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XBeL1eJIHL13e A.M., IlaJIHM IO.r. E2-99-72 
<l>pHL1MaHOBCKru! BceJieHHru! co CKaJiapHhIMH H CIIHHOpHbIMH IIOJiaMH 
B o6o6meHHOM raMHJibTOHOBOM LIHHaMHKe 

K.r!accw1eCKru! H KBaHTOBru! npo6JieMbl OilHCaHH$1 LIHHaMHKH BceneHHOM 
<l>pHL1MaHa-Po6epTCOHa-YoKepa C 6e3MaCCOBbIMH CKaJiapHblMH H MaCCHBHbIMH 
CilHHOpHblMH IlOJl$1MH o6cy)KJ:laJOTCa B paMKax o6o6meHHOM raMHJibTOHOBOM LIHHa­
MHKH L{11paKa. I1poBeL1eHa raMHJlbTOHOBa peLIYKIIHa BblpO)KJ:leHHOM Teop1111 B cny­
'-!ae MHHHMaJlbHOro H KOHCpopMHOro B3aHMOJ:leMCTBHa rpaBHTaIIHH H MaTepHH. I1o­
Ka3aHo, '-!TO B 06011x CIIY'-Jru!X LIJl$1 Bcex 3HaKOB KpHBH3Hbl k = 0, ± I MaKCHMaJlbHO 
CHMMeTpH'-IHOro npocTpaHCTBa cymecrnyeT He 3aBHCall.lHM OT BpeMeHH peL1yu11po­
BaHHbIM JIOKaJibHblM faMHJibTOHHaH, KOTOpblM OIIHCbIBaeT LIHHaMHKY MaCIIITa6Horo 
cpaKTOpa. AHaJIH3HpyeTCa pOIIb KOHcpopMHOfO BpeMeHHilOLI06Horo BeKTopa KHJI­
JIHHra B npoCTpaHCTBe-BpeMeHH Po6epTCOHa-YoKepa B Bonpoce cymecTBOBaHH$1 
He3aBHCHMOro OT BpeMeHH raMHJibTOHHaHa. L{aeTC$1 cpaBHeHHe KBaHT0BaHH$1 
Y1mnepa-L{eB11TTa pacumpeHHOM CHCTeMbl C KaHOHH'-leCKHM KBaHTOBaHHeM nony­
'-!eHHOM peL1yu11poBaHHOM CHCTeMbl. I1oKa3aHo, '-!TO BO BTOpOM IlOLIXOLle KBaHTOBbie 
tta6JIJOJiaeMbie, TpaKTyeMbie KaK cpeL1HHe OT LIHpaKOBCKHX Ha6JIJOL1aeMbIX, KOp­
peKTHO OilHCbIBa!OT KJiaCCHlJeCKHM npeL1eJI TeOpHH. 

Pa6orn Bhmo1rneHa B Jla6oparnpttH TeopeTw1ecKoil cj:JHJHKH 11M. H.H.Eoromo6osa OIUIH. 

ITpenpHHT 06bemmeHHOro IIIICTHTyra l!JlepHblX HCCJJeJlOBaHHii. lly6Ha, 1999 
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The classical and quantum dynamics of the Friedmann-Robertson-Walker 
Universe with massless scalar and massive fermion matter field as a source is dis­
cussed in the framework of the Dirac generalized Hamiltonian formalism. 
The Hamiltonian reduction of this constrained system is realized for two cases 
of minimal and conformal coupling between gravity and matter. It is shown that 
in both cases for all values of curvature, k = 0, ±I, of maximally symmetric space 
there exists a time independent reduced local Hamiltonian which describes the dy­
namics of the cosmic scale factor. The relevance of conformal time-like Killing 
vector fields in FRW space-time to the existence of time independent Hamiltonian 
and the corresponding notion of conserved energy is discussed. The extendend 
quantization with the Wheeler-deWitt equation is compared with the canonical 
quantization of unconstrained system. It is shown that quantum observables treat­
ed as expectation values of the Dirac observables properly describe the original 
classical theory. 
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I. INTRODUCTION 

Cosmological models apart from the main task, to investigate the 
large scale structure of the Universe, are highly attractive objects 
with the standpoint of analysis of the conceptual problems in the 
theory of gravitation. By studying cosmological models instead of 
general spacetime we can to overcome the difficulties due to the in­
finite number of degrees of freedom and concentrate our attention 
to the problems arising solely from the time reparametrization in­
variance; such as the construction of observables. * In the present 
article we attempt a contribution to the discussion of some aspects 
of this problem by considering the simplest cosmological model, the 
Friedmann-Robertson-Walker (FRW) Universe filled in the scalar 
massless and massive spinor matter fields. The conventional Hamil­
tonian description of this model is based on the original Dirac [4] 
and the so-called Arnowitt-Deser-Misner (ADM) [5] formulation of 
general relativity. t The ADM method involves the choice of cer­
tain coordinate fixing conditions (gauge), solution of the constraints 
and construction of the observables such as energy, momentum and 
angular momentum, using the asymptotically flat .boundary con­
dition for gravitational field and assuming that three-dimensional 
space of constant time is open [7]. However, when the closed Uni­
verse is considered to build the ADM observables from initial data 
for canonical variables it is impossible. Since in this case there is 
no boundary of the space manifold and no asymptotic region can 
be used to construct the corresponding integrals of motion. This 
leads to the conclusion that for such cosmological models neither 
the natural notion of time evolution nor the corresponding energy 
definition is possible to find [8], [9]. To clear up this contradic-

*The problem of observables consist in the determination of the invariant character­
istics of gravitational field in terms of measurable quantities [1] and is closely related 
to that of time evolution [2], [3]. 

tFor review of the cosmological models construction with applications of the ADM 
method see e.g. [6]. 



