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On Tamm’s Problem in the: Vavilov-Cerenkov Radiation Theory

We analyse the well-known Tamm’s problem treating the charge motion
on a finite space interval with the velocity exceeding light velocity in medium.
By comparing Tamm’s approximate formulae with the exact ones we prove that
the former do not properly describe Cerenkov radiation terms. We also investigate
Tamm’s formula cos 61 = 1/Pn defining the position of the maximum of the field
strengths in the Fourier representation. Numerical analysis of the Fourier
components of field strengths shows that they have a well pronounced maximum
at =0y only for the charge motion on the sufficiently small interval. As
an interval grows, many maxima appear. For the charge motion on an infinite
interval there is infinite number of maxima of the same amplitude. The quantum
analysis of Tamm’s. formula leads to the same results.
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1 Intro dyuction

In 1888 O. Heaviside considered an infinite charge motion in the nondispersive dielectric
infinite medium [1). He showed that a specific radiation arises when the charge velocity
v exceeds the light velocity in medium c,. This radiation is confined to the cone with a
solution angle sind, = 1/,. Here 8, = v/cy. The Poynting vector being perpendicular

to this cone has the angle
cosl. = 1/8, (1.1)

with the motion axis. This radiation was experimentally observed by P.A. Cerenkov in
1934 [2]. Unfortunately, Heaviside'’s studies had been forgotten until 1974 when they
were revived by A.A. Tyapkin [3] and T.R. Kaiser {4].

LE. Tamm and .M. Frank [5] without knowing the previous Heaviside investigations
explained Cerenkov’s experiments solving the Maxwell equations in the Fourier repre-
sentation and subsequently returning to the usual space-time representation. The use of
the Fourier representation permitted them to treat the dispersive media as well. For the
non-dispersive media they confirmed the validity of Eq.(1.1) defining the direction of the
Cerenkov radiation.

In 1939 LE.Tamm [6] considered the uniform motion of a point charge on the finite
space interval with the velocity v exceeding the light velocity in medium c,. Here ¢, =
¢/n(w), n(w) is-the frequency-dependent refraction index of the medium. He showed
that Fourier components of electromagnetic field strengths ha.ve a sharp maximum at the
angle _

cosOr = 1/Bx (1.2)

with the motion axis. Here 8, = v/c.(w). Later (see, e.g., [7]) Eq.(1.2) was applied to
the charge motion in an infinite medium.

On the other hand, in Ref. [8} the uniform motion of a point charge was considered

in an infinite dispersive medium with a one-pole electric permittivity e = n? chosen in a
standard way [9):
o3
(w) =1+ —+—. (1.3)

wi — w?

This expression is a suitable extrapolation between the static case €(0) = 1 + w} /w3 and
the high-frequency limit ¢(co) = 1. The electromagnetic potentials, field strengths and
the energy flux were evaluated on the surface of a cylinder co-axial with the charge axis
motion z. They had the main maximum at those points of the cylinder surface where in

the absence of dispersion it intersects by the Cerenkov singular cone and smaller maxima

in the interior of this cone. On the other hand, the Fourier transforms of these quantities -

were oscillating functions of z and, therefore, of the scattering angle 0 (z = rcos8)
without a promounced maximum at cos@ = 1/8,. This disagrces with the validity of
Eq.(1.2) (not (1.1)) for the infinite charge motion.

Further, Zrelov and Ruzicka ([10,11]) numerically investigated Tamm’s problem and.

came to the paradoxical result that Tamm’s formulae (which, as they believed, describe
Cerenkov’s radiation) can be interpreted as interference of two bremsstrahlung (B.S)
waves emitted at the beginning and end of motion.

Slightly later the exact solution of the same problem in the absence of dispersion has
been found in {12]. It was shown there that Cerenkov’s radiation can by no means he

reduced to the interference of two BS waves.

These inconsistencies and the fact that formula (1.2) is widely used for the identification
of Cerenkov radiation even for the uniform infinite charge motion enable us to reexamine
Tamm’s problem anew.

