C 341, 19 + C 343 + 1 K-97

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Manager and

in the second second

AND PATOPHOS

Sull.

10/1

Дубна

E3 - 3029

29/20-66

# J. Kvitek, Yu.P. Popov

1242232333355

## ALPHA DECAY AFTER RESONANCE NEUTRON CAPTURE BY SAMARIUM AND NEODYMIUM

E3 - 3029



### J. Kvitek, Yu.P. Popov

#### ALPHA DECAY AFTER RESONANCE NEUTRON CAPTURE BY SAMARIUM AND NEODYMIUM



--

In this report the first results of our investigations of the  $\alpha$ -decay of the highly excited nuclear states formed in the resonance neutron capture are given.

The (n, a) reaction gives to experimentators disposal a specific possibility allowing a) to investigate the *a*-decay from a large number of discrete levels (for which the average level spacings, parities and sometimes spins are known), b) to extend noticeably the region of *a*-decaying nuclei, because the neutron capture increases the *a*-particle emission probability by many orders of magnitude (for Nd by more the 30 orders).

It is interesting to compare the a-particle widths  $\Gamma a$  averaged over a large number of resonances, with the statistical theory predictions, and also to study the a-particle widths distribution and to investigate the correlations of the values  $\Gamma a$  with other resonance parameters (spins, neutron widths and so on).

The measurements were made on pulsed reactor IBR with a microtron as an injector. The time-of-flight method at 100 and 30 ns/m resolution was used.

A gaseous scintillation xenon-filled counter with a multilaver tarbet served as the *a*-particle detector<sup>1/1</sup>. Targets of excited of natural Sm, Nd and isotopically enriched <sup>148</sup> Nd (4-8 mg/cm<sup>2</sup> thick) on Al back-ing were used. Total target weight was 20-30 g. The *a*-particles, the backround and the *y* rays from (*n*, *y*) reaction (detected by a separate

y detector) were recorded simultaneously by 1024 - channel time analysers.

The neutron energy dependence of the  $\alpha$ -particle counting rate (lower curve) and of the  $\gamma$ -ray counting rate (upper curve) from measu-

3

rements with samarium<sup>2</sup> and <sup>148</sup> Nd are shown in Fig. 1 and 2, respectively. The lack of maxima on ( n, a ) curves at energies corresponding to the strong resonances of the (n,  $\gamma$ ) reaction ( <sup>129</sup> Xe  $E_0 = 9.4 \text{ eV}$ , <sup>131</sup> Xe = 14 eV, <sup>182</sup> Sm = 8 eV) allows us inspect constantly the insensitivity of the a-particle detector to  $\gamma$  ravs. Another evidence of the same fact was obtained by an additional measurement with samarium target covered by  $60\mu$  Al foil, which completely absorbed the a particles from Sm ( n, a ) reaction. This confirms also that the detected particles are indeed a-particles.

The area ratio for corresponding resonances in  $(n, \alpha)$  and  $(n, \gamma)$  curves is proportional to the partial widths ratio  $\Gamma \alpha / \Gamma \gamma$ . To find the absolute values of  $\Gamma \alpha$  the  $(n, \alpha)^{/3, 4/}$  and  $(n, \gamma)^{/5/}$  cross sections for <sup>149</sup> Sm and <sup>143</sup> Nd at thermal neutron energies were used.

On examining (Fig. 1 and 2) one can see that some resonances clearly revealed in the  $(n, \gamma)$  curves are very weak or absent in the  $(n, \alpha)$  curves. Sometimes this circumstance may be connected with a spin value of the resonance. When neutrons with zero orbital momentum are captured by the nuclei studied (149 Sm, 147 Sm, 145 Nd, 143 Nd) compound states with  $J^{\pi} = 4^{-}$  and  $3^{-}$  are formed. The ground states of the daughter nuclei 144 Nd, 146 Nd, 140 Ce, 142 Ce have  $I = 0^{+}$  while the first excited states have  $I = 2^{+}$ .

Thus, for the compound nucleus levels  $J^{\pi} = 4^{-}$ , *a*-decay is possible only to the excited states, whereas for  $J^{\pi} = 3^{-}$  levels transitions both to the ground and excited states are allowed. Since the probability of the *a*-particle penetration through the Coulomb barrier falls off quickly with decreasing *a*-particle energy the widths  $\Gamma a$  for the  $3^{-}$ levels are larger than those for  $4^{-}$ -levels. This is displaied especially clearly in the case of  $1^{48}$  Nd (*a*-decay schema is given on Fig. 2), because the first excited state of the magic nucleus  $1^{40}$  Ce is very high (L.6 MeV).

