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1 Early History of the RG in the Quan-
tum Field Theory 

1.1 The birth of Bogoliubov's renorm-group. 

In the spring of 1955 a small conference on "Quantum Electrodynamics and 
Elementary Particle Theory" was organized in Moscow. It took place at the 
Lebedev Institute in the first half of April. Among the participants there 
were several foreigners, including Hu Ning and Gunnar Kallen. Landau's 
survey lecture "Fundamental Problems in QFT", in which the issue of ultra­
violet (UV) asymptotics in the QFT was discussed, constituted the central 
event of the conference. Not long before, the problem of short-distance 
behaviour in QED was advanced substantially in a series of articles [1] by 
Landau, Abrikosov, and Khalatnikov. They succeeded in constructing a 
closed approximation of the Schwinger-Dyson equations, which admitted 
an explicit solution in the massless limit and, in modern language, it re­
sulted in the summation of the leading UV logarithms. 

The most remarkable fact was that this solution turned out to be self­
contradictory from the physical point of view because it contained a "ghost 
pole" in the renormalized amplitude of the photon propagator or, in terms 
of bare notions, the difficulty of "zero physical charge". 

At that time our meetings with Nicolai Nicolaevich Bogoliubov (N.N. in 
what follows) were regular and intensive because we were tightly involved 
in the writing of final text1 of our big book. N .N. was very interested in the 
results of Landau's group and proposed me to consider the general problem 
of evaluating their reliability by constructing, e.g., the second approximation 
(including next-to-leading UV logs) to the Schwinger-Dyson equations, to 
verify the stability of the UV asymptotics and the very existence of a ghost 
pole. 

Shortly after the meeting at the Lebedev Institute, Alesha Abrikosov 
told me about Gell-Mann and Law's article(3) which had just appeared. 
The same physical problem was treated in this paper, but, as he put it, it 
was hard to understand and to combine it with the results obtained by the 
Landau group. 

I looked through the article and presented N.N. with a brief report on 
the methods and results, which included some general assertions on the 

1 Just at that time the first draft of a central part of the book has been published 
[2] in the form of two extensive papers. 



scaling properties of the electron charge distribution at short distances and 
rather cumbersome functional equations - see, below, Eq.(1): 

N .N. immediate comment was that the Gell-Mann-Low approach is 
very important: it is closely related to the la groupe de normalisation dis­
covered a couple of years earlier by Stueckelberg and Petermann (4) in the 
course of discussing the structure of the finite arbitrariness in the scattering 
matrix elements arising upon removal of the divergences. This group is an 
example of the continuous groups studied by Sophus Lie. This implied that 
functional group equations similar to. those of paper (3) should take place 
not only in the UV limit but also in the general case as well. 

Within the next few days I succeeded in recasting Dyson's finite transfor-
mations and obtaining the desired functional equations for the QED prop­
agator amplitudes, which have group properties, as well as the group differ­
ential equations, that is, the S. Lie equations of the renormalization group 
(RG). Each of these resulting equations - see, below Eqs.(3) - contained 
a specific object, the product of the squared electron charge a = e

2 

and 
the transv~rse photon propagator amplitude d(Q

2
). We named this prod­

uct, e2 (Q2) = e2 d(Q 2), the invariant charge. From the physical point of 
view this function is an analogue of the so-called effective charge of an elec­
tron, first discussed by Dirac in 1933 [5], which describes the effect of the 
electron charge screening due to quantum vacuum polarization. Also, the 
term "renormalization group" was first introduced in our Doklady Akademii 
Nauk SSSR publication [6] in 1955 (and in the English language paper [7]). 

At the above-mentioned Lebedev meeting Gunnar Kallen presented a 
paper written with Pauli on the so-called "Lee model", the exact solution of 
which contained a ghost pole (which, in contrast to the physical one corre­
sponding to a bound state, had negative residue) in the nucleon propagator. 
Kallen-Pauli's analysis led to the conclusion that the Lee model is physically 

void. 
In view of the argument on the presence of a similar pole in the QED 

photon propagator (which follows from the abovementioned solution of Lan­
dau's group as well as from an independent analysis by Fradkin [8]} obtained 
in Moscow, Kallen's report resulted in a heated discussion on the possible 
inconsistency of QED. In the discussion Kallen argued that no rigorous con­
clusion about the properties of sum of an infinite nonconvergent series can 
be drawn from the analysis of a finite ~umber of terms. 

Nevertheless, before long a publication by Landau and Pomeranchuk 
(see, e.g., the review paper[9]) appeared arguing that not only QED but 

also local QFT were self-contradictory. 

2 

Without going into details, remind that our analysis of this problem 
carried out [10] with the aid of the RG formalism just appeared led to the 
conclusion that such a claim cannot have the status of a rigorous result, 
independent of perturbation theory. 