tion between the existence of widely used cosmological quantities 
and their absence in the corresponding field theoretical formulation 
the FRW cosmological model will be considered in the framework 
of the Dirac Generalized Hamiltonian formulation [10]- [12]. The 
key moment of the canonical treatment is the assumption that gen­
eral relativity' represents "already parametrized" theory due to the 
principle of general covariance, so that the problem of construction 
of observables can be solved automatically rewriting the theory in 
the equivalent "deparametrized" form. :t: However, careful analysis 
of correctness of such deparametrized program carried out by Ha­
jicek [14] shows that even for simple mechanical system with one 
quadratic Hamiltonian constraint there are topological obstructions 
to its implementation analogous of the well-known "Gribov ambi­
guity" in gauge theories. A direct way to clarify the topological 
structure of such a theory lies in the finding of integral curves of the 
dynamical equations and the investigation their global properties. 
·within this motivation the present note is devoted to the realization 
of local deparametrization of integrable cosmological FRW models 
considering it as a preparation for the study the global features of 
reduction procedure. §· V•./e will follow the method of Hamiltonian 
reduction to construct the observables and the corresponding dy­
namical equations which is well elaborated for gauge theories. This 
approach is based on an appropriate choice of canonical coordi­
nates on phase space and deals without explicit introduction of any 

iTo make agreement between the four-dimensional covariance and the possibility to 
ex.tract from the canonical coordinates hidden variables appropriate for deparame­
trization theory is difficult task. To solve this problem Kuchar suggested to perform 
the "second parametrization" of general relativity by extending its phase space by 
the additional embedding variables [13]. 

§ Apart from topological obstruction arising due to the projection onto the constraint 
shell it is necessary also to investigate the problems connected with the topological 
structure of spaces of constant curvature. The well elaborated classification of three­
dimensional spacelike manifolds [15] allows to estimate the i~fluence of t~pological 
properties on physical quantities. An interesting study of the role played by .this 
global properties is under present consideration (see [16] and references therein). 
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gauge-fixing functions (see e.g. [17] and references therein). 
The general plan of present article is as follows. In Section II we 

state the FRW cosmological model with real massless scalar and 
massive fermion fields as sources with different type of coupling to 
gravity. In Section III some generic features of the Hamiltonian 
reduction and the construction of observables in reparametrization 
invariant mechanical models is disscused. The aim of Section III 
is to explain the method to obtain the unconstrained system from 
reparametrized invariant one by considering the simplest example 
of free relativistic particle motion. Section IV is devoted to the con­
struction of the unconstrained systems equivalent to FRW cosmol­
ogy when the homogeneous matter is presented in different forms: 
as massless sc,alar field interacting with gravity minimally and con­
formaly, massive spinor field. Finally, in Section V we discuss the 
correspondence principle fulfilment for observables in quantum the­
ories based either on Wheeler-deWitt equation or on the canonical 
quantization scheme of the unconstrained classical system. In Ap­
pendices we state some notations and technical detailes of deriva­
tions in order to simplify the reading of the main text. 

II. MODEL WITH SPATIAL HOMOGENEITY AND ISOTROPY 

By definition, the FRW spacetime is a four-dimensional pseudo­
Riemannian manifold on which a six-dimensional Lie group G6 

acts as group of isometries. The group of isometries G6 has a 
three-dimensional isotropy subgroup and three-dimensional sub­
group which acts simply transitive on the one parameter ( "time t") 
family of spacelike hypersurfaces Et. The large group of isometries 
restricts both the dependence and the number of independent com­
ponents of the metric tensor and leads to the so-called maximally 
symmetric three-dimensional space. After the choice of standard 
coordinates [18] one has the FRW metric 

ds 2 = -N2 (t) dt (8) dt + a2(t) ,ab dxa (8) dxb, (1) 

where ,ab is the time independent metric of three-dimensional space 

3 
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r2 

0 

(2) 

of constant curvature (3) R(i;j) = -6k/r;, k = 0, ±L The lapse 
function N(t) and the cosmic scale factor a(t) describe the remain­
ing gravitational degrees of freedom whose classical behaviour is 
determined by varying the standard Hilbert action. ·However, con­
structed in this way the minisuperspace model is out of interest. 
Simple counting of the physical degrees of freedom shows that this 
vacuum FRW model is empty on the classical level; only unphysical 
degrees of freedom propagate. Thus in ·order to have some nontriv­
ial observables it is necessary to introduce the_source rnatter fields. 

1. La,grangian for scalar field with minimal coupling to _gravity 

The introcluction of a massless scalar field as a source. of gravity 
result~ i~ the simplest cosmological model which has direct corre:.. 
spondence · to the classical Friedmann model. ** For a massless 
scalar field, the two most interesting couplings to gravity exten­
sively considered are the so-called minimal coupling and the con­
formal one. tt 

The Hilbert action for gravity minimally coupled to massless 
scalar field 

W = JrI'xFY [-:~ + ~g•"8,,<M.~] (3) 

.. Belo~ we will point out the correspofldence the conventional Friedmann cosmology 
based on the Eiristein equations supplemented by certain matter equation of state. 

11 It.is .well known that essentialiy all typs of couplings of free scalar field to the 
scalar curvature and its kinetic term can be reduced to minimal coupling form using 
rescaling of the metric and scalar field redefinition [19). In 1974 based on this type 
of transformations Bekenstein [20] proposed the method of construction solution for 
particular case of conformally coupled Ein~tein-scalar equation from solution of the 
minimally coupled ones ( see also (21]). The detailed investigation of this type solutions 
for' FRW geometry with spatial homogeneous scalar fields can be found in [22]. 
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reduces to the following 

/ [ 
3 ( a,2 ka

2 
) .a2 

• 2 3 d (aa)] W = \1<3) dt -- - - -
2 

Ne + -<I> + -- - , (4) 
K, Ne r

0 
2Ne K, dt Ne 

assuming the spatial homogeneity ·of the scalar field and FRW met­
ric (1). Here "' = 81rG and new variable Ne = N/a has been 
introduced. Integration over the spatial hyperplane leads to the 
appearence of the factor \1<3) - "volume" of the three-dimensional 
space of constant curvature. tt 

2. Lagrangian for a scalar field with conformal coupling to gravity 

The conformally coupled scalar field is described by action 

W[g, <I>]=/ d4 x.,/=g [-
2
~ (4) R + /

2 
(4

) R<I> 2 + tgµvaµ<I>Bv<I>]. (5) 

Choosing the metric ( 1) this leads to the action for the FRW Uni­
verse filled in by massless homogeneous scalar field cp(t) := a(t)<I>(t) 

/ [ 
3 ( a2 

ka
2 

) 
W[a, Ne, cp] = dt -~ Ne - 1'~ Ne (6) 

! (<p2 _ kcp
2 N) ~!£ (aa)] 

+ 2 Ne 1'~ e + K, dt Ne ' 

