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SUMMARY

The Lagrangian and llamiltonian formalleme are constructed Tor
the messleps relativistic string in a conotant homogenecus elect«
romagnetic field in a special gauge dependent on the field, Solu~
tiona to the equations of motion and the mass spectrum of the
siring are found. The conserved quantities are the canonical (not
dynamical) momenta of the string, therefore the aquared mase of
the atring is defined as tha square of its total canponiusl momentum,
It turned out that even in the claesical dynamics thers are prasible
the ptates of the etring with the negative squared mass (tachyona),
The quantum deescription of the string in an electromagnetic field
l# conoldered and the problem on the relativistic invariance of
quentum theory is discussed. The method baged on the check of the
Poincare slgebra turns out to be not valid in the presence of the

external field as in thio case the Lorentz rotation operatore are
{ime~depandent,

1. INPRODUCTION

The atudy of iyusamice of the massless relativistic atriag
tra chovn that the guantization of this object gives the gpect-
rum of states of the ntring coincident with that of hadron
masse8 in duasl reeonsnce modala./1/. Te conetruct dusl smplitu-
des, {t ie necessary to consider the interccting stringsfz/. In
view of this, exsctly solvable examples of the interucting rein-
tivietic string are instructive. Such solutions have been found
to the equations uf' uwotion of the string in the field of a plane
electromagnetic weva{al. and, as ie shown below, these can be
obtoined for a vonstunt homogeneous electromagnetic field. The
golution of the peneral Caulhy problem for the free relativistic

atring has been found in ref./4/.

I1. Egyatlons of Motion of the Helativigtic String
in Electiromugnetic rield and the Choice of Gauge

The mction of the atring in an electromagnetic field ig

defined in the following way
Ty G

§ = foede (Lov Lur),

T s 6

(1)

where
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This type of interaction, &ss in the cass of the free string,

Lot = Saé/.o'c, F’"Ex),

i8 coveriant under arbitrary changs of parametera é and T
~ -
é={.c4n), ft-{zc.s,'c).

This ptatement becomas clear when the term in aq. (1) for the

interaction is transformed in the following way

t BT ;. y
Sos= an«:Sdex,.x,F'/'cx)a
‘r; 6;(")
'fg. T, (2)
dx” dx”
53 dt""" Av(x) d‘r ex Av(x’
¥, 97 =6, 3.&.‘ o s=6,m
whara

ok’ sctamy+ xtomer).
Evidently, the term sint describea the interaction with electroe-
magnetic fleld of two point=-like chargem at edges of the string.
These charges are equal in magnitude and opposits in algn
8‘- - 313 B v

The variation of action (1) results in the squations of
motion

28)- 3,08 o

end in the boundary conditions

2, PV op L - (4}
53 Spe @@ xr8)-0,

6=6,(T), (i=1,2),

.

where 6{ )

anda.

is the value of the parameter 6 at the atring

The variation of the action 5 over functions 5&1) pro-

duces the condition
L=+ =0, 626,10, 6=6,), (5)

Therefore the interaction with electromagnetic field does
not change the equations of motion of the string and changesonly
the boundary conditions. Thie is a direct consequence of equality
(2},

As in the fres cass, oqe.(3) ere dependent and obey
two idontitiol“/. Projections of these eqs. onto i" and .'J’!"
are zero., Thus eqs.()} do not determins completely all variables
2, (6,T) and on searched solutions one may jmpose the two sub-
sidiary conditions (the orthonormal gauge conditions)

XX =0, 2t xt=0. (6)
These squations can be treated as conditions on the choice of
paraneters 6 and T on the world sheet of the string.

It is easy to show thet from egs.(4) and (6) eq. (5) follows,
Therefore in what followe we will not conmider the condition (5)
ap an independent one, With eg. (6) taken into account the equa-

tions of motion {3) and boundary conditions (4) become linear

L4 ‘e
.x,, (4,T)~ .Il.(éﬁ)ﬂ' 0, (7

.'iv"‘ﬂ’::'/-x."f (iv*‘snf i")d =0, 6=6,01),is1,2.(s)

As wag mentioned sbove, the variation of action (5} over 6‘-(‘1)
did not produce new equatione for determining the functicns

61.(‘(), (i=1, L} descriding in coordinates 6,7 on the world
sheot of the string the motion of ite ends. Therefore for sim-

plicity the functions 6{(‘” ¢en be taken such that &'.(T)lﬂ and
61(1)- D) 6,_(113-' ! .



