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HexoHdaltHMeHT-Ga3oBbli nepexon
BO BpallAIOIINXCA HecthepHYECKHX KOMITAKTHBIX 3Be3lax

-CdopMyTHpOBaHBEl CaMOCOIIACOBaHHbIE YPaBHEHHS IDABUTALIMOHHOIO IOJS M €ro Hc-
TOYHHMKOB [11 aKCHaIbHO-CHMMETPHYHOTO Cy4ast [Uld NPHMEHEHHs K BpallalolMMcs KOM-
NaKTHBIM 3Be3aM. PasBuTa Teopus BO3MYINEHHH MO YIIOBOH CKOPOCTH H OTpedesieHbl HU3H-
YecKHe XapaKTEPHCTHKH 3Be3ll, TaKHE Kak Macca, hopMa, MOMEHT MHEPLIMH M 3Heprus. Me-
TO [O3BOJIIET PacCMOTPETh BO3MOXHOCTh H3MEHEHMS BHYTPEHHEH CTPYKTYpHI 3BE3[bI
BO BpeMs BpallleHHs, a TaKXe Pa3lelIMTh BLIMHUCICHHE YIJIOBOTO MOMEHTAa B 3aBUCHMOCTH
OT pa3HbIX KOMIIOHEHT B KOPPEKLMH K MOMEHTY HHepLUMH. UHCIIeHHBlE peLlIeHHs TIPOU3BeNe-
HBI TIPH MCTIONIb30BAaHNH YPaBHEHHS COCTOSHHUS, ONpPENeNsIoero neKoHgaiHMeHT-da3oBble
NEpEXOMbI, CKOHCTPYHPOBaHHEIE NIPH COXPaHEHHH YHca 6apHOHOB M 3JIEKTPHYECKOro 3apsi-
Aa. Bo Bpems 3BONIOLIMM 3aMeVIEHHs HEHTPOHHBIX 3BE3M, NPH 3HAYEHHAX YIJIOBOH CKOPOCTH
HUMXE KPUTHYECKOH MOXeT MOARISITHCS KBAPKOBOE SIPO, YTO MOXET ObITh 3aperuCTpHpPOBa-
HO KaK XapaKTePHbIH CHTHa/l BO BpEMEHHOH 3BOMIOLIMM ITynbcapoB. IlokasaHo, YyTo NpH cle-
HapHH 3aMeUIEHHd B Pe3yNnbTaTe AHUIOIFHO-MarHUTHOTO HATYYEHHS CMELUIEHHE TOPMO3HOTO
MHEKCa OT 3HaYeHHd 1 = 3 He TOJIbKO CHTHANTM3UPYET O TIOSBIIEHHH, HO U 1T03BONISET Onpene-
JIMTH pa3Mepsl KBapKOBOrO szpa B mynbscapax. Ilpemnoxen Takxe Apyroi cueHapuii 3BOsO-
LIMH, CBA3aHHBIH C aKKpelHei Macchl Ha 3Be3y, BO BpeMsl KOTOPOrO BO3MOXEH NEPEXON 3aMe-
IVIEHNs B YCKOPEHHe BpalleHHs, YyTo GyneT CHrHaloM K JeKoHdaiHMeHT-(a30oBbIM nepexo-
AaM B OBICTPO BpalUAIOLINXCS KOMNAKTHBIX 00beKTax. BO3MOXHBIME KaHIMRATaMH B TaKHe
00BbEKTHI ABIAIOTCS PEHTICHOBCKHE MapHBIe 3Be3/b! Manoii Macch! ¢ K[l KBa3HnepHOOHYECKH-
mu ocuunnsuuamu (KI10).
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Deconfinement Phase Transition in Rotating Nonspherical Compact Stars