3. FRW Lagrangian with spinor matter fields 

The action for a massive spinor field interacting with gravity is 
given by 

U In all formulaes this factor will be ommited, in order to simplify the numerical 
factors. 
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W = f d4x~ [- (
4

):g) (7) 

+~ (\Jl 11L(x) \]µ \¥ - \jµ\Jl')'IL(x)\lJ) - m\Jl\lJ], 

where the spinor field \ll(x) ( \JI Dirac conjugate spinor field) compo­
nents are treated classically as a collection of Grassmann variables 
W i W j + W j \JI i = 0 and . V µ is the covariant derivative (For detailed 
notation see Appendix). Assuming the homogeneity of the fermion 
fields and after the redefinition 'l/J(t) := a312(t)\ll(t) Eqs.(7) reduces 
to the action of the finite dimensional system 

/ [ 
3 ( a2 ka2 

) i _ . ~ W = dt -- - - -2 Ne + -('l/J,o'l/J-'l/J,o'l/J) 
K, Ne r

0 
2 

(8) 

-aNHD + --- -3 d (aa)] 
e K, dt Ne ' 

whith 

HD = m{;'lj;. (9) 

III. REDUCTION AND OBSERVABLES IN REPARAMETRIZATION 
INVARIANT MECHANICAL MODELS 

It is the purpose of this part to discuss the construction of observ­
ables for a system with reparametrization invariance. For our aims 
we shall state the ideas using a mechanical system, i.e. a system 
with a finite number of degrees of freedom and restrict ourselves to 
the case of Abelian constraints. 

Let us consider a system with 2n - dimensional phase space r 
whose dynamics is constrained to a certain submanifold re. describ­
ing by the functionally independent set of m abelian constraints 

'Pcr(p,qf= 0, { 'Pa(P, q), cp,a(p, q)} = 0. (10) 

Due to the presence of constraints the Hamiltonian dynamics is 
described by the Poincare-Cartan form 

6 

n 

0 = L Pidqi - HE(P, q)dt, (11) 
i=l 

with the extended Hamiltonian HE(P, q) differing from the canon­
ical Hamiltonian Hc(p, q) by a linear combination of constraints 
with arbitrary multipliers u 0 (t) 

HE(P, q) = Hc(P, q) + ua(t)cpcr(P, q). (12) 

For the case of first class constraints the functions u 0 (t) can't be 
fixed without using some additional requirements. This observa­
tion reflects the existence of the local (gauge) symmetry and the 
presence of coordinates in the theory whose dynamics is governed 
in an arbitrary way. However, according to the principle of gauge 
invariance, these coordinates do not affect physical quantities and 
thus can be treated as ignorable (gauge degrees of freedom). The 
question is how to identify these coordinates. If theory contains 
only Abelian constraints one can find these ignorable coordinates 
as follows. It is always possible [23) - [24) to define a canonical 
transformation to a new set of canonical coordinates 

qi t---+ Qi= Qi(q,p), 

Pit---+ Pi= Pi (q,p), ( 13) 

so that m of the new momenta ( P 1 , ... , Pm) become equal to the 
Abelian constraints 

Per = 'Pcr(q,p) · (14) 

In the new coordinates (Q, P) and (Q*, P*) we have the following 
canonical equations 

Q* = { Q*, Hph}, 

P* = {P*, Hph}, 

with the physical Hamiltonian 

P= 0, 

Q = u(t), 

Hph(P*' Q*) := Hc(P, Q) IPa=O· 

7 

(15) 

(16) 



The physical Hamiltonian Hph depends only on the (n-rn) pairs of 
new gauge-invariant canonical coordinates ( Q*, P*). Moreover the 
form of the canonical system (15) expresses the explicit separation 
of the phase space into physical and unphysical sectors. Arbitrary 
functions u( t) enter only into the part the equation for the ignorable 
coordinates Q 

0
, conjugated to the momenta P 0 • §§ 

Trying to apply this program to any model with reparametriza­
tion invariance we as a rule reveal that the physical Hamiltonian 
defined by (16) is zero and thus we have got the dynamics of un­
constrained system in the Maupertuis form 

n-m 

0ph = L PtdQ7 -dV, (17) 
i=l 

where dV is a total differential. The problem is now how to deal 
with the zero Hamiltonian. This situation in some sence opposite to 
the case known from the Hamilton-Jacobi method of integration of 
equations of motion. The main idea of this method is to implement 
on the system with Hamiltonian H(t,p,q) the canonical transfor­
mation with generating function S(t, q,p), which is the solution for 
the equation 

as ( as) 8t + H t, q, aq = 0. (18) 

As a result the new Hamiltonian is zero and the equation of motion 
in the new coordinates have the simplest form 

Q = 0, p = 0. (19) 

§§This paper deals with Abelian constraints only, but a few remarks on the general 
non-Abelian case may be in order. A straightforward generalization to this situa­
tion is unattainable; identification of momenta with constraints is forbidden due to 
the non-Abelian character of constraints. However, one can replace the non-Abelian 
constraints by an equivalent set of constraints forming an Abelian algebra and after 
this implement the above mentioned Levi-Civita transformation. For proofs of this 
A_belianization statement see e.g. [11] - [12] and the description of iterative Abelian­
i~ati6n conversion in [17]. 
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After reduction we have got just a system in these coordinates and 
the problem is to reconstruct the nonzero Hamiltonian in any other 
coordinates for the obtained uncontsrained system. Two remarks to 
the picture described above may be in order. There is no difference 
between the local behaviour in systems obtained via the reduction 
of reparametrization invariant theories. The specific properties, 
which make a difference of systems are hidden in the total differen­
tial in the Poincare-Cartan form. Before passing to the construc­
tion of the reduced phase space for FRW Universe it seems worth 
to set forth our approach to the same problem of a free relativistic 
particle. 

A. Digress: Reduced dynamics of free relativistic particle 

For the presentation of our procedure to construct the reduced 
dynamical system from the degenerate system with reparametriza­
tion invariance let us start with the simplest case of free motion of 
a particle in Minkowski space-time writing its action in the form 
close to the cosmological Friedmann models (4), (6), (8) 

l T
2 

( ·2 ) 
W[x,e] := 2 / dT x: + em2 

• 

T1 

(20) 

The independent configuration variables are particle wordline coor­
dinates xµ(T) and the additional "vielbein" determinant e(T). 