How the problem of the string motion in the electromagnetic field
ig formulated as followa: It is required to find a solution to

equations of motion (7) which oleys the subsidiary conditiong (G)

and boundary conditions

:i',,+3F7' X=0, 6=0, é=1. (9)

Thie problem ie the covariant lagrangian formulation of equations
of the relativistic string in the electromagnetic field,

Ancother approach to the problem under conpideratlion ie pogw
pible {po-called non-covariant formallem), 4s in the free case,
on searched solutions one can lmpose, in addition, the gauge con-
ditiona, for the following ressone, The equatione of motion {7),
boundary conditiona (8) and subeidiary conditiona (6) do not fix
¢ompletely the cholce of vurie.b}aa 6 end T « These equa~
tiona stay covarient in pamsing to new variables Z and "E

euch that

E-F=d(6-D = i), G+T=le+T) =P oy

with arbitrary functions g{(ol) and ﬁ(ﬂ} « Thip allows to
impone the gauge conditions on the gearched functions I/.(é,‘!) s
which finally fix the choice of parametars 6 and T + The
gauge conditions should be taken so that they do not contradict
the requirement .6;(‘”"0. t=1,2, Lot us project the boundary

econditions (8) on e constant vector N

R, guFyp 2l (new gnF 27820,

(11)
6:6}(‘() , 157 1,2,
The choice of gauge (that of 6, ) Ls fixed by the require-
ments . "
nv-x’y +3 nvn/' :c/"-: 0-, (12)

n“j-,,+?n'f'7- x/=P, (13)
where ..{P ig an arbitrary nonzero constant., As will be shown
below, this gauge means that the projection of the string canc-
nical momentum of each its point on the vector W is the cons-
tant equal to ..CP. Now from {11}, (12) and (13) it follows that
é{(q)n 0, (('ﬂ' 1,2,) , 1e0.,the gauge (12), (13) fixes uniguely
the functions 6‘-(‘!').

In Appendix A it is ehown that the gauge (12}, (13} for the
conetant homogeneous electromagnetic field corresponde to the
transition to new parameters fé and T by formulae (10) with
functions & () and ﬁ(ﬁ) with slready derined forme.

The gauge conditions (12}, (13) and aubeidiary conditione (&)}
allow one to exprema two components of the vector X,.(4T) in
termg of other independent components which in the following
will be denoted by 11(6,‘1') .

Ag 8 result, the initial, emsentiamlly nonlinear (because
of conditione (6)) problem reducee to finding of molutions to
the linear equations of motion for lindependent components of the
vector .'xl.(é,‘f) obsying the linear boundery conditlions {9). In
what follows we will use Jjust thip formelism though it repults
in the loss of the explicit relativistic covariance of the
theory.

Now we formulate the Hamiltonian formaliem for describing
the string motion in the electromagnetic field. Let us introduce
the canonical momenta mf'=— %7' . Taking account of (&)

one can eapily obtein the following expregsion for ﬂf t
L] A 7
qif=xr+Frx,. (14)

The canonical momentum T/ is an analog of the generalized

nomentum of a charged particle moving in the electromagnetic



field, The total cononicael momantum of the etring is determined

a8 followa !
= Sdéﬂtf‘cé.‘t) :

Using eqs, (14). (7) and (9) we show that the momentum I]f
conserved if Fﬁwmt:

(15)

4
dﬂ S(ac" F‘"‘:ii,)dd-&(o'éf‘+Ff"5c',)ds..