1.2 Renormalization and renormalization invari-
ance. 

As is known, the regular formalism for eliminating ultraviolet divergences 
in quantum field theory (QFT) was developed on the basis of covariant 
perturbation theory in the late 40s. This breakthrough is connected with the 
names of Tomonaga,·Feynman, Schwinger and some others. In particular, 
Dyson and Abdus Salam carried out the general analysis of the structure of 
divergences in arbitrarily high orders of perturbation theory. Nevertheless, 
a number of subtle questions concerning so-called overlapping divergences 
remained unclear.· 

An important contribution in this direction based on a thorough analysis 
of the mathematical nature of UV divergences was made by Bogoliubov; 
This was achieved on the basis of a branch of mathematics which was new 
at that .time, .namely, the Sobolev-Schwartz theory of distributions. The 
point is th~t propagators in local QFT are distributions (similar to the 
Dirac delta-function) and their products appearing in the coefficients of the 
scattering· matrix expansion require supplementary definition in the case 
when thei~ arguments coincide and lie on the light cone. In view of this the 
UV divergences reflect the ambiguity in the definition of these products. 

In the mid 50ies on the basis of this approach Bogoliubov and his disci­
ples developed a technique of supplementing the definition of the products of 
singular Stueckelberg-Feynman propagators [2] and proved a theorem [11) 
on the finiteness and uniqueness (for renorm~lizable theories) of the scat­
tering matrix in any order of perturbation theory. The prescription part 
of this theorem, namely, Bogoliubov's R-operation, still remains a practical 
means of obtaining finite and unique results' in perturbative calculations in 
QFT. 

The Bogoliubov algorithm works, essentially, as follows: 
- To remove the UV divergences of one-loop diagrams, instead of intro­

ducing some regularization, for example, the momentum cutoff, and han­
dling (quasi) infinite counterterms, it suffices to complete the definition of 
divergent Feynman integral by subtracting from it certain polynomial in 
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the external momenta which in the simplest case is reduced to the first few 
terms of the Taylor series of the integral.· 

- For multi-loop diagrams (including ones with overlapping divergencies) 
one should first subtract all divergent subdiagrams in a hierarchical order 
regulated by the R-operator. 

The uniqueness of computational results is ensured by special conditions 
imposed on them. These conditions contain specific degrees of freedom (re­
lated to different renormalization schemes and momentum scales) that can 
be used to establish the relationships between the Lagrangian parameters 
(masses, coupling constants) and the corresponding physical quantities. The 
fact that physical predictions are independent of the arbitrariness in the 
renormalization conditions, that is, they are renorm-invariant, constitutes 
the conceptual foundation of the renormalization group. 

•. An attractive feature of this approach is that it is free from any auxiliary 
nonphysical attributes such as bare masses, bare coupling constants, and 
regularization parameters which turn out to be unnecessary in computations 
employing Bogoliubov's approach. As a whole, this method can be regarded 
as renormalization without regularization and counterterms. 

1.3 The discovery of the renormalization group. 

The renormalization group was discovered by Stueckelberg and Petermann 
(4) in 1952-1953 as a group of infinitesimal transformations re.lated to a 
finite arbitrariness arising in the elements of the scattering S-matrix upon 
elimination of the UV divergences. This arbitrariness can be fixed by means 
of certain parameters ci: 

" ... we must expect that a group of infinitesimal operators Pi= 
(8/8ci)c=O, exists, satisfying 

PiS = hi(m, e)8S(m, e, ... )/ae·, 

admitting thus a renormalization of e." 

These authors introduced the normalization group generated (as a Lie group) 
by the infinitesimal operators P; connected with renormalization of the cou­
pling constant e. 

In the following year, on the basis of Dyson's transformations written in 
the regularized form, Gell-Mann and Low [3) derived functional equations 
for QED propagators in the UV limit. For example, for the renormalized 
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transverse part d of the photon propagator they obtained an equation of 
the form 

( k2 2
) dc(k2 /m2, er) 2 2 2; 2 2) ( ) 

d ,\~,e2 = dc(,\ 2/m 2 ,er) , e2 = e1dc(,\ m ,e
1 

, 1 

where ,\ is the cutoff momentum and e2 is the physical electron charge. The 
appendix to this article contains the general solution (obtained by T.D. Lee) 
of this functional equation for the photon amplitude d(x, e2) written in two 
equivalent forms: 

e
2
d (x, e2

) = F (xF- 1 (e2)) , 
e'd 

I dy 
lnx= 'ljJ(y)' 

e• 
(2) 

with 

/J(e 2d) 
1P( e2) = 8 ln x at x = l . 

A qualitative analysis ·of the behaviour of the electromagnetic interaction 
at small distances was carried out with the aid of (2). Two possibilities, 
namely, infinite and finite charge renormalizations were pointed out: 

• ' , • l ' • 

Our conclusion is that the shape of the charge distribution sur­
rounding a test charge in the vacuum does.not, at small distances, 
depend on the coupling constant except through the scale factor. 
The behavior of the propagator functions for large momenta is 
related to the magnitude of the renormalization constants in the 
theory. Thus it is shown that the unrenormalized coupling con­
stant e5f 41r1ic, which appears in perturbation theory as a power 
series in the renormalized coupling constant erf 41r1ic with diver­
gent coefficients, many behave either in two ways: 

It may really be infinite as perturbation theory indicates; 

It may be a finite number independent of erf 41r1ic. 