Invariance of the action (20) under the reparametrization of time 
T -+ T1 = J( T) spoils the uniqueness of the Cauchy problem for 
the corresponding equations of motion. Therefore the problem is 
to fix the part of the variables whose dynamics will be unique and 
whose initial conditions are free from any constraints. The usual 
way to deal with this problem consists in choosing of a gauge which 
tights the parameter of evolution with the configuration variables. 
For example, the proper time gauge fixing x 0 ( T) = T leads to the 
instant form of the dynamics for a relativistic particle. However, 
let us act in spirit of the previous section and try to reproduce the 
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results of the instant form of particle dynamics without introduction 
of gauge conditions. 

According to the Dirac prescription the generalized Hamiltonian 
dynamics for the system (20) takes place on the phase space 
spanned by five canonical pairs (e,pe) and (xµ,Pµ) resticted by the 
primary constraint Pe = 0 and the secondary constraint 

PµPµ - m 2 = 0. (21) 

To take into account these constraints and to derive equations of 
motion one can consider the Poincare-Cartan 1-form 

0 := Pede + pµdxµ - Hrdr , 

with the total Hamiltonian 

1 2 2 
Hr:= 2e(px - m ) + >.(r)pe. 

(22) 

(23) 

The equation of motion together with both constraints follow from 
functional 

W[e,Pei x,p,; >.] := j 0, (24) 

using independent variation of the canonical pairs (e,pe), (x,p) and 
the Lagrange multiplier >. 

Xµ = epµ , pµ = 0, 

e = >., 
P2 - m2 = 0, Pe= 0. 

(25) 
(26) 
(27) 

Let us now convince ourselves that performing certain canonical 
transformations one can put the equation in such form that the 
Lagrange multiplier function >.( r) enters only in the equation for 
one canonical pair. According to the general scenario described in 
previous section· each canonical transformation 

( 
e Pe ) i-------+ ( e Pe ) 

xµ p Xµ II µ µ 

10 

that identifies one canonical momentum with the energy constraint 

(27), say Ilo 

1 2 2 
Ila = 2(Px - m ) (28) 

leads to this pattern. One possible way to complete the canonical 
transformations is *** 

Ilo = ½(p; - m 2
), 

Ili =Pi, 

Xo= ~, 
Po 

X; = Xi - Eixo . 
Po 

and the inverse transformation is 

Po= /2II 0 + Il2 +m2, 
Pi= IT;, 

Xo = Xo/2II 0 + Il2 + m2
, 

Xi = xi + Il;Xo . 

In terms of the new variables the total Hamiltonian is 

Hr = eilo + Ape . 

(29) 

(30) 

(31) 

and the equations of motion separate into two parts; one for the 
canonical pairs ( e, Pe) and X 0 , II0 , with dependence from the La­
grange multiplier >.( r) 

Xo = e, e = >., 
Pe = - Ilo , Ila = 0 , 

(32) 
(33) 

constrained by 110 = 0 and the equations of mothion for the vari­
ables (X;, Ili) 

xi= o Ili = 0, (34) 

which have a unique solution with arbitrary initial values free from 
any restriction. One can construct the reduced Poincare -Cartan 

***Different possibilities to complete the canonical transformations for remaining 
variables will lead to another forms of dynamics, or to equivalent form but in another 
frame of reference. 

11 



1-form for physical unconstrained variables Xi, IIi from (22), rewrit­
ten in terms of the new cannical variables 

0 = IIodX0 
-- IIidXi + Pede - (eII 0 + >.pe)dt + d(Xo(IIo + m 2

)), 

(35) 

by considering the projection onto the constraint shell 

0* = 0lno=O, Pe=O= -IIidXi + d(Xa)m 2
. (36) 

Thus we have convinced ourselves that the variables II;, Xi - are Ja­
cobi's coordinates for the obtained unconstrained theory with zero 
Hamiltonian. Now we shall show how to reconstruct the uncon­
strained Hamiltonian in terms of initial variables using the generat­
ing function to new set of canonical pairs (29) and Hamilton-Jacobi 
equation. To find the unconstrained system whose Jacobi's coordi­
nates are II;, X; let us write down the generating function S(II, x) 
ofthe canonical transformation (x,p) ➔ (X, II) (29) 

aS(II, x) 
p= ax , 

X = aS(II, x) 
arr 

One can easily verify from the condition 

IIdX - pdx = d(X0 (II 0 + m 2
)), 

that the function 

S(II, X) = xo/2IIo + I12 + m2 - XiIIi 

(37) 

(38) 

(39) 

generates the above canonical transformations (29). Restriction the 
generating function by the condition II 0 = 0 leads to the function 

S*(IIi, Xi, xo) = S(II, x )Jn
0
=0 = xo/ti2 + m2 - XiIIi , ( 40) 

which we shall now treat as generating function defined on the un­
constrained phase space (Xi, Pi) and depended explicitely on some 
parameter x 0 , which has the meaning of evolution parameter for the 
obtained reduced system. To verify this, one can use the generat­
ing function S*(IIi, Xi, xo) to write down the inverse transformation 

12 

for variables in the reduced Poincare -Cartan form directly on the 
constraint shell 

0* = -IIidXi + m 2
dXal{ X· - as· -- . ' - an- - x, 

as•' 
Pi= ax; = II; 

= -pidx; + J~r_+_m_2 dxa . 