The plan of our exposition is as follows. In Sect. 2, we reproduce step by step the
derivation of Tamm’s formulae. In Sect. 3, by comparing approximate Tamm’s formulae
with exact ones we prove that they do not describe Cerenkov’s radiation properly. The
reason for this is due to the approximations involved in their derivation. Quantum
analysis of Tamm’s formula is given in Sect. 4. In Sect. 5, we analyze the validity
of Tamm’s formula (1.2) for different intervals of charge motion. We conclude that it
is certainly valid for small intervals and breaks for larger ones. This is also supported
by the analytical formula available for the infinite charge motion. On the other hand,
the Tamm-Frank formula (1.1) is valid even for the dispersive media: it approximately
defines the position of main intensity maximum in the usual space-time representatlon
([8]). A short discussion of the results obtained is given in section 6.

Some precaution is needed. When experimentally investigating charge motion on a
finite interval [13], one usually considers an electron beam entering a thin transparent
slab from vacuum , its propagation inside the slab and the subsequent passing into the
vacuum on the other side of the slab. The so-called transition radiation ([14]) arises on
the slab interfaces. In this investigation we deal with a pure Tamm’s problem: electron
starts at a given point in medium, propagates with a given velocity and then stops at
a second point. This may be realized, e.g., for the electron propagation in water where
the distance between successive scatters is = lum, which is approximately twice the
wavelength of the visible Cerenkov radiation [15].

2 Tamm’s problem

Tamm considered the following problem. The point charge rests at the point z = —zq of
the z axis up to a moment { = —{y. In the time interval —¢y < ¢ < #; it uniformly moves
along the z axis with the velocity v greater than the light velocity in medium c,. For
t > to the charge again rests at the point z = 20. The non-vanishing 2 Fourier component
of the vector potential (VP) is given by

o 1. .
A, = - -E]w(z',y', 2)exp (—sz/c’ldx’dy’dz',
where R = [(z—2')? + (y—v')* + (2 — ')2]1/2 jw = 0 for 2/ < —z9 and 2z’ > 2 and

Ju = €é(z )6( )exp(—zwz Jv)/2m for —zp < 2’ < 29. Inserting all this into A, and
mtegratmg over z' and y' one gets

% dz
Az, y,z) = 271_0 B exp[—zw( +—)],
R:[p2+(2*2')2]‘/2, pP=2t 44" (2.1)

At large distances from the charge (R >> z) one has : R = Ry — 2 cos ¥, cosf = z/Ry.

Inserting this into (2.1) and integrating over 2’ one gets

sin [wio(1 — B, cos 0)]
1 —fB.cosf

Aulpr2) = LI op (ioRofer), afe) = (22)
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Now we evaluate the field ‘strengths. In the wave zone where Ry >> ¢/nw one obtains

2 oo
Hy = _7r:1§0 sin0/0 ng(w)sinfw(t — Ro/e,)]dw,
2 . o
E, = ——ﬂjﬁo sm0cos€/(; g(w) sinfw(t — Ry/ep)]|dw,
2 o
E, = ﬂcego sin? ¢ /0 q(w) sin[w(t — Ro/cn)]dw. (2.3)

It should be noted that only the 6 spherical component of E differs from zero

2 00
E. =0, E= —ﬂ_cego sin 0/; g(w) sinfw(t — Ro/c,)]dw.

Consider now the function q(_(:.:) For wto >> 1 it goes into 78(1 — B, cos§). This means

that under these conditions £, and H, have a sharp maximum for 1 — 8, cos8 = 0. Or

in other words, photons with the energy Aw should be observed at the angle cos§ = 1/,3,,.’
The energy flux through the sphere of the radius Ry is

W= R? / S.sin8d0dp, S, = S E,H¢.
4r
Inserting Eg and H, one obtains

282,82
mc

W =

/(; nJ(w)dw, J(w)= /0 ¢*sin 6d0.
For wty >> 1, J can be evaluated in a closed form

1 14,

J=Jps = T
BS Bn? (In 11— Ga] 26,) for B, <1 and
Twig

J=Jps+Jon, Jon =

7. (1—%2.) for f.>1. (2.4)

Tamr'n identified Jgs with the spectral distribution of the bremsstréhlung BS | arising
from instant acceleration and deceleration of the charge at the moments o, resp. On the
oth'er'hand, Joir was identified with the spectral distribution of the Cerenkov radiation.
This is supported by the fact that

2122

5?2 oo  2e28%,
-/‘; ndeon(w)dw = _—C_/l;n

Wen = 2e

1
o) wdw(l — F) (2.5)

n

§trongly resembles the famous Frank-Tamm formula [5] for an infinite medium obtained
in a quite different way. .