Note, that the latter possibility corresponds to the case when 'ljJ vanishes 
at a finite point: 'ljJ(a00 ) = 0. Here, 0 00 is known now as a fixed point of 
the renormalization group transformations. 

The paper [3] paid no attention to the group character of the analysis 
and the results obtained there. The authors failed to establish a connection 
between their results and the standard perturbation theory and did not 
discuss the possibility that a ghost pole might exist. 
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The final step was taken by Bogoliubov and Shirkov [6, 12) -: see also 
the survey [7) published in English in 1956. Using the group properties 
of finite Dyson transformations for the coupling constant and the fields, 
these authors derived functional group equations for the propagators and 
vertices in QED in the general case (that is, with the electron mass taken 
into account). For example, the equation for the transverse amplitude of 
the photon propagator and electron propagator amplitude vjere obtained in 

the form 
d(x,y;e2

) = d(t,y;e2 )d (f, f;e 2d(t,y;e2
)), 

s(x, y; e2) = s(t, y; e2)s ( T, Ti e2d(t, y; e2)) (3) 

in which the dependence not only on momentum transfer x = k2 / µ2 (where 
µ is a certain normalizing scale factor), but also on the mass'variable y = 
m 2 / µ 2 was taken into account. 

As can be seen, the product e2d of electron charge squared and photon 
propagator amplitude enters in both functional equations. This product is 
invariant with respect to Dyson transformation. , We called this function -
invariant charge. 

In the modern notation, the first equation (which in the massless case 
y = 0 is equivalent to (1)) is an equation for the invariant charge (now 
widely known as an effective or running coupling) a= ad(x, y; a= e2

): 

a(x, y; a)= a{ T' T; a(t, y; a)) . (4) 

Let us emphasize that, unlike in the Ref.[3) approach, in our case there are 
no simplifications due to the massless nature of the UV asymptotics. Here 
th·e homogeneity of the transfer momentum scale is violated explicitly by the 
mass m. Nevertheless, the symmetry (even though a bit more complex one) 
underlying the renormalization group, as before, can be stated as an exact 
symmetry of the solutions of the quantum field problem - see Eq. (10) below. 
This is what we mean when using the term Bogoliubov's renormalization 
group or renorm-group for short. 

The differential group equations (DGEs) for a and for the electron prop-
agator: 

8a(x,y;a) = (3 (!,a(x,y;a)) ; 
8lnx . x 

8s(x, y; a) = 'Y (!, a(x, Yi a)) s(x, Yi a) , 
8lnx x 

(5) 
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with 

(3( ) = 8a(~;y;a) . ( · ) = 8s(~,y;a) t c = 
1 

(
6
) 

y, a 0~ , 'Y Y, a 0~ a ._ 

were first derived in (6) by differentiating the functional equations. In 
this way an explicit realization of the DGEs mentioned in the citation 
from (4] was obtained. These results established a conceptual link with 
the Stueckelberg-Petermann and Gell-Mann - Low approaches. 

1.4 Creation of the RG method 

Another important achievement .of paper (6] consisted in formulating a sim­
•ple algorithm for improving an approximate perturbative solution by com­
bining it with the Lie differential equations (modern notation is used in this 
quotation from (6]): 

Formulae (5). show that to obtain expressions for a and s valid 
for all values of their arguments one has only to define a(~, y, a) 
ands(~, y, a) in the vicinity of~= 1. This can be done by means 
of the usual perturbation theory. 

In our. adjacent publication (12] this algorithm was effectively used to 
analyse the UV and infrared (IR) asymptotic behaviour in QED. The one­
loop and two-loop UV asymptotics 

a 
a~b(x; a)= a~b(x, O, a)= 1 - a • ln x ' 

3,r 
(7) 

-(2) • _ a 
ana(x, a) - 1 - 2-ln x + 3a ln(l - 2-ln x) 3,r 4,r 3,r 

(8) 

of the photon propagator as well as the IR asymptotics 

s(x,y;a) ~ (x/y- 1)-3<>/2,r = (p2/m2 - l)-3a/2,r 

of the electron propagator in transverse gauge were obtained. At that time 
these expressions had already been known only at the one-loop level. It 
should be noted that in the mid 50s the problem of the UV behaviour in 
local QFT was quite urgent. As it has been mentioned already a substantial 
progress in the analysis of QED at small distances was made by Landau 
and his. collaborators (1 ]. However, Landau's approach did not provide a 
prescription for constructing subsequent approximations. · 
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An answer to this question was found only within the new renorm-group 
method. The simplest UV asymptotics of QED propagators obtained in our 
paper (12], for example, expression (7), agreed precisely with the results of 

Landau's group. 
· Within the RG approach these results can be obtained in just a few lines 

of argumentation. To this end, the massless one-loop approximation 

a? 
a~h(x;a)==a+-e+ ... ' f=lnx 

31r 

of perturbation theory should be substituted into the right-hand side of the 
first equation in (6) to compute the generator ,B(O,a) = 1/J(a) = a