We formulate the self-consistent set of equations for the gravitational field and its
sources for the case of axial symmetry relevant for the application to rotating compact stars.
We develop a perturbation theory with respect to angular velocity and define physical quan-
tities such as mass, shape, momentum of inertia and total energy of the star. This method al-
lows an investigation o? the change of the internal structure of the star due to rotation as well
as a separate evaluation of the angular velocity dependence of the different contributions
to the moment of inertia. Numerical solutions have been performed using an equation
of state describing the deconfinement phase transition as constrained by the conservation
of total baryon number and electric charge. During the spin down evolntion of the rotating
neutron star, below critical values of angular velocity a quark matter core can appear which
might be detected as a characteristic signal in the pulsar timing. We show that
in the spin-down scenario due to magnetic dipole radiation the deviation of the breaking in-
dex from n=3 could signal not only the occurrence but also the size of a quark core
in the pulsar. We propose also another scenario where due to mass accretion onto the star
a spin-down to spin-up transition might signal a deconfinement transition in the rapidly ro-
tating compact object. Possible candidates of such stars might be found among the recently
discovered low-mass X-ray binaries with kHz QPO’s, ‘

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR. ‘ ‘
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L. INTRODUCTION

In many recent astrophysical applications of the theory of dense matter it is nec-
essary to-investigate the properties of rapidly rotating compact objects within general
relatlwty theory. The reason of this development is the hope that changes in the inter-
nal structure of the dense matter, e.g. during phase transitions, could have observable
consequences for the dynamics of the rotational behavior of these objects. Particular
examples are the observations of glitches and postglitch relaxation in pulsars which are
discussed as signals for superfluidity in nuclear matter {1] and the suggestion that the
braking index is remarkably enhanced when a quark matter core.occurs in the centre of
a pulsar during its spin-down evolution {2]. Further constraints for the nuclear equation
of state come from the observation of quasi-periodic brightness oscillations (QPO’s) in
low-mass X-ray binaries which entail mass and radius llmlts for rapidly rotatlng neutron
stars [3].

The problem of rotation in the general relativity theory was and remains one of
the central and complicated problems [4]. Besides of the modern methods of numerical
solutions of this problem the method of perturbation theory [5] is physically the most
systematic approach for the solution of the problem for stationary gravitational fields
and their sources.

From the practical pomt of view for definitions of the integral characteristics of

" the astrophysical objects it is important. to analyze the asymptotical expansion of the
metric tensor at large distances from the stars, to be able to compare the results with
observational data. One can of course introduce the physical parameters of the con-
figuration using the symmetry properties of the object and the gravitational field by
expressing them in terms of conserved charges. In this work we are.using the definition
of the J, projection of the angular momentum of the nonspherical rotating star (z is
the axis of the star’s rotation and symmetry of the gravitational field) as a conserved
integral of motion. It is a well known integral of the non diagonal element of the
energy-momentum tensor in the frame of spherical coordinates.

Using the method of perturbation theory we are going to calculate the total mass, an-
gular momentum and shape deformation from the iterative solution of the gravitational
field equations in case of hydrodynamical, thermodynamical and chemical equilibrium
for given total baryon number and angular velocity Q of the object. The perturbation
method allows to solve the problem for all possible angular velocities, since the expan-
sion parameter is the ratio of the rotational and gravitational energy for which it has
been shown, that for compact objects in the stationary. rotating regime without matter
flux, the first two terms of the series expansion give a sufficiently good approximation.

The evolution of the rotating stars could have a different origins and scenarii. Our
aim in this work is to discuss possible signals for a deconfinement phase transition
during the evolution of rotating compact object on the basis of solutions for the Q
dependence of the moment of inertia.
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II. SELF-CONSISTENT SET OF FIELD EQUATIONS FOR STATIONARY
- ROTATING STARS

A. Einstein equations for axial symmetry

The general form of the metric for an axial symmetric space-time manifold is
ds* = e"dt? — e*dr? — re*(d6? + sin® 0(d¢ + wdt)?) , - (2.1)

written in a spherical symmetric coordinate system in order to obtain as a limiting case
the Schwarzschild solution. This line element is time-translational and axial-rotational
invariant; all metric functions are dependent on the coordinate distance from the co-
ordinate center r and azimuthal angle 6 between the radius vector and the axis of
symmetry. - ; :

Reversal symmetry of the time and polar angle ¢ requires that all metric coefficients
except w must be even functions of the angular velocity