In the absence of dispersion Eqs.(2.3) are easily integrated:

efsinf
Hd? = —m{dlcﬂ(t - to) - Ro + 20 COS 0] - J[Cn(t + to) - R() — Zp COs 0]},

Bsing
B = ‘E,ﬁﬂ—*:msa){ﬂcﬂ(t—to)—ﬂoﬂocosﬂl—élcn(t+to)—Ro—zocosa]} (2.6).

Superscript T' means that these expressions originate from Tamm’s field strengths (2.2).
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3 Comparison with exact solution. -

A

3.1 Exact solution

On the other hand, in Ref. [12] there was given an exact solution of the treated prob- >
lem (i.e., the superluminal charge motion on the finite space interval) in the absence of
dispersion. It is assumed that a point charge moves on the interval (—z, 2) lying inside
So. The charge motion begins at the moment t = —ty = —zo/v and terminates at the
moment t.= to.= 2o/v. Foreonvenience we shall refer to thé BS shock waves emitted at
the beginning of the charge motion (t = —to) and at its termination (¢ = ) as the BS)
and BS; shock waves, resp. < -+ 5~ e e )
In the wave zone the field strengths are of the form ([12])"
E = Eps+ Ech, Eps= -‘g; + E'g; H = Hps + Hen, ;

H= Hyng, Hy'= Hps+ Hep, Hps = 1(91;7‘*' Hz(;;- (8.1)
Here . 7 ' T
- - inf_y =@ el8lealt —to) —ro]rsind
E};‘; _ _e_ﬂ_&[cn(t+ to) — ri]rsin ﬁgl)’ Eg;: ef [eal a) T'z]TSVln ﬁﬁf’,

n. PBu(z+2)—11 .1 . ﬂ"(z —z)—r2’ 2o

Eon= ———8(eat — Ru)O(pvn + 20 = 2)0(=pYa + 20 + ity = "
Cblea(t S to) —mlrsin® oy Slen(t — to) —ra)rsing = <
H(l) = - ’ ) H = - PR ]
5s = —eh Pu(z+20)—7T1 71 BS. cf Gulz — 20) =12 75 2
Hen =-"-——-——rm%ﬁ5(cnt = Rn)O(pn + 20— 2)O(—pym + 20 + 2)igy. .

Yo =[1=B72, ri=[z 420 + 0202 rZ(z - %) + 7
rm = [(z = 08)? = P [F2]?,  Rm=(z+p/7n)/Bns
".S;l) = [fi,(z + 20) — pii:}/m1, ngz) = V[ﬁg(z — 20) = piz)[r2,  Tim = (i —nz/1n)/Bn.

The meaning of this notation is as follows: r = /2% - ptis t}ie distance of the observation

point from the origin (it coincides with Tamm’s Ry); r1 = J(2+ 20)% + p? andj ry = .

(z — 20)* + p* are the distances of the observation point from the points of the motion
axis where the instant acceleration (at t = —t;). and deceleration (at t = ¢o) take place.
Correspondingly, 4 functions &[ca (¢ + to) — 1] and 8[e,(2 —1o) — 2] describe spherical BS

shock waves emitted at these moments; 7?01) and nal are the unit vectors tangent to the

1)

above spherical waves-and-lying in the ¢'= const plane; ‘ES), E_’gg, ﬁggv'and,ﬁ (%) are the .

electric and. magnetic field strengths of the BS shock waves. The function §(c,t — Rm)
describes the position of the Cerenkov shock wave (CSW). The inequalities Bm < cpt
and R., > et correspond to the points lying ihs'idqthe VC cone and outside it, resp.; fim
is the vector lying on the surface of the Vavilov-Cerenkov (VC) cone; T'rm is the so-called

Cerenkov singularity: r,,'= 0 on the VC cone surface; ECh and ﬁcr; are the electric and )

magnetic field strengths. describing CSW; Eci and Hey, aré infinite on the surface of

radiation terms are essential.

the VC cone and vanish-outside it: Inside the VC cone Ec;;’:;_t;d Hcy decrease as r2 at . .
large distances and, therefore, do not'give contribution in the{ wave zone where only the .~ .



