-5 \%$ allows one to obtain $\sigma_{s}(E)$ (after n, e-contribution subtraction) with an additional error less than 0.5 mb . For larger E this error is less essential. If so corrected $\sigma_{s}(E)$, dependent on the nucleus only, is known in a wide enough interval, then by its extrapolation to $E=0$ one obtains $\sigma_{s}(0)$. Now the only thing remained is to compare $\sigma_{s}(0)$ with $4 \pi b_{c o h}^{2}$ to find $b_{n e}$.

In $[13,14]$ by measuring total cross sections by the time-offlight method in the neutron energy region from 50 eV to 20 keV
for Pb and C and up to 45 keV for ${ }^{208} \mathrm{~Pb}$, and by introducing corrections for the capture cross section, $n, e-$ and schwinger scattering, solid state effects and resonances contributions, the scattering cross sections were obtained of natural Pb, C and ${ }^{208} \mathrm{~Pb}$ in the form of polynomials:

$$
\begin{array}{lc}
\sigma_{s}=11.258(5)+0.60(51) k-371(27) k^{2} & \mathrm{~Pb} \\
\sigma_{s}=4.7435(16)+0.06(22) k-82(5) k^{2} & \mathrm{C} \\
\sigma_{s}=11.508(5)+0.69(9) k-448(3) k^{2}+9500(400) k^{4} & 208 \mathrm{~Pb}
\end{array}
$$

It is essential that in $[13,14]$ the resonance corrections were introduced in a manner that did not change the constants in the polynomials.

Making use of the results obtained within this polynomial description for $\mathrm{Pb}, \mathrm{C},{ }^{208} \mathrm{~Pb}$ and of the scattering cross section data of the Garching group [9,10] (for Pb and Bi) and of the Dubna group [15] (for Bi), the $\sigma_{s}(E)$ were fitted by formulas (2), (3) and FUMILI-code with two free parameters R_{0}^{\prime} and R_{c}. Into the data from [9,10,15] necessary corrections for the capture cross section, Schwinger and incoherent scattering, and solid state effects were introduced. In result, the extrapolated to $E=1.10^{-4} \mathrm{eV}$ values of σ_{s} were determined. At this energy the coherent amplitudes are known [17]. Fig. 1 and fig. 2 show the results of the fitting for natural lead and bismuth. Indeed, our $\sigma_{s}(0)$ values obtained from the description of the data $[13,14]$ coincide with the polynomial constants. The $b_{n e}$ value was estimated by the formula

$$
\begin{aligned}
& b_{n e}=\frac{b_{\text {coh }}^{2}-\frac{\sigma_{S}(0)}{4 \pi}\left(\frac{A+1}{A}\right)^{2}}{2 Z R_{\text {eff }}}, \\
& R_{\text {eff }}=\sqrt{\frac{\sigma_{S}^{\prime}(0)}{4 \pi}}
\end{aligned}
$$

Obtained results are summarized in Table 2.

Nucleus	$s \quad \triangle \mathrm{EVV}$	$\sigma_{s}(0) \mathrm{b}$	$\mathrm{R}_{\mathrm{c}} \times 10^{6}$	${ }^{\mathrm{b}} \mathrm{coh}^{\text {fm }}$		$\mathrm{b}_{\text {ne }}$ mfm
Pb 5	50-20000 [13]	11.252(5)	-.116(4)	$9.4017(20)$	[10]	-1.296(35)
	1-2000 [10]	11.256 (3)	-1.2(1)	- " -		-1.317(29)
${ }^{208}{ }_{\mathrm{Pb}}^{\mathrm{c}}$	50-20000 [13]	4.7437(16)	-.090(2)	6.6448(13)	[17]	-1.38(24)
	50-45000 [14]	11.508(5)	-.235(2)	9.50(2)	[17]	-1.41(24)
Bi	1-130 [10]	9.2945 (34)	-60(2)	8.5307(20)	[10]	-1.33(3)
	-"- [10,15]	$9.2996(20)$	-65(2)	- " -		-1.36(3)
	-"- [15]	9.3079(28)	-96(6)	- " -		-1.40(4)

For Bi the $\mathrm{n}, \mathrm{e}-\mathrm{scat}$ ering contribution is essential at low energies ($\simeq 40 \mathrm{mb}$ at $\mathrm{E}=1 \mathrm{eV}$) and, therefore, several iterations were made. In order to have σ_{s} corrected we took the initial values of $b_{n e} 20 \%$ higher and lower than its expected value -1.32 $m f m$. The iteration results tend to the given in Table 2 values. It is essential that the cross sections [15] are normalized to the σ_{s} value at 5.2 eV from [9] and consequently the σ_{s} 's [15] are to be considered independent of the scattering cross sections [9] only as the data for the determination of the cross section energy behavior.