_d¢
2=

of the star, the gravitational field of which is described by the Eq. (2.1). :The physical
characteristics of the rotating object depend on the centrifugal forces in the local inertial
frame of the observer. In general relativity due to the Lenz-Thirring law rotational
effects are described by @ the difference of the frame dragging frequency —w and the
angular velocity 2

(2.2)

G=0+w(nb). (2.3)

The energy momentum tensor of stellar matter can be approximated by the expres-
sion of the energy momentum tensor of an ideal liquid ,

={e + plu,u” —‘pé“:, : ; (2.4)

where u¥ is the 4-velocity of matter, p the pressure and & the energy density. -

We assume that the star due to high viscosity (ignoring the super-fluid component .

of the matter) rotates stationary as a solid body with an angular velocity € that is
independent of the spatial coordinates. The time scales for changes in the angular
velocity which we will consider in our applications are well separated from the relaxation
times at which hydrodynamical equilibrium is established, such that the assumption of
a rigid rotator model is justified.

Therefore there are only two non-vanishing components of the velocity

u = Qo
u' = 1/Ver = r2era?sin?0 (2.5)
Once the energy-momentum tensor (2.4) is fixed by the choice of the equation of

state for stellar matter, the unknown metric functions v,\, u,@ can be determined by
the set Einstein field equations of which we use the following four combinations. The
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equation of state which we will use for our investigation of the deconfinement transition
in rotating compact stars will be introduced in Sect. II1.

There are three Einstein equations for the determination of the diagonal elements
of the metric tensor '

G, -G =81G(I] - T;) ,
Gy + G =8nG(T +TY),
Gy =0, S (2.6)

and one for the determination of the non diagonal element
G, =8rGT,. ' (2.7)

Here G is the gravitational constant and G}, the Einstein tensor.
We use also one equation for the hydrodynamlcal equ111br1um (Euler equation)

dp _1
P+e 2

H(r,0) = In[u'(r, 6)] + const, (2.8)
where the gravitational enthalpy H thus’ introduced is a function of the energy and/ or
pressure distribution.

The parameters of the theory are the angular velocity of the rotatlon Q and the
central energy density £(0) of the star configuration.

B. Perturbative approach to the solution -

The problem of the rotation can be solved iteratively by using-a perturbation ex-
pansion of the metric tensor and the physical quantities int a Taylor series with respect
to the angular velocity. As a small parameter for this expansion we use the ratio
of the rotational ‘energy -to the gravitational one of a homogeneous Newtonian star
Erot/Egrav = (©2/9)?, where Q2 = 87Gp(0) with the mass density p(0). This expansion
gives sufficiently correct solutions already at O(2?), since the expansion parameter is
limited to values /€t < 1 by the condition of mechanical stability of the rigid rotation.
This can easily be seen by considering as an upper limit for attainable angular veloci-
ties the so called Kepler one Qi = +/GM/R3 with M being the total mass and R, the

equatorial radius. For homogeneous Newtonian spherical stars < Qg = Q/ V6.
The expansion of the metric tensor is given by

alri0:) = 55 () 20000 ; 29)

According to the symmetries of the metric coefficients introduced in Eq. (2.1) we have
even orders j = 0,2, .... for the diagonal elements*

*Notation corresponds to the works [5].



eI = VO (14 (/)2 f(r,0)) + O()
e = 00N (1 + (Q/0)*®(r, 0)) + O(2Y)
M) — 12(1 4 (Q/Q)2U(r, 0)) + O(Y) , (2.10)

and odd orders only for the frame dragging frequency w
Q
w(r, 6;Q) = = q(r,0) + O(Q®). (2-11)

The distributions of pressure, energy density and “enthalpy” introduced in Eq.(2.8)
are also included in the scheme of this perturbation expansion

p(r,6;9) = pO(r) + (/) (r,0) + O(2")
e(r,6,Q) = eO(r) + (/O (r, ) + ("),
H(r,6;Q) = HO(r) + (/)2 HO(r, 0) + O(Q*). (2.12)

All functions with superscript (0) denote the solution of the static configuration and
therefore they are only functions of r, the others are the corrections corresponding to
the rotation. '