6=t
/ A, 6=
ém=0
Then the reat masa of the etring is naturally defined aas
the square of the co;uorvod totel ocanonical momentum
[' 3
M - n/!n - n ] (16)
Like for the free string, the phase apace of the considered
gystem is bounded by the conatraints between .r/.(d,'l') and ﬂrfé,‘l’)s

fx=0, (5’["—3?"‘3;)-&-:{-0- (1)

This is a oconsequence of the aingula?ity of the total Lagrangian

{(1): detﬂ -,

DXy

The Hamiltonian of the systom, as in the free case, appears
to agqual identically zero
ﬂ--—fﬂi—éﬂ =.
In addition to the primary constrainte (17), on the canoni-
cal variables also the gauge conditionsls/ can be imposed. To
got the direct correspondence with the Lagrangian formalism

theege conditions may be taken in the form
Hot Qe Frn (G- 9 F/ 8% 4) =0
g Fupd g ‘ ) (18)

In the Hamiltonian formalism we algo will distinguish
independent {"transverse® cenonical variables X, (& <), ﬂ(d!df)
and dependent ones X , T, .

IIl. Solution ¢ tion Motion in the
on=Covarisnt 1i

Ao ia knoun’sl. any electromagnstic field conetant in space
and time can be reduced By the appropriate lLorentz transformation

to the follonins rour capest
. Ew0, H=0 CE-H0, EH=0);
g:o, He# 0, CE-H0, ER=0);

EE and }{ diffor from zerc and are pnrallol to each
oﬂu(ﬂohnﬂmtE‘H unnnmuuynmu.EH*ﬂh

4, Blectric and magnetic fields in all referance frames are
equal in magnitude and perpendicular to each other ( El‘H“O,
_E,ﬁ-ﬂ .

In all the four cases polutiocne to the equationa of motion
and boundary conditions can be found as the Pourier series and
the equared mass opsrator can be determineﬁ for the string. And
it appoars that the electric fisld changes the distance
betwesn esquidistant levels of thim operator and displaces the
square of mass of the ground state to the negative regiomn. The
magnetic field gives only the negative contribution to the
squared mags of the ground etate. It is important that even in
the clussical sclutions there appear the states with imeginary
mass' {tachyons}, Therefore for the astring in the constant elect-
romagnetic field the eituation with tachyon states is complicated.
Prom solutions 1t is seen that.tharo exiest limiting valuss of the



electric field at which tha solutions change their behaviour,

These are: E == Ec,- ’ where

L
E:r= gmﬁco(’g '
If one puts that charges at the string enda are equal in magni-
tude to the electron charge, and d’ 0.9 l:.‘(E'V”2 {as is made
in comparing the tree relativistic atring to the dual models),
then E".N .10 VOH’/CM For comparimon note that this valus
im by a factor of 1012 larger than the intenalty of the electric
fleld acting In the hydrogen Qtom on alectron, Por values of the
external fields Eeﬁ’& E‘, all solutione for the string in the

electromagnetic field turn into the free solutiona.

Conaider the molution to the firat cgme, Let the vector E
be directed along the ¢ -axie then

3Pai"3F19=E (20)

und the vector A be taken as the vector with componenta

ngsn‘al‘ n ao d*2,3, M™e gauge conditiong {10) and ¢11)
taks the fom

{-x=Ci-0)EF, (21)
boxa(t-0)E+S

%
Ve put E E er sBince the opposite cape requires a4 special

{22)

conelderation carried out in Appendix B,

In the gauge (21), (22) subsidlary conditions can be solved
with respect to t and O by expressing them through indepen-
dent variables O = (0, 0 ,ld »2)

{-_,:“—(.xy-x;)-*- *-351.“4 + E(Ei—?) éfé-@)

10

be e dh) - Saukir 725 =flom,

29 P (23)
! f Y ‘ - g) = 4(6,?'
X= E%(.‘I__['f'xl)'f'?".xlx_]_ 2—@_'5 l) 9’ ),
!I = "'-' (I + :x_l)"" —Q'xj_x_]_‘ J(;"’E’)z fpz(é,‘t).
Then t(ﬁ.‘[} and X (8T) are obtained vim 1integration:
) T ¢
t(é¢t)=Sf (é«r)dé-»j{m)dq' {de jdé f €B+t,, o
ff'o 60

2(67)= S‘P(é ) de¢’ +é?(6‘r)d‘r jdt'jdé'sﬁ(éf‘rS +Xo

uheret and X, are constants, 19 ¢,

The boundary conditions (9) in the case under conpiderstion

are written for each component of the vector :rf in the follow~

ing way ; .
+ =0
t.EO: ’ 6=0,P. (25)
E,++x=0’ (26)
Xy = 0.

