


To understand the nature of ferromagnetic states of materials
they should be studied on a smallvscale. There are two typical scales
1n the picture of space behaviour of.a local magnetization vector.
The first scale is a- crystal lattice scale, the second one is the do-
main scale.)The thermal neutron diffraction method on the lattice of.
ordered atomic spins makes it possible. to investigate an atomic magne-
tic structure. éuspensions or magheto—optical methods are usually used
to examine the surface domain structure. The intermegiate,scale deter—'
mined by the limits of Jinterdomain boundaries (~1000A) is in existence.
The phenomenologic theory descrlblng magnetic structures and their dy-
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Theoretical studies of equilibrated magnetic structures of thln magne-—

namics on this scale (m1cromagnetlsm/ /) has "been propounded 1n

tic films have revealed that - there exists a new type of films magne-
_tized distribution of which (in the basic state) in the. dlrectlon 2
perpendicular to a surface is 1nhomogeneous/ /. The imitation of such
inhomogeneous state of magnetization is said to be connected with the
distinctions between the values ‘and the types of anlsotropy constants
on a film surface and inside it. These physlcal causes are based not’
only on the distinctions between the inner and surface symmetrles of
the magnetlc ion surroundlng, but also on the existence of light ele-
ment impurities in the skin. The influence of. a basic state of the.
"film, being magnetized inhomogeneously along z, on the pecullarltles
of spin-wave resonance absorption spectra has been theoretically stu-
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Yet, the methods, determining experimentally the details of one-

die

dimensional lnhomogeneous magnetlc structure on a scale of 1nterdoma1n
behaviour (~1000 X), are unknown, i.e. we are still not able to deflne
experimentally -the one—dimenslonal functlon M(z) of a local magnetiza-
tion vector. The 'point is -that well—developed methods make it possible
either to state the ex1stence and type of an inhomogeneous basic state
of a film (spin-wave resonance), or to estlmate ‘thé thickness of ‘the .
ferromagnet inhomogeneously magnetlzed skin and to define anisotropy
inside this skin (the Kerr magneto-optical effect/5 6/) As to the
latter method,its space resolut;og mounts,as_a rule, to - 0 1 +-0. 2/u
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Let us point out that well-~ developed methods of” the Lorentz micro-
scopy are inaplicable in the study of 1nhomogeneous along the depth
‘distribution of magnetization M. These methods make it possible to ob-
serve magnetic inhomogeneities of a sample Plane only. Yet, there are
no experimental methods determining the M(z) function with hlgh reso-
lution.

Below we are golng to analyze the possibility of getting the de-
tailed information on M(z) in a magnetlc film with.the help of pola—
rized neutron reflection from its’ surface.

2. It is known that the problem of ‘detecting the reflection coef-
ficient of neutrons from a flat boundary of non-magnetic medium is
freduced to the solution of a one—dimensional quantum mechanical prob-
lem in reflection from a potential jump U, where U is the value of an
effective energy of: neutron-nuclear 1nteractlon being related to the
mean value of the coherent nuclear scattering length b

“of nuclei in the unit volume N- by the following relation
U = 47 EE N+b.
) 2m

and numbers

(1)
The U values are in the region of ~10-7eV; Film compos1tlon inhomoge-
" neities arising, for example, on its surface due to impurities, lead

to the dependence of U-on-a coordinate directed along the normal to the
“film (z). In case of ferromagnetlcs the potential of interaction with

a medium takes new additive:’

—> -» - : . .
Up = -M-(B-H), : (2)
'wherejz is the neutron magneticbmoment, Ho is the: vector of -an exter—
nal magnetic field, B is- the vector of magnetic induction of medium
'(B = 4?IM + H), H is the sum of all magnetic fields in the medium: an
external and demagnetlzatlon fields of the sample poles. Um
is, as-a rule, of the same order of magnitude as U, For 1nhomogeneous
-magnetized structures B = B(z), ‘where z is the coordinate directed
along the normal to the surface and it leads to the dependence Um =
=-U,(2). Let’s deal in detail with the behav1our of vector B(z) -for
: maln ‘types of 1nhomogeneous equllibrated magnetic structures in magne-
“tic films. Hereafter, the coordinate z will be taken to be directed
along ‘the inner normal to a plane-' x-and y will be lying in the film
" Plane. The. film itself is to be .flat and limitless along X and y. Let
us denote a continuous vector of local magnetization by M and consider

that M depends only on z. For brevity sake, such structures will be
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termed z-structures. Let us formulate the. assertlon lmportant for the
subsequent discussion: for the limitless parallel plates at any non-

colllnear z-structures,. i. e. under any dependences of the vector M

on 'z
H(z) = - : : (3)
M(z) Mx(_z)nx + My(z)ny + Mz(z)nz ‘

the vector ﬁ(z) equals

- _ (_—. - . : (4)
B(z) = 4JLMS(Z) f 1 PO )

where M (z) = M (z)-ﬁx + M (z)n is a component. of vector M(z)

colncldent with the film plane. This assertion is easily proved (e.q.,
see/7/) for the plates with M (z) = const. _One may elementary prove
the equation (4)

for the general case, i.e. when Mz(z) # const. (a plate

contains "volumeric magnetic charges"). It is sufficient to brake non-
collinear z-structures down to two types. Let us refer to the first’
type the films where the vector Ms(z) conserves its space direction,

i.e. when axes are properly selected

M_(z) =M _(2)7_. 3 (5)