This series expansion allows to transform the Einstein equations into a coupled
set of equations for the coeflicient functions which can be solved by recursion. At
zeroth order we recover the nonlinear problem of the static spherically symmetric star
configuration (Tolman-Oppenheimer-Volkoff equations), see the next subsection IIC.
The first recursion step is to solve Eq. (2.7) in order to obtain the dragging frequency
in O(R) and to define the moment of inertia for the sperically symmetric configuration.
In subsection IIE we will consider the second order contribution in the - expansion
(2.10), (2.12) where the O(92?) corrections to the moment of inertia in can be found.
The next terms in the expansion which are of O(Q2®) correspond to corrections of the
frame dragging frequency and will be neglected since they go beyond the approximation
scheme adopted in the present paper.

I4

C. Zeroth order: Static spherically symmetric star models

The functions of the spherically symmetric solution can be found from Eq. (2.6)
and Eq. (2.8) in zeroth order of the Q- expansion.
That is the solution of the following equations (Tolman-Oppenheimer-Volkoff)

dp9(r) ) _ m(r) + 4npO (r)r
—G(p® L)Y Sl S il G LUV LI 21
T = ~060 ) + )T TN (213)
where m(r) is the distribution of accumulated mass
m(r) = 4n /Or e@O@")rdr' . (2.14)

within a sphere of radius r. For the gravitational potentials we have

"’GL(T)) | (2.15)

Ro mn(r') + 4 O (r !
() = —MO(R,) - 2G / T rl ;é)m((r’))) -

AO0(r) = —In(1 —

(2.16)

Ry is the spherical radius of the star, which is defined by P®(Ry) = 0. The set of
Eq.(2.13) and Eq.(2.14) fulfills the following conditions at the center of the configura-
tion: £((0) = £(0) and m(0) = 0. The central energy density £(0) is the parameter of
the spherical configuration. The total mass of the spherically distributed matter in the
selfconsistent gravitational field is My (e((0)) = m(Ry).

D. Moment of inertia

In the first order of the approximation we are solving Eq.(2.7), where the unknown
function g(r,8) defined by Eq. (2.11) is independent of the angular velocity. Using the
static solutions Eqs.(2.13)-(2.15), and the representation of ¢{(r,8) by the series of the
Legendre polynomials

ad dP,, 11 (cosb)
9) = )— . 2.17
0 = 3 an() 50D (217)
we find the equations for the coefficients g,,(r). It is proved that g(r,8) is a function of
the distance r only, i.e. that g,.(r) = 0 for m > 0 [4,5]. B
Let us write down the equations for @(r) = Q(1 +go(r)/§2), which is more suitable
for the solution of the resulting equation in first order
1d,,., do(r),  4djr)
;‘Td—r(r i) dr )+; dr
which corresponds to Ref. [4], where it was obtained using a different. representation
of the metric. Here we use the notation j(r) = e~ )X ?0)/2 for which outside of
configuration holds j(r) =1, r> Ry.
By definition, the angular momentum of the star in the case of stationary rotation
is a conserved quantity and can be expressed in invariant form

J= /Tj,\,/—_gdv , (2.19)

o(r)=0, (2.18)

where /—gdV is the invariant volume and g = det ||g,.||- For the case of slow rotation
wlere the shape deformation of the rotating star can be neglected and using the defi-
nition of the moment of inertia Ip(r) = Jo(r)/Q accumulated in the sphere with radius
7, we obtain from Eq. (2.19)

dIolr) _ 87 40y 4 )l 322 (2.20)
dr 3 Q

Using this equation one can reduce the second order differential equation (2.18) to
the first order one



(2.21)

and solve (2.18) as a coupled set of first order differential equations, one for the moment
of inertia (2.20) and the other (2.21) for the frame dragging frequency @(r).