2
/31r, 

followed by an elementary integration of the first of Eqs.(5). · 
Moreover, starting from the two:..loop expression a~ih (x,; a) containing 

the a 2£/41r2 term we arrive at the second renormalization group approxima­
tion (8) performing summation of the next-to-leading UV logs. Comparing 
solution (8) with (7) one can c9nclude that two-loop correction is extremely 
essential just in the vicinity of the ghost pole singularity at x1 = exp (31r /a). 
This demonstrates that the RG method is a regular procedure, within which 
it is quite easy to estimate the range of applicability of the results.,, 

The second order renorm-group solution (8) for the invariant c~upling 
first obtained in [12] contains the nontrivial log-of-log dependence which is 
now widely known of the two-loop approximation for the running coupling 
in quantum chromodynamics (QCD). 

Quite soon [13] this approach was formulated for the case of QFT with 
two coupling constants g and h, namely, for a model of pion-nucleon inter­
actions with self-interaction of pions. To the system of functional equations 

for two invariant couplings 

g2(x,y;g2,h) =92 (f,f,g2(t,y;g2,h),h(t,y;g2,h)) ' 

- 2 - (X Y -2 ( 2 ) - ( 2 )) h(x,y;g ,h) = h t't'g t,y;g ,h ,h t,y;g ,h 

there corresponds a coupled system of nonlinear differential equations. It 
was analysed [14] in one-loop appriximation to carry out the UV analysis 
of the renormalizable model of pion-nucleon interaction. 

In Refs. [6, 12, 13] and [14] the RG was thus directly connected with 
practical computations of the UV and IR asymptotics. Since then this 
technique, known as the renormalization group method (RGM), has become 
the.sole means of asymptotic analysis in local QFT. · 
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1.5 Other early RG applications· 

Another important general theoretical application of the RG method was 
made in the summer of 1955 in connection with the (then topical} so-called 
ghost pole problem. This effect, first discovered in quantum electrodynamics 
[8, 15], was at first thought [15] to indicate a possible difficulty in QED, and 
then [9, 16] as a proof of the inconsistency of the whole local QFT. 

However, the RG analysis of the.problem carried out in [10] on the 
basis of massless solution (2) demonstrated that no conclusion obtained 
with the aid of finite-order computations within perturbation theory can be 
regarded as a complete proof. This corresponds precisely to the impression, 
one can get when comparing (7) and (8). In the mid 50s this result was 
very significant, for it restored the reputation of local QFT. Nevertheless, 
in the course of the following decade the applicability of QFT in elementary 
particle physics remained doubtful in the eyes of many theoreticians. 

In the general case of arbitrary covariant gauge the renormalization 
group analysis in QED was carried out in [17]. Here, the point was that 
the charge renormalization is connected only with the transverse part of the 
photon propagator. Therefore, under nontransverse (for example, Feynman) 
gauge the Dyson transformation has a more complex form. This issue has 
been resolved by considering the treating the gauge parameter as another 
coupling constant. 

Ovsyannikov [18] found the general solution to the functional RG equa­
tions taking mass into account: 

<I>(y, a)= <I> (y/x, a(x, y; a)) 

in terms of an arbitrary function <I> of two arguments, reversible in its second 
argument. To solve the equations, he used the differential group equations 
represented as linear partial differential equations of the form (which are 
now widely known as the Callan-Symanzik equations): 

{ 
8 8 8} . 

x ox+ y By - ,B(y, a) Ba a(x, y, a)= 0. 

The results of this "period of pioneers" were collected in the chapter 
"Renormalization group" in the monograph [19], the first edition of which 
appeared in 1957 (shortly after that translated into English and French [20]) 
and very quickly acquired the status of the "QFT folklore". 
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2 Further Bogoliubov's RG Development 

2.1 Quantum field theory 
The next decade and a half brought a calm period, during which there was 
practically no substantial progress in the renorm-group method .. 

1. New possibilities for applying the RG method were discovered when 
the technique of operator expansion at sinall distances (on the light cone) 
appeared [21]. The idea of this appro.ach stems from the fact that the RG 
transform, regarded as a Dyi;;on transformation of the renormalized vertex 
function, invoives the simultaneous scaling of all its invariant arguments 
(normally, the squares of the momenta) of this function. The expansion on 
the light cone, so t.o say, "separates the arguments", as a result of which it 
becomes possible to study the physical UV asymptotic behaviour by means 
of the expansion coefficien'ts (when some momenta are fixed on the mass 
shell). As an important example we cari mention the .evolution equations 
for moments of QCD structure functions.[22]. 

2. In the early 70ies S. Weinberg [23] proposed the notion of the running 
mass of a fermion. If considered from the viewpoint of [17], this idea can be 

formulated as follows: 
any parameter of the Lagrangian can be treated as a (generalized) cou-

pling constant, and its effective· counterpart should be included into the 

renorm-group formalism. 
However, the results obtained in the framework of this approach turned 

out to be, practically, the same as before. For example, the most familiar 
expression for the fermion running mass 

m(x,a)=mµ(a(:.a)r' 

in which the leading UV logarithms are summed, was known for the electron 
mass in QED (with v = 9/4) since the mid 50s (see [1], [12]). 