The obtained "nonmodel" estimates of $b_{\text {ne }}$ agree nicely with the results $[4,10]$.

Let's note that the value of σ_{s} at $E=1970 \mathrm{eV}$ in $[9,10]$ is by 40 mb lower than that in ref.[13].

The obtained by the above discussed methods $b_{\text {ne }}$ values for Pb and Bi are compared in Table 3. A remark should be made about the line in Table 3 referring to [11]: we admit the error that was made (pointed to by G.Samosvat in [16]) at introducing the correction for Imb, which led to double account of the imaginary part of the scattering amplitude. We did not notice that in [10] in the mathematical description of the experiment there was used the expression for $b_{c o h}$ with the "nuclear" form factor connecting $b_{c o h}$ and the phase not in the form $\sin 2 \delta / 2 k$ but in the form sind/k (that corresponds to the form factor of the square root of the total scattering cross section). It turned out, that this incorrect for the amplitude form factor actually takes into account the correction for the imaginary part of $b_{c o h}$, which is necessary to be introduced into the expression for the cross section $\sigma_{s}=4 \pi\left(R e^{2} b+I m^{2} b\right)$ in order to obtain the coherent amplitude. Therefore, Table 3 contains our uncorrected for Imb estimates of $b_{n e}$ only.

Table 3

Method	Bi	Pb
1. $\mathrm{R}_{0}^{\prime}=$ const $[7,9,10]$	-1.30 ± 0.06	-1.32 ± 0.04
2. $\mathrm{R}_{0}^{\prime}=$ const $[11]$	-1.30 ± 0.04	-1.32 ± 0.03
3. Extrapolation $\sigma_{s} \Rightarrow 0$	-1.33 ± 0.03	-1.32 ± 0.03

Emphasizing the stability of the summarized in Table 3 estimates of b ne to the methods of initial experimental data analysis one should note that the success of the $b_{n e}$ determination depends on the reliability and precision of coherent amplitude measurement. Unfortunately the real situation is dramatical. So
for $B i$ there is a large set of $b_{c o n}(0)$ values, obtained in different years on the gravitational spectrometer and on the interferometer, which differ essentially beyond error limits. These data are illustrated in fig. 3. One can see that the values group around the two values: 8.5313 and 8.5220 , different by five individual point errors. These values of $b_{c o n}$ give for $B i$ the value of $b_{\text {ne }}$ equal to $-1.32(3)$ and $-1.43(3)$. The limit values of $b_{c o n}$ give $b_{n e}=-1.31$ and -1.49. The analogous situation is to be expected for Pb . Thus allowable estimates of $\mathrm{b}_{\text {ne }}$ lie in the critical for sign assignment to the neutron mean square charge radius interval. The fact that there exist other estimates near -1.5 (see tab. 1) forces the conclusion to be made that the existing data on $b_{n e}$ do not allow one to reliably adopt some definite value for this fundamental characteristic and make the conclusion about the sign of $\left\langle r^{2}\right\rangle$. It is obvious that further experiments are needed.

The authors wish to thank Mrs. T. Drozdova for her help in the preparation of the English version of this paper. We thank G.Samosvat for helpful discussion.