This system of equations is valid inside and outside the matter distribution. In the
center of the configuration holds Io(0) = 0 and @(0) = @,. The finite value @p has to
be defined such that the dragging frequency @(r) smoothly joins the outer solution

a(r) =0 (1 - 2?{") ) (2.22)
at r = Ry, and approaches £ in the limit * — oo. In the external solution (2.22) the
constant Iy = Iy(Ro) is the total moment of inertia of the slowly rotating star and
Jo = Ipf2 is the corresponding angular momentum. In this order of approximation, I
is a function of the central energy density or the total baryon number only. Explicit
dependences of the moment of inertia on the angular velocity occur in the second order
of approximation.

E. Second order corrections to moment of inertia

Due to the rotation in 2%-approxiination the shape of the star is an ellipsoid, and
each of the equal-pressure (isobar) surfaces in the star is an ellipsoid as well. All diagonal
elements of the metric and energy-momentum tensors could be represented as a series
expansion in Legendre polynomials :

a

g‘("‘,’,)(r, 0) = i(g“,,),(r)P,(cos 9) . (2.23)

It has been shown that only the solutions with ! = 0, 2 obeying the continuity conditions
on the surface are non trivial.

The deformation of the isobaric surfaces due to the rotation can be parametrized by
the shift R(r, 8)—r = A(r, 8) which describes the deviation from the spheric distribution
as a function of the radius r in the given polar angle § and is completely determined by

R(r0) =1+ (g) (Bolr) + Asg(r) Py(cos ), (2.29)

since the expansion coefficients of the deformation A(7) can be calculated from the
pressure corrections

n(r) |
Ayr) = ——7L . .

[(T) dp(o) (T)/dT (2 25)
! € {0,2} is the polynomial index in the angular expansion. The function R(Ry,9) is
the distance of the star surface from the center of the configuration in the direction
with the angle 6 to the polar axis. In particular, we can define the equatorial radius

R. = R(Ro,0 = n/2) and the polar radius R, = R(R,,0 = 0) and the excentricity
€ =4/1 —(R,/R.)> : ‘ Co ,

‘The correction to the momentum of inertia AI(r) =.I(r) — Io(r) can be represented
in the form - : - e

ATl = Alpegistrivution + Dlshape + Alpicia + Al potational Energy - (2.26)

The first three contributions can be expressed by integrals of the angular averag.ed r.nod-
ifications of the matter distribution, the shape of the configuration and the gravitational

fields, in the form

a= [ o) (W r) = LV%Q} R (2:27)
where | |
Wy = () @0 ~ () + )/ (229)
St ) (%)2‘1__?;@ ’  (229),
-y Redistrtion 1y _ (%)2 ,%()T) o | (2.30)

respectively, which have to be determined from the Eq. (2.6) in second order approx-
imation. The contribution of the change of the rotational energy to the moment of
inertia '

To(Ro) . ,
+ Al Roiating Energy = %/0 dly(r)r?@*(r)e=»M}. (2.31)
0 ’ - .

includes the frame dragging contribution. In this expansion we neglect the influence of
the change of the frame dragging frequency, since it corresponds to the next o'rder of
the perturbative expansion ~ O(2®). A more detailed description of the solutions of
the field equations in the ~ O(£2?) approximation is beyond the scope of this article, so
that we give only a short summary in Appendix A and {efer to works of Hartle [4] and
Chubarian [5}.

III. MODEL EOS WITH DECONFINEMENT PHASE TRANSITION

For the investigation of the deconfinement phase transition expected to occur in neu-
tron star matter at densities above the nuclear saturation density no = 0.16 fm™3 sev-
eral approaches to quark confinement dynamics have been discussed, see e.g. [10,12,11]
which lead to interesting conclusions for the properties of quark matter at high densities.
Most of the approaches to quark deconfinement in neutron star matter, however, use
a thermodynamical bag-model for the quark matter and employ.a standard two-phase
description of the equation of state (EOS) where the hadronic phase and the quz.irk
matter phase are modeled separately and the resulting EOS is obtained by imposing



Gibbs’ conditions for phase equilibrium with the constraint that baryon number as well
as electric charge of the system are conserved [13,14]. Since the focus of our work is
the elucidation of qualitative features of signals for a possible deconfinement transition
in the pulsar timing, we will consider here such a rather standard, phenomenological
model for an EOS with deconfinement transition.