( 41) 

From this form it follows that we get the Hamiltonian system for 
a relativistic particle 

2pi 
dxi _ {x· h} = ✓P-::i + m~2 -- i, 
dt 

dpi =·{Pi,h} = 0, 
dt 

(42) 

( 43) 

in the instant form of the dynamics with the parameter t := x 0 and 
the Hamiltonian defined from the reduced generating function 

. as*= /r +m2 • h=. a Xo 
(44) 

IV. HAMILTONIAN REDUCTION OF FRW COSMOLOGICAL 
MODELS 

A. Scalar field with minimal coupling to gravity 

After performing the Legandre transformation on the Lagrangian 
in the action (4) describing the the dynamics of a homogeneous 
scalar field with minimal coupling to FRW space time one finds that 
the phase space spanned by the canonical pairs ( a, Pa), ( Ne, PN) and 
(<I>, P;p) is restricted by the primary constraint 

PN=O (45) 

and secondary constraint 

13 



C 
_ Kp~ 3ka2 pz --+-- <I> 12 K,T2 - -2 2 • o a 

( 46) 

Exploting the non degenerate character of the metric ( a -=/ 0) the 
secondary constraint ( 46) can be rewritten in the equivalent form 

6 = azc = a2 (KP~+ 3ka2) - p2 /2 
12 KT6 <l> , 

( 47) 

which shows the separability of the gravitational and the matter 
source part in constraint. To obtain the reduced Hamiltonian dess­
cribing the evolution of cosmic scalar factor a one can introduce 
the new canonical coordinates for scalar field 

Il<t> := PJ/2, T<t> := 4>/ P<t>. ( 48) 

After this redefinition the corresponding Poincare-Cartan form 

N-
0 = Pada + Il<t>dT<t> - 2 Cdt + d(II<t>T<t>), 

a 
( 49) 

projected onto the constraint shell reduces to 

0* = Pada + H(a)dT(J) + d(H(a)T<t>), (50) 

where the reduced Hamiltonian that govers the scale factor a evo­
lution in time T<I> is 

H( ) 2 (KP~ 3ka
2

) a :=a -+-- . 
12 Kr5 

(51) 

Note, that there is another possibility to reduce the theory. The 
reduced theory can be formulated in terms.of a scalar field. To find 
the dynamics of the scalar field we perform the canonical transfor­
mation on the scale factor 

II ·- 2 (KP~ 3ka
2

) a.- a + 2 · 12 Kr0 
(52) 

fa (K )-1/2 
Ta:= a2da 3IIa - ka 4r-;;2 (53) 

ao 

14 

and as a result the reduced Poincare-Cartan form in terms of scalar 
fiel variables is 

0* = P<t,d4> - H(P<t>)dTa + d (S(a, Ila) - TaIIa), (54) 

where the reduced Hamiltonian that describes the evolution of 
scalar field 4> in time Ta is 

1 2 
H(P<t>) := 2P<t>, (55) 

and the function 5( a, Ila) is the generating function of the canonical 
transformation ( 52). 

B. Scalar field with conformal coupling to gravity 

In the case of a homogeneous scalar field conformally couplc~d to 
the FRW space time (6) the phase space spanned by the canoni·­
cal pairs (a,pa),(Nc,PN) and (r.p,pcp) is restricted by the primary 
constraint 

PN = 0, 

and secondary constraint 

C := IIc,.o -- Ila' 

where 

II •- Kp~ 3ka2 
a.- -- + 

12 Kr2 ' 

2 
II<{) := Pep + kr_pz 

2 2 2 • ro 0 

(56) 

(57) 

(58) 

The total Hamiltonian HT := NcC + A(t)PN contains the arbitrary 
function A( t) and thus the Hamilton-Dirac equations 

a= -NcKPa/6 
Pa = Nc6ka/(Kr~) 

Ne= A 
PN =C 

cp = Ncpcp 
Pep = - Nckr_p / r~ 

(59) 

cannot be solved in a unique way. According to the scheme de­
scribed in the preceding sections to implement the Hamiltonian 
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reduction one can search for a transformation to a new set of canon­
ical variables in terms of which the equations of motion separate 
into independent parts: the physical (independent of the arbitrary 
function) and the unphysical one with unpredictable evolution. 
To achieve this let us perform the canonical transformation from 
(Pa , a) and (p<P, r.p) to the new canonical pairs such that matter part 
of the constraint II"' becomes one of the new canonical momenta 

2 k 2 

II = p"' + _J!_ . (60) 
'-+' 2 2r; 

Using the generating function 

a ✓ k S(IIr.p, cp) := / da 2II'-+' - -
2 

cp2 , 
2r

0 ao 

(61) 

the corresponding canonical conjugated coordinate Tr.p is 

T, - fa da 
t.p - J2rr - _!__(,,2 

ao a 2r~ r 

(62) 

and the reduced action reads ttt 

W*[a] = (63) 

I K 2 3k 2 . 
Pada + (-

2
pa + -

2
a )dT'-+' + d(S(IIr.p,cp) - II'-+'T'-+'), 

1 Kr
0 

It is worth mentioning that if instead of matter part the gravi­
tational part of constraint Ila will be used for the construction of 
the new canonical momenta then the reduced action describing the 
evolution of scalar field is 

* [ ] I l ( 2 kcp
2 

) W c.p = pr.pdcp - - p'-+' + -
2 

dT'-+' . 
2 ro 

(64) 

tttBase
0

d on this action one can derive the Hubble parameter H2 = a•(1-rc) iII'I' -

~ and convince ourselves that it corresponds to the radiation dominanted 
F;;'dm;n~ model with the constant II'I'. 
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C. Spinor field as source field for FRW Universe 

The Hamiltonian reduction of this model is achieved along the 
same lines as in the previous section. However, dealing with fermion 
fields there are some specific features due to the presence of the 
second class constraints. 

The action (8) for the homogeneous spinor field in FRW Universe 
is degenerate and the corresponding primary constraints are 

CN := PN = 0 
C,µ := P1 + ½~,0 = 0 
C - ·- p- + t,yo.f, _ 0 ,/; .- ,/; 2 / 'f' - . 

They satisfy the algebra 

{CN,C,µ} = 0, {CN,C,i;} = 0, {c(l) c(l)} __ · o 
,/;' ,/; - z,. 