The polution X, {6X) is obtained by the following echeme:
: T) h
firgt we find independent components 11‘1(6, which obey the
d' Alembert equation and boundary conditions (26), using the
> Y .
initial data Xy(6,0) and Xy{4,0)  .which are given
arbitrary. Then by formulae (23) and (24) we got qt'(é;,‘(’) and I(bfl’).

11



The initial deta for components T(éﬂ) and J'Cﬁﬂ’) are defin-
ed uniquely by formulae (23), (24) through the initial data
.Tl(égO) and il(é' o) -

The independent variables .'Il(é,"l) can be represented ae

the Fourier series

. .
Fy6m= o lq“+Z‘ V_ﬁ(a,ue +a..48 ) cos(4l8) (2
nu

How lat up find n + whers ﬂ Sdém ©) + This quantity,

ap waa mentioned above, will be dorinad a8 the equared masa of
the etring., According to (14) the vector S'I'r in the constant
elactric field (20) has the rollowing eomponentsc

3[-3:+E-t M=t+rEx,
. (28)

WJ = 3. 3 gif = 2.
Using expanaions (27) and (28) we gat _
ini
M= 0P % (- F )Z”W(ananl*au an). (2

net
The aquared maaa 01' the ground state is negative and equalas

FR

Por /F/< tha distance botnen equidiatant levels of the
opsrator M? ia emalier by a factor of (/=F%) than that for
the free atring'). For /E’)! the aquared mams of the string
as a whole 1e alwaye negative,

The liamiltonian function which produces correct equations of
motion for independent canonical variubles X (6,T) and
6,1 may be taken in the form

*) To pass from dimenaionless quantities E and H to the
usual intensities of the electromagnetic field it ia necessary to
multiply E ana H by 2,']}5(,‘0(5 in all formulas.

12

1- £ 1-£*

Indeed, from the variational prmmple in the Hamiltonian forma-
/

e S5 e Jdmlsr_‘ H)=0

T+
we obtain the Hamilton aquntmna

£ 'y
He -2 = fete dtydo o 2L .
o]

L/ (30)

and the boundary conditions

a—ﬂzil-_-o_, 630,3-

X,
Thue, the Hamiltonian formaliem coincides with the Lagrungian

derivation of the equations of motlon.

Next, let ue examina the string motion in the constant
magnetic field. We suppose that the field is directed along the
X -axip, then

ghs=gF'=
The vector H again is taken with components M en 1,
=0, o£=2,3 ,

The gauge conditions (12), {13} in thie caae are written in

the form

t-x=0, 'i“a;f-"? (31)
or 4 -0= i
The boundary conditions {9) are
' ’
=0, x s 0
‘{; 0_ ‘: . } 6’*‘0’?- (32)
gal-stO, z-—H;: ag.

A independent variables we teke é{(é,'n and £(6,7).
{
These components of the vector :r,.(6,'r) obey more compicated

boundary conditions than t and 2 , however, in this way one

13



can solve the aubsidiary conditions {6) allowing for gauge (31)

without roota:
!

o J[ %
4t Bo— :[ (0{1‘+ qu =+ "‘s
? Xu%y ) (33)

v o p— .;z?
X = ,x;x _x.. :x-q-.x - .
'? A Al 2‘?( 4 .I.) 2
The boundary c¢onditions (32) for independent comporents sre

fulfilled 1f é{ ara E are represented as the lourier peries

3(¢,¢)=[~§3+ ¢-HE - —2&)]-—-*"*
'.*g!r -;ﬂz’lr

+ 0.8 )cos(%%)"

1
+ 2' (a 6

‘ - 827
"Y——%—TZ —L.(B, 8 7T B.e )sintsey
1+ ne 1

4 {
zem= [ £+ BT 4 HR 6 1)) =

; 4l
(3 ¢ +58 ") cos( 0¢) +

{
.1-
'VH-H‘ net VAT

czZ!
= a ,g"g )}m(ﬂﬂé) (35)
Vf-ﬁffl ééz'.vf——-( é?