The values of  $\Gamma a$  obtained for <sup>148</sup> Nd are presented in table 1, the same for  $S_m$  isotopes are given in our preprint<sup>2/</sup>. It is interesting to notice, that the *a*-particle widths of the three lowest <sup>149</sup> Sm resonances with  $J^{\pi} = 4^{-}$  fluctuate weakly. In the same time the

4

*a*-particle widths for <sup>147</sup>Sm resonances at  $E_n = 3.4$  eV and 18.3 eV, and with  $J^{\pi} = 3$  and 4, respectively, differ by an order of magnitude.

As the calculated for <sup>148</sup> Nd ratio of the probabilities for *a* transitions  $3^{-} \rightarrow 0^{+}$  and  $4^{-} \rightarrow 2^{+}$  is about 100, we considered it justified to assign  $J^{\pi}$  to all <sup>148</sup> Nd resonances observed in our measurement (see table 1).

However, such identification is not always quite safe. Let us suppose that the distribution of  $\Gamma a$  is the Porter-Thomas one with  $\nu = 1$ . Then the  $\Gamma a$  distributions for  $J^{\pi} = 3$  and 4 states will partly overlap. In the same time our spin identification for  $S_m$  is in agreement with the results obtained by other methods. In order to show that the distribution of the  $\Gamma a$  is really the Porter-Thomas one with  $\nu = 1$  it is necessary to investigate more resonances.

In table 2 the experimental and calculated average widths for the a transitions from levels of the same spin and (in brackets) the number of averaged resonances are given. The theoretical  $\Gamma \alpha$  were calculated using expression  $\Gamma \alpha = D/2\pi \times \sum_{\rho} T_{\rho}$ , where D is average level spacing for states near the capturing states of the same spin and parity, and

 $T_{f}$  is the transmission probability for an l-wave a particle<sup>/6/</sup>. Let us note the good agreement of the experimental data with the theoretical values for <sup>148</sup> Nd and <sup>149</sup> Sm, but somewhat poor agreement for <sup>147</sup> Sm and <sup>145</sup> Nd. Errors in the experimental values of  $\Gamma a$  many arise from omission of weak resonances, from averaging over small number of resonances and from calibration errors. However, these errors can not change the magnitude of  $\Gamma a$  more than trice.

In the near future the  $(n, \alpha)$  experiments with isotopically enriched Sm and Nd will be carried out. Investigation of the  $(n, \alpha)$  reactions in other atomic number regions is also planed.

#### References

J.Kvitek, Yu.P.Popov, K.G.Rodionov. Preprint 2690, Dubna (1966).
J.Kvitek, Yu.P.Popov. Phys. Lett., 22, 186 (1966).

5

- 3. E.Cheifets et al. Phys.Lett., 2, 289( 1962).
- 4. V.N.Andreev, S.M.Sirotkhin, Jadernaya Fizika, 1, (1965) 252.
- 5. LV.Gordeev. Nuclear Physical Constants, Atomizdat (1963).
- 6. A.Dadakina. Report Conf. on Nucl. Spectroscopy, Moscow, Jan, 1966.

Received by Publishing Department on November 18,1966.

| -   | eV<br>E <sub>o</sub> | -6       | 55.5 | 127    | 136   | 157  | 180  | 187   | 410  |
|-----|----------------------|----------|------|--------|-------|------|------|-------|------|
| -   | J ″                  | 3[5]     | 4-   | 3 [ 5] | 3-    | 4-   | 3-   | 4-    | 3-   |
| Га  | x10 <sup>5</sup> eV  | 0.59 [3] | ≤0.1 | 3.0    | 13.0  | €0.1 | 1.0  | 4 0.2 | 4.0  |
| Δ٢, | ¥ 10 <sup>5</sup> eV | ± 0.12   |      | ± 0.6  | ± 2.6 |      | ±0.5 |       | ±1.2 |

Table 1 Alpha-particle widths of the <sup>143</sup>Nd resonances

#### Table 2

Average a -particle widths for Nd and Sm isotopes

| J‴                                          |                   | 4                 |                   |                   |
|---------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| Isotop                                      | 143 <sub>Nd</sub> | 145 <sub>Nd</sub> | 147 <sub>Sm</sub> | 149 <sub>Sm</sub> |
| exper<br>Γ <sub>a</sub> ≭i0 <sup>7</sup> eV | 430 (5)           | 8 (3)             | 19 (5)            | 0.74 (3)          |
| theor                                       | 350               | 2.8               | 61                | 0.83              |



Fig. 1. Recorded number of a particles (lower curve) and y-quanta (upper curve) for  $S_m$  plotted against the neutron energy. The resonance energies for  $^{149}S_m$  and  $^{147}S_m$  available from total neutron cross section measurements (5) are given below the spectra.



Fig. 2. Recorded number of a particles (lower curve) and y -quanta (upper curve) for enriched <sup>148</sup> Nd plotted against the neutron energy. Alpha-decay mode from excited states of <sup>144</sup> Nd is given.