(65) 

(66) 

According to Dirac prescription the evolution in time is governed 
by the total Hamiltonian 

Hr= He+ >.NCN + C,/J>.,/1 + >.,i;C,i;, (67) 

with the arbitrary functions >. and the canonical Hamiltonian He 

[ (
KP~ 3ka

2
) l He = Ne - l2 + Kr; + a1iv · (68) 

The requirement to conserve the constraints during the evolution 
fixes the functions >."1 and >.,i; 

>.,i; = iNema~1°, A,JJ = iNema1°1/). (69) 

but leaves the function >.N unspecified it and leads to the existen.ce 
o~ the secondary constraint 

C := Kp~ + 3ka2 - a1iv = 0. 
12 Kr; 

(70) 

Due t<? the algebra of constraints (66) and the Poiss~n brackets of 
secondary constraint C with any other 
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{C,C,t,} =ma{;, {C,C,i;} = -ma'l/J, {C,CN} = 0, (71) 

one can verify that no additional constraints emerge. tH The al­
gebra (66) and (71) shows that the constraints represent a mixed 
system of first and second class constraints. In order to perform the 
Hamiltonian reductuion we will start with rewriting the constraints 
into an equivalent form such that the first class constraints form the 
ideal of algebra and the algebra of second class constraints is canon­
ical. This equivalent set of constraints C,µ, C,i; is given in the Appen­
dix B. The canonical character of the new algebra {C,t,, C,i;} = -1 
allows to perfom the canonical transformation that converts the new 
second class constraints C,t,, C,i; to the pair of canonical variables 

II,µ = C,µ, 
Q,µ = C,i;' 

II · o 1.T. 
,j, = ip,µ, 7" 2 'f" ' 

Q,µ = P,i; - ½,o'l/J. 
(72) 

This means that the dynamics of phase space variables Q,µ, fi,t, is 
completely "frozen" and other canonical pairs change in time in­
dependently of them. In other words we can everywhere in the 
formulas omit this variables without destroying the dynamics of 
the physically relevant quantities. Turning to the reduction due 
to the first class constraints let us pass to the new Hamiltonian 

constraint C 

1 1 (Kp2 
3Jrn

2
) . II oQ C := :__c = - . _a + --2 - im ,t,1 ,J,' 

a a 12 Kr0 

(73) 

assuming that the metric is nondegenerate a -=/= 0. In order to achive 
the reduction for first class constraint we perform the canonical 
transformation from the (Pa, a) to the new variables (Ila, Qa) such 

that 

H 1Secondary constraint C is conserved in weak sense 

C = iNmp0 (Ct1,y 0 t/J + t/,-y°C,p) :=::: 0. 

18 

Ila= ~ (1-.,p~ + 3ka2) 
a 12 Kr~ 

Using the generating function S( a, Ila) 

6 a 

S(a II ) = -/ daJ~aII - ka2r- 2 
,a K, 3 a o' 

ao 

one can find the variable canonically conjugated to Ila 

fa ("' )-1/2 
Ta = ada 3aIIa - ka2r-;; 2 

, 

ao 

(74) 

(75) 

(76) 

and after projection onto the constraint shell C = 0, C,t, = 
0, fi,t, = 0, C,i; = 0, Q,t, = 0 the reduced action is 

W*[Q,t,] = j dQ,t,II,µ + mII,t,,0 Q,t,dTa. (77) 

Thus we have derived the standard Dirac Hamiltonian for reduced 
spinor field and this matter source corresponds to the case of the 
dust filled Universe; the Hubble constant behaves as 

H2 = (~~)
2 

adT a 

with the constant Mn. 

KMD k 

3 a3 a2r2 
0 

(78) 

We will finish with one remark concerning the simple generaliza­
tion of the above result to a more complex system. It is interesting 
to note that if one includes the interaction of massive spinor with 
the scalar masssless one with an action of the following type 

W[g~<I>,,IJ]= J d4xJ=9[-16~G(4)R 

+~ (4) Rc1>2 + ~91,,,, 8 c1>a cI> 
12 2 µ V 

+~ (w,:;t(x) '\Jµ w - '\lµW,µ(x)w) 

-m\11\ll - µcI>\11\ll] ' 
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then the action obtained after supposition of the FRW Universe 

/ [ 
3 a2 1 cp 2 i - . !.. 

W[a, Ne, <p, VJ] = dt -;, Ne + 2 Ne + 2( lp'y°7P - 1P'Yo1P) (80) 

( 
3 ka

2 
kcp

2 
_ ) l -Ne --- + - +(ma+ µcp)1/J1/J , 

K r 2 2r2 
0 0 

can be connected with the action describing the interaction of 
fermion field and massles scalar field. Let us consider two possible 
cases. 

a). Km 2 < 6µ 2 . One can convince ourself that after introduction 
of the new scalar field </> and the scale factor o: 

~ mK ~m
2 

ma + µcp = µ</> ; a + - -cp = A 1 - - -
µ 6 6 µ 2 

(81) 

we get the action for the massless spinor interacting with the field 

<I> 

/ [ 
3 A.2 1 ¢} i - · '-

W[A, Ne,</>, l/;] = dt -;,Ne +2Ne +2(1/J,01/J-1/J,01/J) 

( 
3 kA

2 
kcp

2 
_ )] -Ne --- + - + µ</>1/J1/J , 

K r 2 2r2 
0 0 

and the new coupling constant 

~ µ = µv J. - 6µ2. 

(82) 

(83) 

b ). Km2 > 6µ 2 . In this case one can use another transformation, 

cp = 1 (<t> - ~l:_A) J1- ~L Km 
t-m2 

1 ( µ ) a - --=== A - -</> - J1-~L m 
K m2 

(84) 

and get the action 
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/ [ 
3 A 2 1 ~2 i - . =-

W [A, Ne,</>, 1/J] = dt -;, Ne+ 2 Ne+ 2(1/J,otp -1/J,01/J) (85) 

( 
3 kA

2 
k<f>

2 
_ )] -Ne --- + - + mA1f;1f; , 

K r 2 2r2 
0 0 

with the new mass for the fermion.field m = m/1 - ~ µ: . One can 
Km 

verify that these two actions are related by the field redefinition 

K 
A ➔ i6</>, </> ➔ i~A, 

K 
(86) 

and thus it is enough to reduce one of the actions (82),(85). 
For the action (82) the energy constraint 

Kp~ 3ka2 P! . k</>2 _ 
C= --- -+-+-+µ¢1-lv 
· 12 Kr2 2 2r2 ' 0 0 

(87) 

again has separable contributions from the gravitational and the 
matter part. After introduction of the new canonical momentum 

Kp~ 3ka2 

Ila:= - ---
.12 Kr; (88) 

and the corresponding conjugated coordinate Ta in the same man­
ner as for the case of the conformal scalar field the following action 
for the physical scalar and spinor fields can be derived 

W*[c/>, 1/J] = / dQ,J;II,J; + prpd</> - H dTa, (89) 

with physical Hamiltonian describing the system. of interacting 
spinor and scalar fields 

P~ kc/>2 -
H := 2 + 2r~ + µ</>1-lv · (90) 
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V. CLASSICAL AND QUANTUM OBSERVABLES FOR FRW 
UNIVERSE 

A. Extended quantization: Wheeler-deWitt equation 

According to the Dirac prescription in the extended quantization 
scheme one considers the classical constraints to be the conditions 
on the state vector W [25], [26] , §§§ 

PNW = 0, 

Hr'll = 0. 