14

Thua, egs. {33), (34), (35) define completely the string
motion in the constant magnetic field.

r—l
The canonical momentum “qf has the following components:

Si{."ky :ﬂ“i,
. 4 + [
Ty=grHE, Gig=2-HY .

From expanpiona {34) and (35) 1t follows that

-l'jb.
e DY+ VRZ YR aie Gy Yl

7, = RViiE + ViRt ’”’(ﬁ e 5 ¢ ’)ws(f%)

In this cape the mase of the whole string equala
oa [ 2
: 2 a0t + + o
M=l=H¢R +"z’n7(a,,a,,+a,,a,, +4,4, +£,é’,,)'(3i,)
3
The Hamlltonian may be taken as follows

R
H= Oﬂ{"‘i‘”\[f(ﬂg Hz)+(Jr;+H;)+J+z‘Jde+ N3

Consider the third came when the electric E and magnetic
fleld f{ are nonzero and parallel to each other., Wo orlentate
them along the O -axis

9For=-gFo=E, gFa=-gfs=H

The vector M , as before, ia with components:

nf=(1,1,0,0).

The gauge conditions have the same form ae for the electric

field only:

t-x =(t-2)F,
f-x=(t-0)E+

15



The boundary conditions {9) for components Ir are

t+Ex=0,
£+Et=0, \ ¢_9.L. 1)

/

;; + H é = 0’
¢ - Hy =0

The indopendent variebles are taken to be 8 and £, The
boundary conditions for them (37) are the wame as for the magnetic
field only {32), Therefore for H and 2  one may use the
expansions (34) and (35), The dependent components t and X
arg defined by formulas (23) and (24),

The vec?or T . bas the form . ;

My=t+Ex,  Ty=f +Hz,

fl, =x +Et, q[_._.g..Hg,

The squere of mass of the airing again is nonpositive defi-
nite

Mz--(Ei'H'if‘B +(1-E} % vt (0, 0) + 01, + (36)
« 8,6 +58Y

The Hamiltonian function which produces correct equations of

metion and boundary conditione for the indepsndent canonical
variables may be taken in the form

He—2a 11, = 2 {de e, Hiy e o Hgy «
‘--E *I o nlE \
+Hll+zlj + - El'

The cage lE \5 1 is exceptional again, However, it can be

8hown that solutiona in this cape are the game ap for the string
i the slectric field E at lE\’i (sse App. B).

16

And finally, consider the fourth case ( E and H are
equal and perpendicular to sach other), The field E is direc-~
ted along the X -axis, H along the y -axiai

Hu"'ﬁlqor-'E, 9,:;3-'5"'3;;1=H
and E=H=F.

The vector M is chosen an n/" {00, 1) » Then the
geuge conditions take the form

) ! . . n
t-z=0, t-z= Y.
The boundary conditions are as follows .
7
t+Ex =g,
’ .
£+Hx =0, \ 6=0.
!
¥ =0,
/
x+PF=0.

Fow the independent vaeriables are X{4T) and H(é,'[). the depen-
dent onnt and £ , Obviously, the components t and € are
sxpressed through X and H by the formulas (analogous to (33)):

/ .
{ ! 1 X3
t = xixy, t—E‘-@(acuau)-t—-gs
’ e ! v { s L /L
Z""é’“zﬁhn E'@(“;"'Oﬁx)"‘?,
where X is the two-dimensional vector with components X; =
= (0, x(6,0),§(67),0)-

Solutiona to the eguetions of motion and boundary conditions

for the independent variables X and H are the following
o + ’IL}ZT =< n}ﬂf
{ 7x
yeom = %3 +I}‘T+ZV—-—”};(G,, £ " +0nE Deos(2Hé),

Lod

Fourier expansions

17



nﬂp
I(éfr)-~~ +P’1’+Z,v-~(5 t" t-3 8 E) 003(”75) Pras.

