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lllHpKoB n.n. E2-99-54 
YHlfTapHhIH MexaHlf3M lfHq>paKpacttoro 3aMopmKlfBaHmI B K)(ll 
C MaCClfBHhIMlf rmooHaMlf 

Tipe/UIO)Kel:ia «eCTeCTBeHHilll» MOAeJih 6e3 11K ClfHrymipHOCTeH /UIH lfHBapH
aHTHOH (6eryr.ueii) KOHCTaHThl CBH3lf B K.Xll- Otta OCHOBhIBaeTCH Ha rnnoTe3e cy
mecTBOBaHlll KOHe'IHOH MaCChl rJUOOHa m gl , lfCilOJih3yeT IlOCJieAOBaTeJihHhlH yqeT 
BKJI~OB noporoBoro noBeAeHlfH AHarpaMM <l>eiiHMaHa lf, B OA}IOileTJieBOM npH6Jilf
)KeHlflf, COOTBeTcTByeT ycJIOBlfIO AByx'laCTlf'IHOH yttlfTapHOCTlf. 

lllfcJieHHilll 01.[eHKa, Bh!IlOJIHeHHilll B OAHOileTJieBOM npH6JIH)KeHlfll, AaeT Hlf)K
HIOIO-rpaHHIIY mg1 > 150 M3B /UIH Macchi m100Ha H m~Koe 11K JaMopm1mnattne 

Ha ypOBHe a, (Q 2
) $ }. 

Pa6orn Bh!IlOJIHetta B Jia6oparnpHn TeopeTH'leCKOH q>H3HKH HM. H.H.6oro
n106ona 0115111. 
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Shirkov D.V. E2-99-54 
The Unitary Mechanism of Infrared Freezing in QCD 
with Massive Gluons , 

A «natural» model for the QCD invariant (running) coupling, free of the IR 
singularity, is proposed. It is based upon the hypothesis of finite gluon mass m gI 

existence and, technically, uses an accurate treating of threshold behavior of Feyn
man diagram contribution. The model correlates with the unitarity condition. 

Quantitative estimate, performed in the one-loop approximation yields area
sonable lower bound for this mass mg1 > 150 MeV and a smooth IR freezing 
at the level a, (Q 2

) $ I. 

The investigation has been performed at the Bogoliubov Laboratory of Theo
retical Physics, JINR. 
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1 Introduction 
The issue of the infrared (IR) behavior of the strong interaction becomes 
more and more actual from the physical point of view along with the further 
experimental data accumulation. In the perturbative quantum chromody
namics (pQCD) this behavior is burdened with "unphysical" singularities 
marked with the so called scale parameter A ~ 300 MeV. These singu
larities contradict some general principles of the local QTF. In the "small 
momentum transfer region" Q ~ 3A they violate the weak coupling regime 
and complicate theoretical interpretation of data. 

Quite recently attempts have been made to devise models for invariant 
(running) coupling a 5 (Q2 ) and for observables free of singularities in the 
IR region. One idea was to exploit the scheme arbitrariness of the third 
beta-function coefficient /33 • Performing an "optimization" of the beta
function the authors of paper [1] argued for special solution with an IR 
fixed point and a 3 (Q 2 ) < 1 bounded in the whole region Q2 ~ 1GeV2

• 

In the paper [2] the allowance was made for nonperturbative contributions 
into a 5 (Q 2 ) emerged from the vacuum QCD background fields. Here, the 
adjusting parameter, the background (hybrid) gluon mass MB, enters as an 
IR regulator of the gluonic logs: In Q2 ➔ ln(Q2 + Mi). At MB= 1.5 GeV 
the running coupling maximum value turned out to be o-8 (0) ~ 0.4. One 
more trick [3] uses an imperative of the Kallen-Lehmann analyticity in the 
complex Q2 plane. Effectively, it results in the smooth freezing of a 5 (Q2 ) 

at the level of 0.5 - 0.7 for 0.1 GeV2 ~ Q 2 ~ 1 GeV2 and in the universal, 
i.e., loop-independent IR limiting value a~ax = a 5 (0) = 41r//31 ~ 1.4. 

In the last, so called "invariant analytic", approach (for a recent review, 
see [4]) the finiteness and smoothness of the a 5 (Q2) behavior in the IR 
region is achieved only due to the analyticity imperative, without introduc
ing any adjustable parameters. Qualitatively, the effect of smooth freezing 
arises here due to the addition of a power (in the Q2 variable) and nonana
lytic (in the coupling constant as), i.e., nonperturbative terms which restore 
the Kallen-Lehmann analyticity for renormalization - invariant quantities. 

In this note, we consider one more possibility of constructing the invari
ant coupling a 3 (Q 2 ) that is free of unphysical singularities and does not 
involve explicit nonperturbative contributions. Here, the Q2 power contri
butions appear due to threshold effects and an essential physical ingredient 
is the assumption of the finite gluon mass existence. 