(91) 
(92) 

Quantum observable in this quantization scheme are constructed 
with analogy to that of the two-dimensional relativistic spin zero 
bosonic Klein-Gordon field as expectation value 

(0)= f d<p ('1J*08a(W) - 8a(W*)0'1J*) . (93) 

However, as it has been analyzed by Kaup and Vitello [27] this con­
ventional interpretation cannot be used without violating the cor­
respondence principle. More precisely, it was been shown that the 
expectation values for the scalar fields and the cosmic scale factor 
do not correspond to the classical values; their evolution describe 
the expansion phase of Friedmann evolution, but then instead of 
contraction, the expectation values tunnel through the barrier and 
continue to expand. In the following section it will be demonstrated 
that opposite to this scheme of quantization obtained in the pre­
ceding part of the paper, the unconstrained system leads to the 
fulfillment of the correspondence principle .. 

§§§The standard procedure of letting PN ➔ -i8N, pa ➔ -i80 , P4> ➔ -iop.,, is 

assumed. 
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B. Reduced quantization: Heisenberg equation 

To analyse the correspondence principle let us consider the case 
of a conformal scalar field in the closed Friedmann Universe. As it 
has been shown the evolution of scale factor G in conformal time 
t is governed by the harmonic o~cilator Hamiltonian which after 
conventional quantization reads 

H
• K, •2 3 •2 
=-p +-G. 

12 Kr; (94) 

Assuming the quantum state in the form 

1 · [i (G-G 0 )

2
] 

W = ( a21r )1/4 exp t?oG - 2a2 (95) 

where G 0 and p0 are the mean values of the coordinate and the 
momentum respectively (real parameter a characterizes the mean 
square deviation of G) and using the solution of Heisenberg equa­
tions for the operators a(t) and p(t) 

• ( ) ( ) t r.r O 
'( ) • t G t = a 0 cos - - -p 0 sm - , 

T'o 6 T"o 

p(t) = ~a(O) sin-~+ p(0) cos_:_, 
K~ G ~ 

(96) 

(97) 

one can find the time dependence of the mean values of a(t) and 
p(t), 

+oo 

G(t) = f W'*a(t)WdG = Go cos_:_ - KT"o Po sin_:_, (98) 
To 6 T"o 

-oo 

+oo 

p(t) = f 'll*p(t)W'dG = ~Go sin_:_+ p0 cos_:_ . 
KT"o T"o T"o 

(99) 
-oo 

This means that we have the correspondence with the classical for•­
rnulae 
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~ (Q-T) a(t) = r 0 y 3111 I sin ro c (100) 

/12 (Q - T) 
p( t) = y ---; IHI cos r 

O 

c (101) 

when constants are taken as 

- fFiii. Q a(O) = a0 = r0 -IHI sm - , 
3 r 0 

- ~2 Q p(0) =Po= -IHI COS - • (102) 
K, ro 

At the end we note that there is no wave packet diffusion when 
the mean square deviation 

0
2 

( t ( K,r ) 2 fi 
2 

t ) (6a(t)) 2 = - cos2 
- + - 0 

4 sin2 
-

2 . ro 6 a ro 

is time independent. This holds for the special value of o: 

o:2-fiK,ro 
- 6 . 

VI. CONCLUDING REMARKS 

(103) 

(104) 

In the present paper the method of Hamiltonian reduction for 
reparametrization invariant mechanical systems have been elabo­
rated. This approach is based on the choice of adapted coordinates 
using the generating function of the canonical transformation that 
is a solution of the corresponding Hamilton - Jacobi equation. We 
have derived the reduced Hamiltonians for the Friedmann cosmolog­
ical models with homogeneous scalar and spinor field matter sources 
and find the corresponding observable time. The reduced Hamilto­
nians are the generators of evolution with respect to this time and 
at the same time represent the conserved quantities which can be 
treated as the energy of the reduced systems. The conservation of 
the conformal matter Hamiltonian with respect to conformal time 
translations follows from conformal symmetry of the Robertson -
Walker space-time. The representation for the Hubble parameter 
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and the red shift is founded in terms of the Dirac observables in 
the frame of the generalized Hamiltonian dynamics. A correspon­
dence between field Friedmann models and perfect fluid Friedmann 
models with different equations of state has been established. 

The extended quantization. with the Wheeler-de Witt equation 
and the canonical quantization of unconstrained system are com:. 
pared. In reduced system a Schodinger type equation corresponds 
to the Wheeler-deWitt equation, the wave function is normalizble 
with respect to the physical variables. It is shown that quantum 
observables treated as expectation values of the Dirac observables 
properly describe the original classical theory. 

Finally we make a remark concerning the relation to the conven­
tional gauge-fixing method. Certainly, the results derived in the 
present note by reduction without introduction of gauge functions 
can be reproduced by the gauge fixing method. However, from our 
derivation it is clear that due to the complicated relations between 
the initial variables and the observable time the gauge functions 
depend on the initial variables in a complex way which is difficult 
to guess. 
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APPENDIX A: DIRAC EQUATION IN FRW SPACE TIME 

To describe a spinor field on a Rimanian manifold the vierbein 
. fields h~(x) µ, v, a, b = 0, 1, 2, 3 

ds2 = g1J,l,ldxµdx 11 = 'f/ab(h:dxµ){htdx 11
) ; 'f/ab := ( + - --), 
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and the Dirac ,-matricies with a specific dependence on space time 
coordinates are introduced 

1µ(x) = h~(x),a. 