References

1. Harvey, J., Hughes, D., Goldberg, M.: Phys. Rev., 87, 220(1952); Phys. Rev., 1953, 90, p. 497.
2a, Havens, W., Rabi, I., Reinwater, L.: Phys. Rev. 72, 634(1947); Phys. Rev., 82,345(1951).
2b.Melkonian, E., Rustad, B., Havens, W.: Phys. Rev., 114,1471(1959).
2. Krohn, V., Ringo, G.: Phys. Lett., 18, 297(1965); Phys. Rev., 148, 1303(1966).
3. Krohn, V., Ringo, G.: Phys.Rev., D8, 1305(1973).
4. Koester L., Private communication in [4].
5. Alexandrov, Yu., Machekhina, T., Sedlakova, L., Fykin, L.: Yadernaya Fisika, 20, 1190(1974).
6. Koester, L. Nistler, W., Waschkowski, W.: Phys.Rev.Lett., 36, 1201(1976).
7. Alexandrov, Y., Vrana, M., Manrike Garcia, J., Machekhina, T., Sedlakova, L.: JINR, E3-85-935, Dubna, (1985); Sov. J. Nucl. Phys., 44, 900(1986).
8. Koester, L., Waschkowski, W., Kluver, A.: Physica, 137B, 282(1986).
9. Koester, L., Waschkowski, W., Meier, J.: z. Phys. A Atomic Nuclei, 329, 229(1988); Reiner, G., Waschkowski, W., Koester, L., : Z. Phys.A- 337, 221 (1990).
10. Nikolenko, V., Popov, A.: Z. Phys. A- 341, 365(1992).
11. Nikolenko, V., Popov, A.: JINR E3-92-254, Dubna (1992).
12. Schmiedmayer, J., Moxon, M., C.:In: Nuclear Data for Science and Technology. Proceedings Intern. Conf., May 30° - June 3, 1988, Mito, Japan, p. 165.
13. Schmiedmayer, J., Riehs, P., Harvey, J.A., Hill, N.W.: Phys. Rev. Lett., 66, 1015(1991).
14. Popov, A., Samosvat, G.: In: Nuclear Data for Basic and Applied Science. Proceedings Intern. Conf., 13-17 may 1985, Santa Fe, USA, p. 617.
15. Mitsyna, L., Samosvat, G., JINR P3-91-521, Dubna(1991).
16. Koester, L., Rauch, H.,Seymann, E., Nuclear Data Tables, 49,非, 65(1991).
18a.Hamermesh, M., Ringo, G., Wattenberg, A.: Phys.Rev.,
483(1952).
18b. Crouch M., Krohn V., Ringó G.: Phys.Rev., 102, p. 1321 (1956).

Received by Publishing Department
on June 18, 1992.

SUBJECT CATEGORIES

 OF THE JINR PUBLICATIONS
Index Subject

1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics

Николенко В.Г., Попов А.Б.

Предложен еще один способ оценки амплитуды n,е-взаимодействия, в котором ядерное сечение рассеяния σ_{s} ($\mathrm{E}=0$) рассчитывается зкстраполяцией известных сечений рассеяния из энергетической области десятки или сотни злектронвопьт к $E=0$. Значения b п получены из сравнения $\sigma_{s}(0)$ и $4 \pi b_{\text {coh }}^{2}\left(b_{c o h}=R^{\prime}(0)+b_{\text {ne }} Z\right)$. Авторы обсуждают также различие между существуюцими зкспериментальными оценками $b_{\text {ne }} и$ приходят к заключению, что в настоящее время экспериментальные данные не позволяют надежно опредепить среднеквадратичный зарядовый радиус нейтрона̉.

Работа выполнена в Лаборатории нейтронной физики оияи.

Сообщение Офединенного института шдерных исследований. Дубна 1992
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Nikolenko V.G., Popov A.B.
E3-92-255
n, e-Amplitude Estimate
Independent of Nuclear Scattering Model
 proposed. The nuclear scattering cross section $\sigma_{s}(0)$ is calculated by extrapolation of known scattering ${ }^{\mathbf{s}}$ cross sections from the energy region of tens or hundreds eV to $\mathrm{E} \Rightarrow 0$. The values of $b_{\text {ne }}$ are obtained from a comparison of $\sigma_{s}(0)$ and $4 \pi b_{\text {coh }}^{2}\left(b_{\text {coh }}=R^{\prime}(0)+b_{n e} Z\right)$
The authors discuss also discrepancy between existing $b_{\text {ne }}$ estimates and conclude that it is yet impossible to reliably determine the neutron mean square charge radius.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