Nt

The canonical momente of the string are
9Tf== f“t E'aé *
.77,:;;:, . ;
Ty= g+ Tig= (& +Hx)

und the oquare of mass |n
z ] Inlyt - " +
M ;.-/79-}1‘/ Z'!'Z.'r.'ﬁ(a,, ad,+ An 4,
”nes
+ [
+L'i,5n+lgngn)'
The llemiltonian io given bty the formula

Lors 1
=P/, = [ds TurXs , P}

(39)

where

! g
‘ﬂjﬁwf,,my) . 3:,_=(.r,y).

1¥, Trangition to Quantum Theory

#ith the explieit polutions of the oqustions of motion of
the string in the conetant homogeneouan electromagnetic field, one
¢an construct alac the quentum theory, Ap an example, coneider the
case with the parallel electric and magnetic fields. The problem
in the other caeen ie eolved analogously . It ip convenient to
write the pubaidiary conditions (6) in terms of the Fourier com-
ponents of J'/. + To this end, we introduce the veriebles X¢= 74X,
According to (37) the boundary conditions for X4 have the

form

~1{++E-I'+=U-. 5=0,p.

18

These conditiong and equations of motion hold automatically

if X4 has the following Fourier expansion

4-0

(n(6+T) 'n(é-T)
- -+

:c+.c6.fn-' [(1 YA, e (1+E)oL, £ J+

n4=0

+ %o+ Py (a-£6).

Inserting (34}, (35) and (40) into {23) we get

ot,,=~$;,1w L __,__) (A,,,,,,A + B,y Bin), = 0,4,2,.430)

preiy

(40)

mr:-
rvhera
m.. =gt = = ant
Ao i :'q'"’ A= 0oms B il 0.0 0,
}) B"inw do"""(‘fﬂ)j)-'

Thue, the dep;n unt Pourier componenta «f, A#re oxpresced
via the independent ones Of,,,a,, , B” . 5” Just in the game
vay &8 for the free atring/1/. ‘Therefore the transition to the
quantum deecription of the string in the consteant homogeneous
clactromagnetic‘field nay ke achieved following the quantum
theory of the free string,

The expansiong of the canonical variables {34) and (35) are
conaidered to be operator expressions with the usual commutation

relations:
(4B 1 = (20,11,
to., 00 = (b,. 001 <6, ..,
(A ) = [By,B)=F§,

1, G *
Other commutators sre put to equal zero,

In the iransition ioc the operator form in {41} the problem
eripes, as ia known, about the order of operators, end only

in L « Therefore in the gquantum case }:” is written, se

uaually/?/, in the normal form (with adding of constant']{oto l:)

19



L“iZ(Anm m "Bn-m m) O( éno- {42)

==~ O

The commutator of w 1B

[L, L= L, Zm(m 1§,

whare ]) is the dimenelon of space-time.

hs

In mcooydance with (38) and (42) the operator of the mquare
of mans hae the form
=9
M==(EsH3 0P ot 4 2 (1-EYZ n7i (00, +: B 8,) .
net

Por other configurations of the electromagnetic field the
operator ,V1l ig obteined from the claesical formulme (29), (36),
(39) by changing the ugual product of the FPourier amplitudes to
the normal product of opsratorsminus the constant 0(0 .