3.2 Comparison with Tamm’s solution

At large distances one may develop ) and rz in (3.1): ry = r+2zpcos8, r2=r—zgcosd.
Here r = Ry = [p? + 2%]*/%. Neglecting zo compared with r in the denominators of Egs
and Hps in (3.1), one gets

Er= EBS, Hr = ﬁBs, E=FEr+ Ec;n H=Hr+ HCha

where ET and HT are the same as in Eq. (2 6). This means that Tamm s field strengths
(2.6) decribe only the bremsstrahlung and do.not contain the Cerenkov singular terms.
Correspondingly, the maxima of their Fourier transforms refer to the BS radiation.

To elucidate why the Cerenkov. radiation is absent in Egs. (2.4); we consider the product
of two © functions entering into the definition (3.1) of ECh and HCh:

O(pvn + 20 — 2)O(—pYn + 20 + 2).

If for
20 << pYn — 2 = 1(Ynsin 0 — cos§) - (32)

one naively neglects the term zp inside the © functions, the product of two © functions
reduces to O(py. — 2)O(—py, + 2) that is equal to zero. In this case the Cerenkov
radiation drops out. .

We prove now that essentially the same approximation was implicitly made during
the transition from (2.1) to (2.2). When changing R under the sign of exponent in (2.1)
by Ry — #'cos 8 it was implicitly assumed that the quadratic term in the development of
R is small as compared to the linear one. Consider this more carefully. We develop R up

to the second order: "

R~ Ry — 2 cosf+ ;—Rsinze.
Under the sign of exponent in (2.1) the following terms appear
2! 1 , 212 -
> + _c:(Ro_ 2'cosf + T ).
We collect terms involving 2’

—[(~— — cos 0) + -Esm 29].

Taking for 2’ its maximal value zo, we present the condition for the second term in the
development of R to be small in the form

20 << 2R0(—1— —~cosf)/sin? 8

It is seen that the right-hand side of this equation and that of Eq.(3.2) vanish for cos§ =
1/8.,, i.e., at the angle where the Cerenkov radiation exists. This means that the Cerenkov

radiation is due to the neglected second-order term in the development of R. Or, in other-

words, the absence of the Cerenkov radiation in Eqs. (2.5) is due to the omission of
second-order terms in the development of R.
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3.3 Space distribution of shock waves

Consider space distribution of the electromagnetic field (EMF) at the fixed moment of
time. It is convenient to deal with the space distribution of the magnetic vector potential
rather than with that of field strengths. ’

The exact electromagnetic potentials are equal to ([12]) . -

. 1, »
P = Q] + (I)Z + va ;Az = ﬂQm'

Here

& = —O(r) — et — 2—°), &, = (-)(c,.t ra — =2),
™ T2 ﬂn
O = 20 + 000 + <1><3’ A, =AY + AP + AP, (3.3)
AW = ﬂ‘G)(p'y,. ~z = 2)0 ( +ry— c,.t)@(c,.t 2 ),
Tm ﬂn B
AP = e—ﬂ—@(z — 29~ pYa)O(r) —cut — 2)9(0,.{— i —‘rg),
Tm . /311 Bn
49 = Lo(so 1 = 00z + 20 1)O(ent = R
[©(r) ='cat — 3 )+ @(ﬁ + 7y —cat)],
(for simplicity we have omitted the p factor).
Theta functions ©(cnt + 5= — 1) and ©(r; ~ cat — £*) define space regions which, corre-

spondingly, have and have not been reached by the the BS, shock wave.
Similarly, theta functions ©(cnt — & —r3) and O(r2 —cat + 22) define space regions which
correspondingly have and have not been reached by the the BS, shock wave.
Finally, theta function ©(c,t — R.,) defines space region that has been reached by the
CSW.
The potentials &, and ®, correspond to the electrostatic fields of the charge resting at
z = —zp up to a moment —ip and at z = z after the moment ¢, whilst ®,, and A.
describe the field of a moving charge. Schematic representation of the shock waves po-
sition at the fixed moment of time is shown in Fig. 1. In the space regions 1 and 2
corresponding to z < pyn — 20 and z > p¥, + 20, Tesp., there are observed only BS shock
waves. In the space region 1, at the fixed observation point the BS; shock wave (defined
by cnt + 20/Bn = 1) arrives first and BS; wave (defined by c.t — z0/Bx = 72) later. In
the space region 2, these waves arrive in the reverse order. In the space region 3, defined
by pYn — zo‘<'i; < pYs + 2o, there are BS,, BS; and CSW defined by the equation
= R,.. Before the arrival of the CSW (i.e., for Ry > ¢t) there is an electrostatic
field of a charge resting at z = —z,. After the arrival of the last of the BS shock waves
there is an electrostatic field of a charge resting at z = zo. The space region, where ®,,
(and, therefore, the field of & moving charge) differs from zero, lies between the BS) and
BS, shock waves in the regions 1 and 2 and between CSW and one of the BS shock
waves in the region 3 (for details see Ref. [12]). Space region 3 in its turn consists of
two subregions 3, and 3; defined by the equations py, — 20 < z < (p?9?2 + 22/32)"/? and
(p*72 + 23/0%)Y/? < 2 < pyn + 20, tesp. In the region 3, at first there arrive CSW, then