] : ) -
The behaviour of‘ﬁ;(z) corresponds to such a behaviour of M(z):

M(z) = M (2)F, + M, (2)T,. : - (8)
Such M(z) vector depéendence emerges (according to/3'8/)'in'films with
volumeric anisotropy of "light plane" or "light axis" types,»andAwith
the surface anisotropy of "light axis" of "light plane" types, respec-
tively. Besides, equation (5) is done for one-dlmenslonal anisotropy .
in the film planes when |Ml depends on z.

Let’s refer the films with.the splral Ms(z)structure to the secona
type, i.e.:

-> _. - L T ’ ) 7
Ms(z) = Mx(z)nx + My(z)ny; Mx(z)/My(z) #»const. o (7).

Such dependence of MS on z corresponds. to the vector

M(z) = M ()T + M, (z)'ﬁ + M, (z)0,.

.mﬂch structures may emerge, for example, in one-dimensional’ anisotropy
magnetlc films (1n the external magnetic field) with dlStngUlShlng

values of plane anisotropy constants and inside the films.



3. Now we turn our attention to the analysis of the heut;bn reflec-
tion from films with a magnetized z-structure. Then, let us write the : ;

neutron wave function with regard to the spin

Y, (2)
Y_(z) /.

The neutron wave function (8) in magnetic medium adheres to the Pauli

Y(z) (8)

one-dimensional equation with potentials (1) and (2) i

(9) )

B & Y v [E- v -p8B@ -5 Y@ =o

2 . j
2m dz ]
or with the eq. (4) g
2 2
Lo Y + [E- - amuBE (2] Y = o, (10)

]
2m  dz
0?2 . .

where E = ’ kz is a wave vector z-component, ¢ is a vector with
: 2m

components dx’ dy, Gz (the Pauli matrices). The wave functions of

falling W’i(z) and reflected ‘Pf(z) (z < 0) neutrons are written as
follows

. i) f)

lkzz +( “'k Z ‘+)+( ’ .
Y.(z) = O ¥, (@) = ® 1. (11)

L,',(i-) , kV(r) v
Spinots +;) and ?ﬂ are bound by the following equation
) U .
o () :

w0 o) a2)

vt : : .
where R is a 2x2 reflection matrix, depending on Kz and Ms(z). Matrix

R is to be found from the equation (10) with regard to standard boun-

n.m elements are the essence of the ref-
’ H

amplitude with the neutron spin flipping (n # m) ]

darles condltlons. The matrix R
lection probability
and w1thout ‘it (n =m). Thus, due to the dependence of R 'm'elements
on K we get 1nformat10n on B(z), i.e. R is uniquely determined by
space -dependence of M (z) .

Let us associate the values being measured during experlments

on polarized neutron reflection with the matrix R. Generally a polari-
b .

B (K,)T(K,)

zed neutron beam is described by a spin density matrixlg/

P= % anlYn>< \Pnl, ’ s '(13)

where a, are mixing coefficients of a neutron pure spin state PVn)
The vector of beam polarization is determlned by a matrix p as fol-
1ows/9/ ’

e - ’

P = tr(po )/trp . : (14)

In order to determine polarization of a reflected beam one has toAknow
the way the matrix P is transformed due to the reflection of neutrons.
It is easy to show that a falling beam matrix Fi is transformed to

a reflected beam matrix Pt nearly by the equation

¢ = R f&R ’ (15)
where R+ is the hermitian conjugated matrix. Let us.construct a matrix
of a magnetic film polarizing ability
€ = RR". ’ o (16)
Using the matrix € we construct a vector of -a film polarizing ability
as follows: )

0= tr(ed )/tre. , , -oan

It is not difficult to show that the scalar product of vectors of pola-
risation of a falllng beam P (k ) and that of the vector of a f11m pola-
rising ability Q(K ) satlsfles the equation

=y - o) /[Ny +N_k)) L, a8

where N (K ) and N_ (K ). are the intensities of neutrons reflected ffom |
a film surface w1th "on" and "off" spinflipper, respectively. The spln-é
fllpper is a polarlzed beam 1nstrument performing the reverse of the ‘
falling beam polarisation vector P (K ). Thus, the combination (18)
of experlmentally measured spectra N (K ) and N (K ) is uniquely rela-
ted by the reflection matrix R. In th1s case the matrlx is uniquely
determined by a particular kind of z-~-structure M (z). . .
In the sense that a deflnlte vector of the f11m Q(K ) polarising

ability corresponds to each concrete z-structure (see (Lﬁ), (17)),




let us consider specific pecullarltles of th1s vector typlcal for the
‘above types of structures.