The total pressure p({¢;},T) as a thermodynamical potential is given by

p({m}, T) = (1 = x)pa({m}, T) + xvo({11e}, T) + p{u}, T) , (3.1)
where
pa({m}, T) = h_E P T; m;.) : (32)

is the EOS of the relativistic 0 —w mean-field model (Walecka model) for nuclear matter
and

po{ueh,T) = Y 24y, T;my) — B (33)

q=u,d

is the pressure for two-flavor quark matter within a bag model EOS with the phe-
nomenological bag pressure B = 75 MeVfm™3 that enforces quark confinement and the

transition to nuclear matter at low densities. In a neutron star, these hadronic phases

of matter are in f— equilibrium thh electrons and muons which contribute to the
pressure balance with

pn{m}, T)= Y P, Tymy) . (3.4)

l=e=,u~

In the above expressions p®(u;, T;m;) = p; (i, T;ms) + pf (1, T; my) is the partial
pressure of the Fermion species ¢ as a sum of particle and antiparticle contributions
defined by

P s Tim) = [ (;‘ST’;T Inf1 + exp(y/k + m/T + /T)] . (35)

In the relativistic mean-field model, the masses and chemical potentials have to be
renormalized by the mean-values of the o— and w— fields [15,16] m; = my ~ ¢,7,
Hh = Up — Guido.

All the other thermodynamic quantities of interest can be derived from the pressure
(3.1) as, e.g., the partial densities of the species

ap({ﬂ.} T)

¢

(3.6)

The chemical equilibrium due to the direct and inverse - decay processes imposes
additional constraints on the values of the chemical potentials of leptonic and baryonic
species [14,17) such that only two independent chemical potentials remain according to
the corresponding two conserved charges of the system, the total baryon number Ng
as well as electrical charge Q@

o (1= W ((h T) + xmal{a),T) )

0= 2 = (1 an({m} T) + xao(lie), T) + au({m}, T) - (38)

The deconﬁnement transition is obtained following the construction of Glendenning
(13,14], which obeys the global conservation laws and allows to find the volume frac-
tion of the quark matter phase x = Vo/V in the mixed phase where py({s},T) =
po({#1e}, T), such that at given ng and T the total pressure under the conditions (3.7,
(3.8) is a maximum.

In Fig. 1 we show the composition of the hybrid star matter as a function of the total
baryon density at T = 0. Solving the Tolman-Oppenheimer-Volkoff equations (2.13)-
(2.15) for. the:hydrodynamical equilibrium of static spherlcally symmetrxc relativistic
stars with the.above defined EOS, we find that a conﬁguratlon at the stability limit
could have a quark matter core with a radius as large as ~ 75% of the stars radius.

What implications this phase transition for rotating star configurations might have
will be investigated in the next section by applying the method developéd in Sect. II
for the above EOS.

np =

IV. RESULTS AND DISCUSSION

The results for the stability of rotating neutron star configurations with possible
deconfinement phase transition according to the EOS described in the previous section
are shown in Fig. 2, where the total baryon number, the total mass, and the moment of
inertia are given as functions of the equatorial radius (left panels) and in dependence on
the central baryon number density (right. panels) for static stars (solid lines} as well as for
stars rotating with the maximum angular velocity max (dashed lines). The dotted lines
connect configurations with fixed total baryon numbers Ng/Ng = 1.3,1.55,1.8,2.14 and
it becomes apparent that the rotating configurations are less compact than the static
ones. They have larger masses, radii and momenta of inertia at less central density
such that for sultably chosen configurations ‘a deconﬁnement transition in.tlie interior
can occur upon spin-down.”

In Fig. 3 we show the critical regions of the phase transition in the inner structure
of the star configuration as well as the equatorial and polar radii in the plane of angular
velocity €2 versus distance from the center of the star. It is obvious that with the increase
of the angular velocity the star is deformating its shape. The maximal excentricities of
the configurations with Ny = 1.3.Ng, N = 1.55 Ny and Ng = 1.8 Ny are €(Qpnay) =

- 0.7603, €(Qmax). = 0.7655 and €(Q,.,) = 0.7659, respectively. Due to the changes of the

central density the quark core could disappear above a critical angular velocity. .