Our model expression for a 8 (Q 2 ) is obtained by the renormalization 
group (RG) summation of mass-dependent one-loop Feynman diagrams 



contribution - see, below, Eqs. (2) and (3). It depends upon the gluonic 
mg! and light quark mu,d,s masses, in the IR region Q 2 > 0 obeys a non
singular behavior with a finite limiting value as{0), and as Q 2 /m2 -+ oo 
smoothly transits into the usual asymptotic freedom formula. 

2 Massive loops 

Our starting point is quite simple and natural - we propose to take into 
the account the threshold mass dependence while considering the infrared 
region. As it is well known, the "leading UV logs", which after the RG 
summation yield, in particular, the Landau pole, arise from the one-loop 
Feynman diagrams. However, in the IR region these diagrams behavior, 
generally, is far from being logarithmic. For instance, to the virtual dissoci
ation of a vector particle (photon, gluon) into a massive fermion-antifermion 
pair (e+ + e- ; q + q) in the s-wave state, there corresponds a function 
Is(Q 2 /M2

) that can be represented in the form of a spectral integral 

Joo ks(a) d a. 
J9 (z)=z a(a+z)' ~( 1) ks(a) = y-;;- 1+ 2a {1) 

1 

and in the space-like region z > 0 is a positive, monotonically growing func
tion with logarithmic asymptotic behavior Is(z) ~ Inz-Gs+O(z- 1

) ;Cs= 
5/3. For definiteness and in accordance with the QED tradition we have 
subtracted it at z = 0. This agreement turns out to be convenient for our 
purpose in the "low Q 2 region". 

In QCD, besides Is(z), essential is a function Ip(z) describing a vir
tual dissociation of a vector gluon into a pair of massive vector or scalar 
particles (gluons or "ghosts") in the p-wave state. This function can also 
be represented in the form (1) with an adequate weight function kp(a) and 
obeys the same simple properties at z > 0. In particular, in the UV limit 
Ip(z) ~ In z -Gp+O(l/z). In our analysis only asymptotic constant Gp will 
be of importance. It relates to the integral over the phase volume. Due to 
this Gp > Cs. For the qualitative estimate we use [5] Gp= 8/3. 

Here, we assume that a virtual gluon has a finite (reasonably small -
see below) mass mg!. We postpone for the future any detailed discussion 
of a possible origin of this mass noting that the mechanism should be based 
upon a deeper understanding of the ground state structure of the quantum 
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gauge SU(3) field. As a provisional ad hoc working model one could imply 
the picture of spontaneous symmetry breaking, analogous to the SU(2) 
case (for a fresh discussion of the subject, see, e.g., Ref.[6]). In addition, 
one should have in mind the upper phenomenological bound 

mg1 ~ 600 Me V , 

corresponding to the absence of a direct experimental signal for this mass 

existence. 

3 Massive Renorm-group 

For an analysis of the invariant QCD coupling at small space-like values 
of the variable Q 2 < A2 we use the "massive", that is mass dependent, 
renormalization group as it has been explicitly formulated in the pioneer 

papers [7] in the mid-fifties. 
In particular, we shall exploit the fact that massive RG, quite in parallel 

to the widely used massless one, sums all iterations of a one-loop contribu

tion in the invariant coupling 

as(Q2 )pert = as - a;A1 (Q2, m2
) + a; ( A1 (Q

2
, m

2
))

2 
+ ... 

into the geometric progression [8] 

( 2) as 
as Q rg,1 = 1 + as Ai ( Q2, m2) 

Here, we use the notation for the so-called couplant 

as(Q2
) = as(Q2)/47r , as= as/411". 

(2) 

Analogous (approximate) RG summed mass-dependent expressions are 
known [9] for the two-loop case - see below Eqs. (5) and (6) - as well. 

Let us make a comment on the renormalization (subtraction) scheme 
(RS). We use the subtraction at Q2 = 0, that is the MOM-scheme in
stead of the massless MS one which is in common practice. Among QCD 
practitioners there exists a strong prejudice against any MOM-schemes due 
to their gauge dependence. For our analysis it is essential to use mass
dependent expressions for the diagram contributions. The particular RS is 
not of principal importance. One could transit from our scheme to a MS 
scheme by standard rules. In particular, connection between MOM, massive 
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MS and the popular massless MS schemes has been discussed in detail in 
papers [9, 10) and we have no possibility of repeating the discusson in this 
short note. 

4 The one-loop analysis 

For the one-loop contribution to an invariant couplant we use the expres
sion1 

A1(Q2 ,m2
) =llls (Q:)- ~ LIP (Q

2

). 
mgl 3 q m~ 

(3) 

This expression by convention turns to zero at Q2 = 0. Hence, in (2) 
as= as(0). In the opposite limit at Q2 » m2 , we have 

· ( Q
2 8) 2 ( Q

2 5) A1 (Q2 ,m2)-+ 11 In- - - - - '°' In- - -
m2 3 3 L.,; m2 3 gl q q 

In the three7quark region, this gives 

Q2 2 4 2 
2 2 mgl · ms 2 2 2 A1(Q , m) '.::: 9 In - 2 - 2 In -

2 
- -

3 
In -- - 26; Q »me, mgl. 

~ ~ ~~ . 