Substituting Mg (z) ,appropriating to first type structures, in
eq.(10) reduces it to a system of two independent equations with respect
~ to ‘P (z) and ‘P (z). With an appropriate choice of a coordinate sys-
Vtem (where M (z) = Mx(z)nx and the matrix 6; is diagonal) ‘a reflection

matrix becomes diagonal, i.e.

Y A ) .
\° Ra2 T
- N -p —_
Clearly in this case Q(Kz) il n

xl
.in direction with the vector of magnetic induction. The latter state-

i.e. it occurs in a film plane and is

ments are true for any values.of the neutron wave vector K,- Using the

determination of the vector 0(K,) it is easy to show that

lRll(Kz)lz" [ Ry, (K,)| 2

e IRy, x| 2+ [Ryy (x| 2

and "dependence of Qx on Kz is to be definei by’ﬁs(ZL A complete-expe-
riment on the determination of the vector O is reduced to the indepen-
dent measurement of spectra N (K ) and N_ (K ) comblnatlon (18) at three
borthogonal directions of a polarlsatlon vector P of the falling beam.
The fact that Qz = 0 must lead any Kz to-a zero value of

[N, (k) = N_k)] /[N, (%) + N_(K,)]

"if a falling beam vector P (K ) ‘is perpendicular to a film.
Substituting M (z), approprlatlng to second type structures, in
eqdg.(10) leads to a system of two interdependent equations with respect
'to tV+(z) and ‘P_(z). From this it follows that the matrix R in the

general case is non—diagonal, i.e. all elements of R may be diffe-

n,m
rent from zero. These are expressions for the components of the pola-

rlslng ability vector Q .for z-structures of the second type:

2 o 2 2
[IRll(Kz)|2 + ‘RlZ(Kz)I ] B lIRZZ(Kz)[ + IR21(Kz)l ]

- Q.(K:) =
- p.4 z2
’ n,ml anl
* A * '
‘- 20m[R) ) (K )Ry (K,) + Ry, (KR, (K )]
0, (K,) = b2 5
n,m I an‘
vQé(K;)b= 2Re[R 11 (%, )R 51 (K,) + R 2(K ) -r" 20 (K, )]
e

o | R

where R* are complex conjugated values. From non- dlagonal condltlons
R12' 21 # 0 it follows that Q (kz) . being normal to aafllm, generall
differs from zero. Thls basic paculiarity of the vector Q for .a second
type structures leads to the difference from .zero of a film polarising
ablllty along the direction perpendlcular to its surface. The comp-

lete experiment, as.in the previous case, is reduced to the 1ndependent

measurement of [N (k) - N_(K )] / [N (k,) + ‘N_(K ﬂ for three ortho-
gonal directions of the vector P (K ). It is clear that the dependence
of Qx \YezZ on’ Kz is to be determlned by the magnetic structure parame-
ters.

‘. From what has been sa1d above 1t follows that there is a. p0551b1—
lity to’ restore a complex M (z) structure of magnetlc films by pola-
rised neutron reflection. To perform thls it is essential: f1rst1y,
to measure spectra dependence of three components of film polarlslng
ability vector Q, carrying dut the ‘above complete experlment- second-
ly, solving eq. (10) with boundary conditions - for 2 model structure to
fit, changlng structure parameters, theoretical values of Q(K ) to
the experlmental ones over a wide range of values K « Thus, the essence
of the suggested approach is reduced to the solutlon of eq.(10) which
makes it possible on ‘the base of M(z) to calculate the. reflection’ mat-
rix R(K )- and the experlmentally measured vector Q(K ). It should be
noted that in the general .case eq. (10) cannot be solved analytlcally.
Hence the solutlon of eq. (10)w1th different types of M(z) is_ an inde-

'pendent problem.

The .developed approach as well as the -method of solutlon of
eq. (10)for the general case, was favoured by the results of exper1-

ments on the reflectlon of polarized neutrons from thin (~1500 A) FeCo

films, investigations of which had been carried out at the pulsed
neutron reactor IBR-2, JINR. :
e

CONCLUSiONS -

1. The theoretlcal approach of explanatlon of experlmental data
on polarlzed neutron reflection from 1nhomogeneously magnetlzed thin’
films is suggested The very approach makes it p0551b1e to determlne
space behav1our of the local magnetlzatlon ‘vector M (z) with space’
resolution exceeding the resolution of magneto- opt1ca1 methods. appro-
x1mate1y by an order.

2.‘The matrix and vector of polarising abilltv for a magnetlc .

“film are constructed; the peculiarities characteristic for various

types of 1nhomogeneously magnetized films have been consldered




. . . . :
It is shown. that for films with the spiral structure magnetiza-
tion the polarising ability  vector must have a,non—zero"compoﬁent

‘perpendicular to a film plane:
3. If this approach is realized it will be essential to carry out

the complete experiment: to measure three components of fhefilds pola-

rising ability vector according. to the wave vector of incident neutrons, -

4. It appears that the coﬁplete experiment ‘is reduced to the mea~-
surement of the definite spectra of the reflected neutrons (see eq. -
'(18)). for three orE?ogonal directions of the incident beam polarisation

vector.
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