3. The end of the calm period can be marked well enough by the year 
1971, when the renormalization group method was applied in the quantum 
theory of non-Abelian gauge fields, in which the famous effect of asymptotic 
freedom has been discovered [24]. 

The one-loop renorm-group expression 

-(1)( . ) - a, a, x, a, - 1 /3 1 , + a, 1 nx 
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for the QCD effective coupling a, exhibits a remarkable UV asymptotic be­
haviour thanks to /31 being positive. This expression implies, in contrast to 
Eq.(7), that the effective QCD coupling decreases as x increases and tends to 
zero in the UV limit. This discovery, which has become technically possible 
only because of the RG method use, is the most important physical result 
obtained with the aid of the renorm-group approach in particle physics; 

4. One more interesting appHcatiqn of the RG method in the multicou­
pling case, ascending back in 50ies [14], refers to special solutions, so-called 
separatrices in a phase space of several invariant couplings. These solutions 
relate effective couplings and represent a scale invariant trajectories, like, 
e.g., g; = g;(g1) in the phase space which are straight lines at the one-loop 
case. 

Some of them, that are "attractive" (or stable) in the UV limit, are 
related to symmetries that· reveal themselves in the high-energy domain. It 
has been conjectured that these trajectories may be connected to hidden 
symmetries of a Lagrangian and even could serve as a tool to find them. 
On this basis the method has been developed [25] for finding out these sym­
metries. It was shown that in the phase space of the invariant charges the 
internal symmetry corresponds to a singular solution that remain straight­
line when taking into account the higher order corrections. Such solutions 
corresponding to supersymmetry have been found for some combinations of 
Yukawa and quartic interactions. 

Generally, these singular solutions obey the relations 

dg; _ dg; dg1 _ l 
d -d d, t- nx t 91 t 

which are known since Zimmermann's paper [26] as the reduction equations. 
In the 80ies they have been used (27] (see also review paper [28] and refer­
ences therein) in the UV analyzis of asymptotically free models. Just for 
these cases the one-loop reduction relations are adequate to physics. 

Quite recently some other application of this technique has been found 
in a supersymmetrical generalizations of Grand Unification scenario in the 
Standard Model. It has been shown [29, 30, 31] that it is possible to achieve 
complete UV finiteness of a theory if Yukawa couplings are related to the 
gauge ones in a way corresponding to these special solutions,that is to re­
duction relations. 

5. A general method of approximate solution of the massive RG equa­
tions has been developed (32]. Analytic expressions of high level of accuracy 
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for an effective coupling and orie-argument function have beeri obtained up 
to four- and three-loop order [33). For example, the two-loop massive RG­

solution for the invariant couplirig 

a, . 
(Q2)(2) _ ------~,"°\"-=--=~--;-'-;-~ 

a, rg - l+a,Ai(Q2,m2)+a,~~tJ ln(l+a,A1( ... )) 
(9) 

at small a, values corresponds to adequate perturbation expansion 

(Q2)(2) _ 2A (Q2 2) 3A2 3 A (Q2 2) a, pert - a, - a, 1 , m + +a, 1 - a, 2 , m + ... 

At the same time, it smoothly interpolates between two massless limits 
(with At '.::: f3t ln Q2 + Ct) at Q2 « m2 and Q2 ~ m2 described by equation 
analogous to Eq.(8). In the latter case it can be represented in the form 

usual for the QCD practice: 

a;1 (Q2 / A2
)rg,2 ➔ /31 {in~: + b1 ln (1n ~:)} ; 

/32 
b1 = f3r . 

The solution (9) demonstrate, in particular, that the threshold crossing 
generally changes the subtraction scheme (34). 

Our investigation (32, 33, 35) was prompted· by the problem of explic­
itly taking into account heavy quark masses in QCD. However, the results 
obtained are important from a more general point of view for a discussion 
of the scheme dependence problem in QFT. The method used could also 
be of interest for RG applications in other fields within the situation with 
disturbed homogeneity, such as, e.g., intermediate asymptotics in hydrody­
namics, finite-size scaling in critical phenomena and the excluded volume 

problem in polymer theory. 
In the paper (35) this method was used for the effective couplings evo-

lution in Standard Model (SM). Here, new analytic solution of a coupled 
system of three mass-dependent two-loop RG evolution equations for three 
SM invariant gauge couplings has been obtained. 

6. One more recent QFT development relevant to renorm-group is the 
· Analytic approach to perturbative QCD (pQCD). It is based upon the pro­
cedure of Invariant Analytization [36] ascending to the end of 50ies. 

The approach consists in a combining of two ideas: the RG summation 
of leading UV logs with analyticity in the Q2 variable, imposed by spec­
tral representation of the Kallen-Lehmann type which implements general 
properties of local QFT including the Bogoliubov condition of microscopic 
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causality. This combination was first devised [38J to get rid of the ghost 
pole in QED about forty years ago. 