In Fig. 4 we display the dependence of the moment of inertia on the angular v olomty
for configurations with the same total baryon number Np = 1.55 N together with the
different contributions to the total change of the moment of inertia. As it is shown
the most important contributions come fromn the inass redistribution and the shape
deformation. The relativistic contributions due to field and rotational energy are less
important. In the same Fig. 4 we show the decrease of the spherical moment of inertia
due to the decrease of the central density for high angular velocities which tends to
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FIG. 1. Composition of hybrid star matter in S-equilibrium as a function of baryon number
density. The hadronic equation of state is a relativistic mean-field model (¢ — w), the quark
matter one is a two-flavor bag model with B = 75 MeV fm™3.
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FIG. 2. Baryon number N, mass M, and moment of inertia I as a function of the equatorial
radius (left panels) and the central density (right panels) for neutron star configurations with
a deconfinement phase transition. The solid curves correspond to static configurations, the
q dashed ones to those with maximum angular velocity Qmax. The lines between both extremal

cases connect configurations with the same total baryon number Np/Ng = 1.3,1.55,1.8,2.14.
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partially ‘compensate the further increase of the total moment of inertia for large 2.
There is no dramatic change in the slope of I(§2) at Q¢ = 2.77 kHz.

Fig. 5 shows the dependence of the moment of inertia as a function of the angular
velocity. It is demonstrated that the behavior of I(2) for a given total number of
baryons Ng strongly depends on the presence of a pure quark matter core in the center
of the star. If the core does already exist or it does not appear when the angular
velocity increases up to the maximum value Qpax then the second order derivative
of the moment of inertia I(2) does not change its sign. For the configuration with
Ng = 1.55 N, the critical value for the occurence of the sign change is Qe = 2.77 kHz
while for Ng = 1.8 Ny it is close to Qpax = 6.6 kHz. R

In order to point out possible observable consequences of such’a characteristic be-
haviour of I(£2, Ng) we consider two possible scenarios for changes in the pulsar timing:
(A) dipole radiation and the resulting dependence of the braking index on the angular
velocity as suggested in Ref. 2] and (B) mass accretion onto rapidly rotating neutron
stars. .

A. Dipole radiation '

Dué to the energy loss by dipole radiation the star has to spin-down and the resulting
change of the angular velocity can be parametrized by a power law :

a= KO- : . 41)

where K is a constant and n(Q) is the braking index

Q0 3rQ+I1"0?
n(Q) = 2 ES (4.2)
where we used the notation I' = (BI(S2, Np)/0)|np=const, With the corresponding
definition of I”, see also [2]. ‘ :

In Fig. 6 we display the result for the braking index. n(2) for a set of configyrations
with fixed total baryon numbers ranging from Np = 1.55 Ng up to Np = 1.9 Ng,
the region where during the spin-down evolution a quark matter core could occur for
our model EOS. We observe that only for configurations within the interval of total
baryon numbers 1.4 < Np/Ng < 1.9 a quark matter core occurs during the spin-down
as a consequence of the increasing central density, see also Fig. 3, and the braking
index shows variations. The critical angular velocity Qit(Np) for the appearance of
a quark matter core can be found from the minimum of the braking index Eq. (4.2).
As can be seen from Fig. 6, all configurations with a quark matter core have braking
indices n(§2) < 3 and braking indices significantly larger than 3 can be considered as
precursors of the deconfinement transition. The magnitude of the jump in n(£2) during
the transition to the quark core regime is a measure for the size of the quark core.

Is it feasible to observe such a jump within a reasonable time interval?

It would be sufficient to observe the maximum of the braking index nmay in order
to infer not only the onset of deconfinement from the fact that n($2) # 3 but also the
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size of the quark core to be developed during further spin-down. Our calculations show
that a significant enhancement of the breaking index does only occur for pulsars with
periods P < 1.5 ms (corresponding to Q > 4 kHz) which, however, have not been
observed in nature.