BS, and, finally, BS,. In region 3; two last waves arrive in the reverse order.

The polarization vectors of bremsstrahlungs are tangential to the spheres BS, and BS,

and lie in the ¢ =(const plane coinciding with the plane of Fig.1. They are directed along
~ 1an

the unit vectors 7i") and ﬁ,z);'_r'ce_sp. The polarization vector of CSW (directed along i)

lies on the CSW. It is' shown by the solid line in_Fig’._l and also lies in the ¢ = const

plane. The magnetic field having only the ¢ nonvanishing component is normal to the

plane of figure. The Poynting vectors defining the direction of the energy transfer are
normal to BS), BS; and CSW, resp. ‘ . L

The Cerenkov radiation in the (p, z) plane differs from zero inside the narrow beam of
the width 2zysind,, where 0. is the inclination of the heam towards the motion axis
(cos8. = 1/8,). When the charge velocity tends to the velocity of light in medium, the
width of the above beam as well as the inclination angle tend to zero. That is, in this
case the beam propagates in a nearly forward direction,

3.4 Time evolution of the electromagnetic field on the sphere
surface '

Consider the distribution of VP (in units e/Ro) on the sphere S of the radius Ry at

different moments of time. There is no EMF on So up to a moment T}, = 1 — €o(1+1/8,),

Here T,, = ¢,t/Ry. In the time interval

1 1
1—60(1+ﬁ—")S_TnSI—€o(l—ﬁ—n) : (3.4)
BS radiation begins to fill the back part of Sy corresponding to the angles
—1<cosf < éc—o[(T,. + 5%)2 -1~ €] (3.5)
(Fig. 2, curve 1). In the time interval
L=l = ) ST, < [1 = (2 (36)
Bn Bntn

BS radiation begins to fill the front part-of S5 as well:
1 €o
s+ —(Th- )Y < <1
260[ +e5—( ﬂ")]_cose_l

The illuminated back part of Sy is still given by (3.5) (Fig. 2, curve 2). The finite jumps
of VP shown in these figures lead to the d-type singularities in Eqgs. (3.1) defining BS
electromagnetic strengths. In the time intervals (3.4) and (3.6) these jumps have a finite
height. The vector potential is maximal at the angle at which the jump occurs. The
height of the BS shock wave jump and the value of VP tend to infinity at the angles

1 1 - (_C(_)_)2]l/2 and - (;0302 = L C_;.)Z]l/Z (3‘7)

"€ €
cosfhy =——— 4 1= —+ —[1 -
= ma Yl (G ma Tl (G

which are reached at the time

: = —(_ 60 rapy2

{Fig. 2, curve 3) and correspond to the intersectif)n of‘So by the lines z = py, — ‘zo'fz‘n;‘d
2 = pYn + 20, resp. (Fig.1). At this moment the illuminated front and back parts of So
are given by —1 < cos# < cos ) and cosf; < cosd < 1, resp. At the moment t = ¢,
the Cerenkov shock wave intersects Sp at the angles 8, and 6,.

Beginning from this moment, the CSW intersects the sphere Sy at the angles |

: T, 1 . o T 1 /2
cosf = T ﬂm(l —THY? and cosf = At ﬂ"%u T2)/2,
The positions of the BS; and BS; shock waves are given by
‘ 1 o 2 ' _ Ll ERY
cos§ = 2—60[(T,, + E)z —1—¢} and cosf = 260[1 +e¢—(Tn ﬂn) 1,

respectively (i.e., BS shock waves follow after CSW). Therefore, at this moment BS fills
the angle regions ) .
; 042 2
— < —[(Th+=)"—-1-¢] and
1§cos0_260[( +ﬁn) |
1 2 €02
—[1 —(Tn — =-)] <cosb <1,
260 [ + C0 ( ‘gn ) ]

while VC radiation occupies the angle interval

cos0l<cos0<-7—1'—'-—- ! (1-T*»Y% and Z'l_}_ ! (1~ T2)? < cosf < cos .