Here, the pQCD invariant coupling a, (Q 2) is transformed into an "an­
alytic coupling" Oan ( Q2 / A 2 ) = A(x), which, by constuction, is free of ghost 
singularities due to incorporating some nonperturbative structures. 

This analytic coupling A(x) has no unphysical singularities in the com­
plex Q 2-plane; its conventional perturbative expansion precisely coincides 
with the usual perturbation one for a,(Q2

); it has no extra parameters; it 
obeys an universal IR limiting value A(O) = 41r / /30 that is independent of 
the scale parameter A; it turns out to be remarkably stable [37) with respect 
to higher loop corrections and, in turn, to scheme dependence. 

Meanwhile, the "analytized" perturbation expansion [39) for an observ­
able F, in contrast with the usual case, may contain specific functions An (x ), 
instead of powers (A(x)f. In other words, the pertubation series for F(x), 
due to analyticity imperative, may change its form [40) turning into an 
asymptotic expansion .a la Erdelyi over a non power set {An (x)}. 

2.2 Ways of the RG expanding 

As is known, in the early 70ies Wilson [41] succeeded in transplanting the 
RG philosophy from relativistic QFT to a quite another branch of modern 
theoretical physics, namely, the theory of phase transitions in spin lattice 
systems. This new version of the RG was based on Kadanoff's idea[42] 
ofjoining in "blocks" of few neighbouring spins with appropriate change 
(renormalization) of the coupling constant. 

To realize this idea, it is necessary to average spins in each block. This 
operation reducing the number of degrees of freedom and simplifying the 
system under consideration, preserves all its long-range properties under 
a suitable renormalization of the coupling constant. Along with this, the 
above procedure gives rise to a new theoretical model of the original physical 
system: 

In order.that the system obtained by averaging be similar to the original 
one, <?Ile must also discard those terms of a new effective Hamiltonian which 
happily turns out to be irrelevant in the description of infrared properties. 
As a result of this Kadanoff- Wilson decimation, we arrive at a new model 
system characterized by new values of the elementary scale (spacing between 
blocks) and coupling constant (of blocks interaction). By iterating this 
operation, one can construct a discrete ordered set of models. From the 
physical point of view the passage from one model to some other one is an 
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irreversible approximate procedure. Two passages of. that sort applied in 
sequence should be equivalent to one, which gives rise to a group structure 
in the set of transitions between models. However, in this case the RG is 
an approximative and is realized as a semigroup. 

This construction, obviously in no way connected with UV properties, 
was much clearer from the general physical point of view and could therefore 
be readily understood by many theoreticians. Because of this, in the seven­
ties the RG concept and its algorithmic structure were successfully carried 
over to diverse branches of theoretical physics such as polymer physics [43], 
the theory of noncoherent transfer (44], and so on. 

Apart from- constructions analogous to that of Kadanoff-Wilson, in a 
number of cases the connection with the original quantum field renorm­
group was established. This has been done with help of the functional inte­
gral representation. For example, the classic Kolmogorov-type turbulence 
problem was connected with the RG approach by the following steps (45]: 

1. Define the generating functional for correlation functions. 

2. Write for this functional the path integral representation. 

3. By a change of functional integration variable establish an equivalence 
of the given classical statistical system with some QFT model. 

4. Construct the Schwinger-Dyson equations for this equivalent QFT. 

5. Use the Feynman diagram technique and perform a finite renormal­
ization. 

6. Write down the standard RG equations and use them to find fixed 
point and scaling behavior. 

The physics of renormalization transformation in the turbulence problem is 
related to a change of UV cutoff in the wave-number variable. 

Hence, in different branches of physics the RG evolved in two directions: 

• The construction of a set of models for the physical problem at hand 
by direct analogy with the Kadanoff-Wilson approach (by averaging 
over certain degrees of freedom) - in polymer physics, noncoherent 
transfer theory, percolation theory, and others; 

• The search for an exact RG symmetry directly or by proving its equiv­
alence to some QFT: for example, in turbulence theory [45, 46] and 
turbulence in plasma (48]. 
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What is the nature of the symmetry underlying the renormalization 
group? 

a) In QFT the renorm-group symmetry is an exact symmetry of a solu­
tion described in terms of the notions of the equation(s) and some boundary 
condition(s). 

b) In turbulence and some other branches of physics it is a symmetry of 
a solution of an equivalent QFT model. 

c) In spin lattice theory, polymer theory, noncoherent transfer theory, 
percolation theory, and so on (in which the Kadanoff-Wilson blocking con­
cept is used) the RG transformation involves transitions inside a set of 
auxiliary rrwdels (constucted especially for this purpose). To formulate RG, 
one should 'define an ordered set M of models M,. The RG transforma­
tion connecting various models has the form R(n)M; = M0 , • Here, the 
symmetry can be formulated only in the terms of whole set M. 