In the massless case to the expression 1/a + A1 (Q2, m2) there corre
sponds 9 ln( Q 2 / A 2) • Hence, we get the relation 

l ms A 4 m; 
-+22 In-+ 18ln- = 26+-ln-
as mgl ms 3 mumd 

between the combination 1/ a - 22 In mgl and the QCD scale parameter A. 
For a quantitative estimate let us define an "effective one-loop QCD scale 
parameter" from the condition as(M;) = 0.37 that yields A1 = 250 MeV. 

Now putting mu = 5MeV,md = 10 MeV, ms = 150 MeV, mgl = 
ms/a, we arrive at the relation 

1 - = 25 - 22 In a ; 
as 

211" 
as(O) = 12.5 + l1 ln(mg1/ms) (4) 

1Generally, the A1 (Q2 ,m2 ) should combine several (propagator and vertex) 
contributions. However, for our semiquantitive analysis only UV behaviour with 
asymptotic constants C,,p will be essential. 
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The most important qualitative result that follows from it consists in the ex
istence of a reasonably small lower bound for the gluon mass corresponding 
to the as (0) '.::: 1 condition. 

We have 
lO0MeV < mg1 < 600 MeV. 

In the Table a few values of the IR limit as(0) for some mg1 of this 
interval are given. 

Table 
m_g_1/MeV 100 150 I 200 300 450 

as(0) 0.87 0.55 I 0.41 0.36 0.31 

As it follows from the Table, there exists a rather wide interval of the 
gluonic mass mg1 with "reasonably small" as(0) ;S 1 values. 

Let us note that the lower bound as obtained from relation (4) has only 
a qualitative nature. The point is that due to the relation mu,d ~ mg1 the 
derivative da(x)/dx at x = 0 is positive and in the region 0 < Q 2 < m!1 
the light quark contribution dominates. The real place of possible "blowing 
up" is close to Q; = 2m!1 • As a result, the real lower 1:>0und for mg1 
corresponds to the condition as < 1/(28 - 4lna), and turns out to be close 
to the strange quark mass.· 

The upper bound existence for the as(0) value resembles us the prop
erty of unitary models for lower partial waves of hadron scattering in the 
low-energy elastic region. These models were popular in the sixties - see, 
e.g., Refs. [11]. Besides analyticity, they satisfy the two-particle unitarity 
condition. One-loop diagrams summed in the solution (2), (3) just relate to 
this last condition . This is the reason for associating our construction with 
unitarity. 

5 Two-loop corrections 

For a more accurate numerical description of the invariant coupling in the 
IR region one can use the two-loop massive perturbation expansion 

as(Q2)pert,2 = as - a~A1 (Q2, m2) + +a;Ai - a; A2(Q2, m2) + ... (5) 

An approximate two-loop massive RG solution is of the form [9] 

( 2) { A (Q2 2) A2(--.) ( ( }-i as Q rg,2 = as l + as 1 , m + as Ai( ... ) In 1 + a8 A1 ... )) (6) 
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At small as values this expression corresponds to (5). At the same time, at 
Q2 ~ m2 it can be represented in the usual form 

a;1 (Q2
)rg,2 ➔ (h {in~:+ b1 ln (1n ~:)} ; 

As it follows from (6), in the IR region 

f32 
b1 = f3i · 

1 1 (2 2 2 2 

(Q2 ) = - + A1 Q , m ) + asA2(Q , m ) . 
as . as 

(7) 

Hence, the two-loop contribution A2 (Q2, m2) is here suppressed by a 
small numerical factor as= as(0)/4rr ;S 1/10 and cannot seriously influence 
the one-loop estimate obtained above. 

6 Conclusion 
The estimate obtained shows that an accurate description of the threshold 
effects related to the light quarks and, especially, to gluons allows us to 
formulate one more resolution of the issue of unphysical IR singularities in 
the pQCD. The price of this resolving consists in introducing of the only 
parameter - the gluon finite mass. 

Thence, it is possible to keep the QCD invariant coupling as(Q2
) in the 

weak coupling domain in the whole space-like region 0 < Q2 < oo for the 
gluon mass values 

200 MeV < mg1 < 600 MeV. 

This theoretical "window" for the gluonic mass could be enlarged if we 
change the light quark masses from their current values to some effective 
ones m:1 j ~ m"' [14]. Here, one can use the gluon effective mass of the 
same order of magnitude. 

To conclude, let us remark that the present model, in reality, is not 
very far from our previous construction Refs.[3] with an explicit introduc
ing of nonperturbative contribution. A gluon mass mg!, being considered 
in the light of the genuine gauge-invariant QCD Lagrangian, certainly rep
resents an effective nonperturbative parameter. The same is true for the 
abovementioned mefdf. u, 

In our opinion, this demonstrates once more (compare, e.g., with dis-
cussion of the QED case in Ref.[15]) that the ghost-pole trouble is not a 
physical problem. It is a technical drawback inherent to usual, the pQCD 
one, way of theoretical analysis. 
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