Bn  Bavn © Pu Prte
Therefore, VC radiation field and BS overlap in the regions
1 o 2 . 1 _ /2 d
-2—60-[(T,. + ﬁ—")'-’ ~1—€]<cosf< 5 ﬁn%(l T2}/? an
In 1 211/2 1 2 _ (1 02
—Er:-}_ﬁn'Yn(l—T") SC050S260[1+¢0 ( ,gn)]

BS, and BS, have finite jumps in this angle interval (Fig. 3). The non-illuminated part
of So is -
*0 L 1 (1—-T%"% < cosh < E+ ! (1—THY2,
Bn B " Bn  Ban
This lasts up to a moment T, = 1 when the Cerenkov shock wave interSfec.ts So only once
at the point corresponding to the angle cos8 = 1/@,, ( Fig. 4)». The positions of the BS,
and BS; shock waves at the moment T,, = 1 are given by

€ 1 ‘€p
I
resp. - Again, the jumps of BS waves have finite heights: while the Cerfénkov potentifa.ls
(and field strengths) are infinite at the angle cosf = 1/4, where CSW intersects So ;
After the moment T, = 1, CSW leaves Sy. However, the Cerenkov post-action still-
remains (Fig. 5). At the subsequent moments of time the BS; and BS, shock waves
approach each other. They meet at the moment

cosf =

o N O

nin



The corresponding angle is

cosf = =1 + N2,

[ (ﬂn'rn) ]
After this moment BS shock waves pass through each other and begin to go away from
each other (Fig. 6). Now BS; and BS; move along the front and back semi-spheres,
resp. There is no EMF on the part of Sp lying between them. The illuminated parts of
So are now given by

1 1
~1<cosf < 7—[l + € — (T — —)2] and —[(Tn+ ‘0 Y —1~¢€]<cosf<1.
260 : 260

Bn Bn
The electromagnetic field is zero inside the angle interval

7 -1-d)

After the moment of time (3.8) BS, and BS; may occupy the same angular positions
cosf; and cosf, like BS; and BS; shown in Fig. 2. But now their jumps are finite. After
the moment

1 2 €0 2 1
= _ _ 0y ___
e n+ © (T. ﬂn) ] < cos 0'3 260[(Tn +

T,,=l+€0(l—ﬂi)

n

the front part of Sp begins not to be illuminated (Fig. 7). The illuminated back part of
So is given by o .
21 +e) 26

Bn B

In the subsequent time the illuminated part of Sp is given by

—1<cosf < ~-1+

1 €
~1< < 2 -2
<cosfh < 260[l +e— (T, ﬂn) ]

. As time goes, the illuminated part of Sy diminishes. Finally , aff‘er the moment

“Ta=1+e(l+ )

Bn

the EMF radiation leaves the surface of Sp (and its mterlor)
For small ¢o = zo / Ro the Cerenkov. singular radiation occupies the angula.r reglon

- 0 0< —+—=
e < cos —
B BE =S 5t e
while BS is infinite at the boundary points of this interval (i.e., at cosf = — -t —9—[,',“',1,)

In the opposite case (¢ = ) the singular Cerenkov radiation field is conﬁned to the

angular region
2
ﬁ —1<Lcosf<1,

while BS has singularities at cos = 57 ~1, and cosf=1.
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We summarize here main differences between Cerenkov radiation and bremsstrahlung:
On the sphere Sy VC radiation occupies the angular region

cos ) < cos < cosbs,

where 6, and 0, are given by Eq. (3.7). At each particular moment of time T, in the

interval € s
1—(—— <T,<1
- (G2 < T

the VC electromagnetic potentia.ls and field strengths are infinite at the angles

w1 ' 1
cosB:E—n— y/1-T2 and cosﬂ_E+ 1 -T2

Bnn

After the moment T}, = 1 the Cerenkov singularities leave the sphere Sy, but the Cerenkov
post-action still remains. This lasts up to the moment T, = [1 + (5%~ e,
On the other hand, BS runs over all the sphere Sp in the time interval

1 1
1—60(1+ﬂ'—)STn31+ go,(l+ﬁ.