There is also a purely mathematical difference between the aforesaid 
RG realizations. In QFT the RG is a continuous symmetry group. On the 
contrary, in the theory of critical phenomena, polymers, and other cases 
(when an averaging operation is necessary) we have an approximate dis­
crete semigroup. It must be pointed out that in dynamical chaos theory, in 
which RG ideas and terminology can sometimes be applied too, functional 
iterations do not.constitute a group at all, in general: An entirely different 
terminology is sometimes adopted in the above-mentioned domains of the­
oretical physics. Terms like "the real-space RG", "the Wilson RG"; "the 
Monte-Carlo RG", or "the chaos RG" are in use. 

Nevertheless, the affirmative answer to the question "Are there distinct 
renormalization groups?" implies no more than what has just been said 
about the differences between cases a) and b) on the one hand and c) on 
the other. 

For this reason, we shall use notation of the Bogoliubov Renormalization 

Group for the exact Lie group, as it emerged from the QFT original papers 
(4, • 6, 7] (see also chapter "Renormalization Group" in the monograph [19, 
20]) of mid-fifties. This is to make clear distinction between exact group 
and the Wilson construction for which the term Renormalization Group is 
widely used in the current literature. 

2.3 Functional self-similarity. 
An attempt to analyse the relationship between these formulations on a 
simple common basis was undertaken about fifteen years ago (49]. In this 
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paper (see also our surveys [50, 51, 52]) it was demonstrated that all the 
above-mentioned realizations of the RG could be considered in a unified 
manner by using only some common notions of mathematical physics. 

In the general case it proves convenient to discuss the symmetry under­
ly{ng the renorm-group with the aid of a continuous one-parameter trans­
formation of two variables x and g 

Rt: {x-+ x' = x/t, g-+ g' = g(t,g)} (10) 

Here, x is the basic variable subject to a scaling transformation, while g is a 
physical quantity undergoing a more complicated functional transformation. 
To form a group, the transform Rt m~st satisfy the composition law 

RtRT = RtT' 

which yields the functional equation for g: 

g(x, g) = g (x/t, g(t, g)) (11) 

This equation has the same form as the functional equation (4) for the 
effective coupling in QFT in the massless case, that is, at y = 0. It is 
therefore clear that the contents of RG equation can be reduced to the 
group composition law. 

In physical problems the second argument g of the transformation usu­
ally is related to the boundary value of a solution of the problem under 
investigation. This means that the symmetry underlying the RG approach 
is a symmetry of a solution (not of equation) describing the physical system 
at hand, involving a transformation of the parameters entering the boundary 
conditions. 

Therefore, in the simplest case the renorm-group can be defined as 
a continuous one-parameter group of transformations of a solution of a 
probl~m fixed by a boundary condition. The RG transformation affects the 
parameters of a boundary condition and corresponds to changing the way 
in which this condition is introduced for one and the same solution. 

Special cases of sue~ transformations have been known for a long time. 
If we assume that F = g is a factored function of its arguments, then 
from Eq.(11) it follows that F(z, f) = f zk, with k being a number. In this 
particular case the group transform takes the form 

Pc : { z-+ z' = z/t , f-+ J' = Jtk } , 
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which is known in mathematical physics long since as a power self-similarity 
transformation. More general case Rt with functional transformation law 
(10) can be characterized [49] as a functional self-similarity (FSS) transfor-

mation. 

2.4 Recent application in math. physics 
We can now answer the question con<;erning the physical meaning of the 
symmetry that underlies FSS and the Bogoliubov renorm-group. As we 
have already mentioned, it is not a symmetry of the physical system or the 
equations of the problem at hand, but a symmetry of the solution consid­
ered as a function of the essential physical variables and suitable boundary 
conditions. A symmetry like that can be related, in particular, to the in­
variance of a physical quantity described by this solution with respect to 
the way in which the boun·dary conditions are imposed. The changing of 
this way constitutes a group operation in the sense that the group property 
can be considered as the transitivity property of such changes .. 

Homogeneity is an important feature of the physical systems under con­
sideration. However, homogeneity can be violated in a discrete manner. 
Imagine that such a discrete inhomogeneity is connected with a certain 
value of x , say, x = y. In this case the RG transformation with canonical 

parameter t will have the form: 

Rt { x'=x/t, y'=y/t, g'=g(t,y;g)}. (12) 

The group composition law yields precisely the functional equation (4). 
The symmetry connected with FSS is a very simple and frequently en­

countered property of physical phenomena. It can easily be "discovered" 
in .various problems of theoretical physics: in classical mechanics, transfer 
theo~y, classical hydrodynamics, and so on [51, 52, 53, 54]. 

Recently, some interesting attempts have been made to use the RG con­
cept in classical mathematical physics, in particular, to study strong non­
linearregimes and to investigate asymptotic .behavior of physical systems 
describe.cl by nonlinear partial differential equations (DEs). 