B. Mass accretion

A higher spin-down rate might be possible for rotating neutron stars with mass
accretion, where at high rotation frequency the angular momentum transfer from ac-
creting matter and the influence of magnetic fields can be neglected [18] such that the
evolution of the angular velocity is determined by the dependence of the moment of
inertia on the total mass, i.e. baryon number,

Q@ (Np dl

Q- ( I dNB>
where J = I Q@ = const has been assumed. In Fig. 7 we consider the change of the
pulsar timing due to mass'accretion with a constant accretion rate N 5/ N for fixed total
angular momentum as a function of the total baryon number. Here the change from
spin-down to spin-up behaviour during the pulsar evolution signals the deconfinement
transition. When the pulsar has developed a quark matter core then the change of
the moment of inertia due to further mass accretion is negligible and does no‘longer
influence on the pulsar timing. However, in this quark matter core regime the transfer
of angular momentum from the accreting matter might dominate and can lead to a
continuation of the spin-up. It is interesting to investigate in future research whether
e.g. low-mass X-ray binaries with mass accretion for which recently quasi-periodic
brightness oscillations (QPO’s) with frequencies up to ~ 1200 Hz have been observed
[3] might be discussed as possible candidates for rapidly rotating neutron stars for which
consequences of the transition to the quark core regime due to mass accretion might be
observed. ‘

Np
’
J=const N, B

- (43)

. V. CONCLUSIONS

On the example of the deconfinement transition from hadronic to quark matter
we have demonstrated that the rotational characteristics of neutron stars (braking in-
dex, spin-down rate) are sensitive to changes of their inner structure and can thus be
investigated in order to detect structural phase transitions.

The theoretical basis for the present work-was a perturbation method for the solution
of the Einstein equations for axial symmetry which allows to calculate the contribution
of different rotational effects to the change of the moment of inertia. This quantity can
be used as a tool for the investigation of the changes in the rotation timing for different
scenarios of the neutron star evolution.

The deviation of the braking index from the value n = 3 (magnetic dipole radiation)
as a function of the angular velocity has been suggested as a possible signal for the
deconfinemnt transition and the occurence of a quark matter core in pulsars. We have
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reinvestigated this signal within our approach and could show that the magnitude of
this deviation is correlated with the size of the quark core.

For neutron stars with mass accretion we have suggested that under the assumption
of total angular momentum conservation a flip from spin-down to spin-up behaviour
signals the appearence of a quark matter core. A more detailed investigation is necessary
in order identify possible candidates of rotating compact objects with mass accretion
(see e.g. [3]) for which the suggested deconfinement signal could be relevant.
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APPENDIX A: FUNCTIONS FOR THE CALCULATION OF Al

In the integral representations for the contributions to the correction of the moment
of inertia we have introduced the set of functions ®,(r), fi(r), Ui(r) for | = 0,2. They
can all be expressed by the solutions of the zeroth and first order equations and by the
unknown functions Hy(r), Lo(r) and Sy(r), where

@o(r) = —Ho(r) + K(r) + (0), (A1)
®y(r) = ~Hy(r) — K(r), (A2)
Hy(r) = By Ly(r) + Sa(r) (A3)

folr) = [-1+ 87G(P® + e®)r?] Ho(r) + [1 ~ 162G (p® + £)r?| K (r)
= 2ot 00y 11y ), \ (Aa9)

folr) = = [1 + 45 G(p® + €9)r?) Hy(r) — [1 + 87G(p® + e®)r?] K ()
%r‘*(f"(‘;f—’))?e-*‘”’-"‘“’ + 87 Gripy(r), (A9

and

K(r) = §r2(q0(r.) + Q)2 (A6)

The integration constants ®(0), B, could be defined by the coutinuity conditions
with the external solutions for the functions ®4(r) and $5(r), see Refs. [4,5].
The functions Up(r) and Us(r) one can define by integrating the following equations

r © ,
S = Lttalr) — foe) + K0 (r)) ~ B0 FO BT ) o)~ K6,
dU, : r dv®
G = = p () + S+ K )+ S0 A0 | 2 ey w )
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For the unknown functions Hy(r), La(r) and Sa(r) there are second order differential
equations which can be found in Ref. [5]), and which we.do not repeat here.
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