The following relations between th~ vierbein fields and the metric 

tensor 9µ 11 hold 

h~hbµ = T/ab; h:hav = 9µ11 ; (Al) 

ha hµ - ra . ha hv - rv . h - hb - hv µ b - Ob , µ a - U µ , aµ - T/ab µ - 9µ11 a · 

The Dirac equation for spinors in curved space time reads 

(i,µ(x) 'Vµ -m)w(x) = 0, (A2) 

whith the covariant derivative 

\JµW(x) = [8µ + }cabch:,b,a]w(x), (A3) 

where Ricci coefficients 

Cabe = ( V µh~)hbvh~ ; V µh~ = (f~.x - h~ 8µh~)h~ , (A4) 

are introduced. For the specific case of the Robertson - Walker 
metric, 

ds 2 = a2 (t)ds 2 (A5) 

[ 

( dr 2 + r 2
( de + sin

2 
~d(

2
)) l 

= a2(t) (N(t)dt)2 - 2 , 

( l + kr2) 
. 4r~ • 

the following vierbein fields 

{ 

h!!..= aN 
0 

2 kr2 -l 
h2 = ar ( 1 + 4r~) 

1 ( kr2 )-l h1 = a I+ 4r~ 

3 • ( kr2 )-l h-3 = ar sm ( 1 + 4 r~ 

(A6) 

are used in the main text. Here the vierbein indices are underlined. 
The Dirac equation then looks 
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i [ 0 1 8 1 ( kr
2

) a 2 
1 + fri- a 3 1 + fri- 8 

-;; 1 N 8t + 1 l + 4r; or + 1 r 8( + 1 r sin ( o~ 
3a - 4r2 cot ( kr2 1 

kr

2 l 
+2aN'o + r o,l + ~ (1 + 4r;) ,2 w(x)-mW(x) = 0. 

To maintain the space homogeniety of the Friedmann Universe we 
suppose that the spinor field is only time dependent. In the main 
text the FRW Universe with the spinor matter source is formulated 
in terms of the fermion variable '!/J 

'!/J(t) = a312(t)w(t). (A7) 

APPENDIX B: SEPARATION OF FIRST AND SECOND CLASS 
CONSTRAINTS IN MODEL WITH SPINOR FIELD 

The set of constraints CA = ( C,t,, C,j,, C) represent a mixed system 
of first and second class constraints; the rank of the Poisson matrix 
A1 = {CA, CB} is equal to two. The explicit form of the Poissson 
matrix is 

( 
6 /() 

M = -J<T O ' 

where and 6 and J-( denote 

D, = ( ? -i,
0

) 

-i,o 0 
I{= (-mai/;) 

mm/; · 

In order to perform the reduction procedure it is useful to sepa­
rate first and second class constraints. One c·an easily verify that 
applying the similarity transformation T 

T = ( J{T ~ -l ~ ) ' SdetT-/- O 
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to the constraints CA 

C=T·C= ( ~ 
ima1 °'lj; 

0 
1 

-iam;J;, 0 D-(~) 
we achieve the separation of the constraints on the surface defined 
by the second class constraints 

{C, 6,J;} = ima6,n° {C, 6,1,} = -ima,0 6,1,. 

To have this separation on the whole phase space one can pass to 
the new set of constraints 

C = C +maC'lj;C,7, 

( 
i [ 0 - o l) 1 = IT+ ma P"1P,l, - 2 P"1'Y 'lj; + 'lj;, P,J, - 4a1fo, 

C- ·c~ 0 . 0 i J. 
,/J = -z ,/11 = -ZP,!J'Y + 2'f/' 

- ~ z 
C,1, = C,1, = P,J, + -,0 'lj;. 

2 

(Bl) 

(B2) 

(B3) 

In this new set C belongs to the ideal of the algebra of constraints 

{C,C,/J} = {CN,C,7,} = 0, (B4) 

and second class constraints C,/J, C,1, obey the canonical algebra 

{C,/J, C,1,} = -1. (B5) 

APPENDIX C: REDUCED HAMILTONIAN AS CONSERVED 
QUANTITY FROM CONFORMAL SYMMETRY 

In this Appendix we discuss the existence of time independed 
reduced Hamiltonians from the geometrical standpoint. The Fried­
mann - Robertson - Walker space-time is conformally flat 

ds}Rw = A2 (x)ds1,inkowski · (Cl) 
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In the fiat Friedmann Universe the conformal factor A(x) is simple 
scale factor a(Tc) and it is easy to veify that the conformal time 
translation is a conformal symmetry 

2 2 a 
£ar 9µv = £ar (a (Tc)'r/µv) = 'r/µv8rca (Tc)= 9µv2-. 

C C . , a 
(C2) 

It is well-known that if space time 'possesses the conformal Killing 
vector and matter energy-momentum .tensor is traceless, then one 
can construct the conserved quantity as follows. Considering the 
covariant derivative of contraction of the stress tensor and the con­
fomal Killing vector 

\7 µPµ = \7 µ (evrµv)"= {v \7 µ Tµv + Tµv i(v µev + \i'veµ,) 

- I: Tµv + 1 Tµ v I: 
- ',,v \7 µ · · · · - µ \7, ',,v , 

n 

and assuming the covariant conservation of the traceless matter 
energy-momentum tensor 

\i'µTµv = 0 
' ' r: =O, (C3) 

we have the conservation law for four-vector pµ, in the· covariant 
differential form 

\7 µPµ = 0. , t .f C4) 

To get the global conserved quantity one can integrate this equality 
over the whole space-time and use Gauss theorem 

' J d4xFY \7 µ (evrµv) = Id4x a!µ .(FYLrµv) 
V · V ': 

. (C5) 

,, 

·. ~ j(frc)vTµv ~d3 x ~ I (frc)vTµv F"9d3
; • 

.T~ Ti' 

where in the last line we specify the Killing vector corresponding to 
the conformal translation in R~hertson -:- Walker space-time. For 
the conformal scalar field with Lagrangian 

4,9 



£ = ~ (~gµv 8µ<1>8v<I> + /2 (4R<l>2) 

the canonical stress tensor 

C 1 
Tµv = 8µ<1>8v<I> - 9µv ~£ 

y-g 

(C6) 

(C7) 

has nonzero trace T;!µ =/- 0. However one can pass to the improved 
[28] tensor 

Tµv = ri - ~ [- (4Rµv + 8µ8v - 9µv8µ8µ] <1>
2

, (CS) 

which is traceless Tf: = 0. Thus for a conformal time Killing vector 
in adapted coordinates frc = (1, 0, 0, 0) and for homogeneous scalar 
field <p(Tc) = a(Tc)<I>(Tc) from eq. (C5) it follows that 

H = j(frJ 0 T 00~d
3
x = Y(3) (p; + ~:;) 

Tc 

(C9) 

is conserved charge that coincides with the reduced Hamiltonian 
derived in the main text. 
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