· About a decade ago the RG ideas were applied by late Veniamin Pus­
tovalov with co-authors [56] to analyze a problem of generating of higher 
harmonics in plasma. This problem, after some simplification, was reduced 
to a couple of partial DEs with the boundary paramet~r - solution "charac­
teristic" - explicitly included. It was proved that.these DEs admit an exact 
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symmetry group, that takes into account transformations of this bound­
ary parameter, which is related to the amplitude of the magnetic field at 
a critical density point. The solution symmetry obtained was then used to 
evaluate the efficiency of harmonics generation in cold and hot plasma. The 
advantageous use of the RG-approach in solving the above particular prob­
lem gave promise that it may work in other cases and this_ was illustrated 
in (57] by a series of examples for various boundary value problems. 

Moreover, in Refs. (51, 57] the possibility of devising a regular method 
for finding a special class of symmetries of the equations in mathematical 
physics, namely, RG-type symmetries, was discussed. The latter are defined 
as solution symmetries with respect to transformations involving parame­
ters that enter into the solutions through the equations as well as through 
the boundary conditions in addition to (or even rather than) the natural 
variables of the problem present in the equations. 

As it is well known, the aim of modern group analysis [58, 59], which 
goes back to works of Sophus Lie [60], is to find symmetries of DEs. This 
approach does not include a similar problem of studying the symmetries of 
solutions of these equations. Beside the main direction of both the classical 
and modern analysis, there also remains the study of solution symmetries 
with respect to transformations involving not only the variables present in 
the equations, but also parameters entering into the solutions from boundary 
conditions. 

From the aforesaid it is clear that the symmetries which attracted at­
tention in the 50s in connection with the discovery of the RG in QFT were 
those involving the parameters of the system in the group transformations. 
It is natural to refer to these symmetries related to FSS as the RG-type 
symmetries. 

It should be noted that the procedure of revealing the RG symmetry 
(RGS), or some group feature, similar to RG regularity, in any partial case 
·(QFT, spin lattice, polymers, turbulence and so on) up to now is not a 
regular one. In practice, it needs some imagination and atypical manipula­
tion "invented" for every particular case - see discussion in [61]. By this 
reason, the possibility to find a regular approach to constructing RGS is of 
principal interest. 

Recently a possible scheme of this kind was presented in application to 
mathematical model of physical system that is described by DEs. The lead­
ing idea [54, 57, 62] in this case is based on the fact that solution symmetry 
for such system can be found in a regular manner by using the well-developed 
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methods of modern group analysis. The scheme that describes devising of 
RGS and its application is then_ formulated (63] as follows. 

Firstly, a.specific RG-manifold should be constructed. Secondly, some 
auxiliary symmetry, i.e., the most general symmetry group admitted by this 
manifold is to be found. Thirdly, this symmetry should be restricted on a 
particular solution to.get the RGS. Fourt_hly, .~he RGS allows one to improve 
an approximate solution or, in some cases, to get ,an exact solution. 

Depending on bot~ a mathematical piodel and boundary conditions, the 
first step of this procedure can qe realized in different ways. In some cases, 
the desired RG-manifold is obtained by including parameters, entering into 
a solution via equation(s) and boundary condition, in the list of independent 
variables. The extension of the space of variables involved in group trans­
formations, e.g., by taking into account the dependence of coordinates of 
renorm-group operator upon differential and/or non-local variables (which 
leads to the Lie-Backlund and non-local transformation groups [59]) can also 
be used for constructing the RG-manifold. The use of the Ambartsumian 's 
invariant embedding method (64] and of differential constraints sometimes 
allows reform~lations of a boundary condition in a form of additional DE(s) 
and enables one to construct the RG-manifold as a combination of original 
equations and embedding equations (or differential constraints) which are 
compatible with these equations. At last, of particular interest is the per­
turbation method of constructing the RG-manifold which is based on the 
presence_ of a small parameter. 

The second step, the calculating of a most general group g admitted 
by the RG-:manifold, is a standard pro~edure in the group analysis and has 
been described in detail in many texts and monographs - see, for example, 
[58, 65, 66]. . 

The symmetry group g thus constructed cannot as yet be referred to 
as a renorm-group. In order to obtain this, the next, third step should 
be done which consists in restricting g on a solution of a boundary value 
problem. This procedure utilizes the invariance condition-. and mathemat­
ically appears as a "combining" of different coordinates of group generators 
admitted by the RG-manifold. 

The final step, i.e., constructing analytic expression for solution of bound­
ary value problem on the basis of the RGS, usually presents no specific prob­
lems. A review of results, that were obtained on the basis of the formulated 
scheme can be found, for example, in (63, 67, 68). 

Up to now the described regular method is feasible for systems that can 
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be described by DEs and is based on the formalism of modern group analysis. 
However, it seems also possible to extend our approach on physical systems 
that are not described just by differential equations. A chance of such 
extension is based on recent advances in group analysis of systems of integro­
dffferential equations (69, 70] that allow transformations of both dynamical 
variables and functionals of a solution to be formulated [71]. More intriguing 
is the issue of a possibility of constructing a regular approach for more 
complicated systems, in particular to that ones having an infinite number 
of degrees of freedom. The formers can be represented in a compact form 
by functional ( or path) integrals. 

The _author is indebted.to D.V. Kazakov, V.F. Kovalev, B.V. Medvedev 
and to late V.V. Pustovalov for useful discussion and comments. 
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