For the free string of, and D were determined from the
requirement of the relativistic invariance of quantum thuory/’/
which ta fulfilled onlyatol,= {1 and D=28 ,

The check of the relativietic invariance of quantum theory
of the string in the constant homogeneous electromagnetic field
meets difficultiea, On the basis of Lagrangian (1) one cannot
congtruct the conserved generatdrs of the lorentz rotations. To
find these it ip necessary to consider also the gquantired elec~
tronagnetic rfield that extromely complioates the problem, There=
fore the question on the relativietic invariance of quantum

theory in the coneidered case remains open,

The authors have a pleasure to thank D,I.Blokhintsev and
H.A.Chernikov for interest in the work and stimulating discus-

sions. 5

Appendix A

Let ue show that it is always possible to pass to new para-
ﬂ
meter Z(d) and ﬁ(ﬂ'} guch that conditions (12), (13) hold,
Punctions :Er(éfr) obey the d' Alembert equation (7) there-

fore these can ba represented in the form

x/ta, p)=y L) + %) - (A1)
Ingerting {(A.1) into {12) we get
v / v s
n')';:(/s)'rgn,}"/'y{/.(/!)u";q,(«)-gn.,!'/";a_/‘(x)ao, (A.2)
where the prime means the differentiation with respect to the
function argument.
Next, we pass t0 new parametars & Cot) and ﬁ(p)

by the formulae

d‘:—.-—C[n qv,.,,(d) gn. F/'W/.(J)J

(A D)
-1
/ Yo'l
E%' - c Envw+v(/g)+3nvp W.‘./‘ sﬂ)_] »
where c is an arbltrary constant. Also we introduce the new

functions

T Br=popn ,  B(L)= flatlL))
Now it im eamy to show that eq. {A.2) for the new functions

'?Z_(,?) . ';Z (ﬂ') and new variablen o?,ﬁ are esstisfied

1dentically. Really, we have
Fd

L= ;'f’(d)= ;W(o«ac))-"/¢é¢) -V-’-éf ;V’@: 93/2;4

therefore, according to (4.3}, we get

nzfzf,'(/s")vrjnf'ﬁ?ﬁ)*ﬂ Qg‘j"iﬂpfé‘")” C-C=4.
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Here for simpiicity we omit tne Lorenty .iu..es over siauh the
qunmat. on is made,

.nmlogoualy, we find that in the new variablea:

nx +(?nf'35 =2C.

Appendix 2
whpider the motion or the wiring in the conatant homoge-
LA geectr.oe Ureld when the field intencity E‘* + 4 adt

dimipa. gnieus unita, From the gauge conditions (21), {22) it
foilowp that the conptant ? wguale wero, and inetead of two
equationn lix:ng the gauge one nes only ons equation
/ Fs b v
b-x=x(4-x). (B.1)
2 nve ‘f aml X vbey the wave equation, the gauge

condition {(B.1) may be reprepented as followa
4-xe= CE+T), (8,2)

where {4 1w sn arbitrary function, and E=+ 1, tor definiti-
Nenw,

Inserting (Hs2) into the pubs;diary conditions {v) and
boundary conditions (25), (26) gives the following result, The

irdepsndent vomponents of the vector [ here van be only

on /
conutantsa
X (6,T) = (5{(6,7) » 2C6,7T)) = const

and dependent components '{' and X are defined by tha

formulae

xcem =g [ue+n+ ye-1)],

b6, 1) = ~ 3 [utesn- $6-1] (5.3)

wnere U {¢ an arbitrary function sentering into the gauge

22

condition (B.,2), 3 a new arbitrary function. The boundary
conditione (25%), (26) glve no rise to the requirement of perio-
dicity on the function ¢ and ¥ . Thua, in the case under
conaideration the st_r.i.ng ip moving only along the direction of
the electric field E  without periedicity. Its canonical
momenta {(28) are zero therefore the mase of the whole string is
zaero, too,

The simplest example of solutions to eqe. (Be3) 1s the
case when WD =6&+T ,Y(é6-T)= T~ & + Then

t=v, x=-&, 06z’

Thie solution describves the string which is at rest on the X -
axis. The force of the electric field acting on the string
chargee just compenpates the internal tension of ithe siring
and does not allow it to oscillate that would occur in the case
of the free utring/7/. It is iwportant that this compensation
occura ot arbitrary langth of the wtring P that is a result
of the nonlinear character of the uonpidered system., The
length of a usual elactic body (e.g., rod or gpring with char-
ses at the ende) would depend linearly on the intenrsity of the
electric field E .
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