The vector potential of BS is infinite only at the angles 8; and 8, at the particular
moment of time T}, = /1 — €2/32~2. For other times the VP of BS exhibits finite jumps
in the angle interval —7 < @ < m. The BS electromagnetic field strengths are infinite
at those angles. Therefore, Cerenkov singularities of the vector potential run over the
region cos 0 < cos § < cosf; of the sphere Sy, while the BS vector potential is infinite
only at the angles §; and 8; where BS shock waves meet CSW.

3.5 Comparison with Tamm’s vector potential

Now we evaluate Tamm’s VP

A;- = / dw exp (iwt)A,

—~00

Substituting here A, given by (2.1), we get in the absence of dispersion

- %@[eo — (T, - 1)/(ﬂi — cost)] - Oleo+ (T, — 1)/(—— —cos®).  (3.9)
Here R = {[z(1 = B, cos§) — vt + RofBa)? + p*(1 — B, cos §)*}}/2

This VP is obtained also from A, given by (3.3) if we leave in it the terms A{") and
A describing BS in the regions 1 and 2 (see Fig.1) (with omitting zo in the factors
O(pyn — z — 20) and O(z — zo — pY,) entering into them) and drop the term A which is
responsible (as we have learned from the previous section) for the VC radiation and BS
in region 3 and which vanishes for ¢ = 0. It is seen at once that A, is infinite only at

T.=1, cos@=1/8,. (3.10)
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This may be compared with the exact consideration of the previous section which shows
that the BS part of A, is infinite at the moment

_ Galon _ _( %0 voup
Ten R =l (ﬂm)] (3.11)
at the angles cos 8; and cos 8, defined by (3.7). It is seen that Eq.(3.11), cos 8, and cos 0,
transform into (3.9) when ¢, — 0. Due to the dropping of the A® term in (3.3) and the
omission of terms containing € in cos#, and cos 0z, BS, and BS, waves have now the
common infinite maximum at cos§ = 1/Bn.

The analysis of (3.9) shows that Tamm’s VP s distributed over Sy in the following

way. There is no EMF of the moving charge up to the moment Th=1~e(l+1/8,)
For

1 1
l_ —'60(1 + ’H_") < T‘,-l < 1-— 60(1 - E:)
EMF fills only th¢ back part of S

—“l<cos < ———(1-T,
e B 50( )
(Fig. 8, curve 1). In the time interval

1 1
-6l - )< Th<1+€(1 ~ —
| o ﬂ") ‘ | of ﬂn)
the illuminated parts of Sq are given by

11 11,
—l<cos0<E—;(l—T,,) and [3—"+'-€-;(1-T")<C050<'1

(Fig. 8, curves 2 and 3). The jumps’lof the BS, and BS, shock waves are finite. As
T, tends to 1, the BS, and BS; shock waves approach each other and fuse at T}, = 1,
Tamm’ VP is infinite at this moment at the angle cos @ = 1/, (Fig. 9). For

1<T, <'1+eo(1—ﬂi)
the BS shock waves pass through each other and begin to go away from each other, BS,
and BS, filling the front and back parts of Sy, resp. (Fig. 10):

AT - 1) <cosb< 1 (BS) and
Bn € .

-1 < cosf < L - -l—(T,, -1) (BS,)
. ﬂn €o .

For larger times

1+co(1—ﬂin) <Th <14 el + blj)

only back part of Sy is illumihated:

1 1
—l<cos0<——'—-—T,,—1 BS,).
| 5T 1) (B8
Finally, for T, > 1 + €o(1 + 1/8,) there is no radiation field on Sy and inside it.
Roughly speaking, Tamm’s vector potential (3.9) describing evolution of BS shock waves
in the absence of CSW imitates it in the neighbourhood of cos @ = 1/B,.
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4 Quantum analysis of Tamm’s formula

We turn now to the quantum consideration of Tamm’s formula. The usual. appro:?.ch
proceeds as follows [16]. Consider the uniform rectilinear (sa?', along the z axis) motion
of a point charged particle with the velocity v. The conservation of energy-momentum is
ritten as : . 7 v

" p=p +hk, E£=¢&+hw, (4.1)
where p,€ and §,£’ are the 3- momentum and energy of the initial and fina.l states-of the
moving ,cha.rge; hk and fw are the 3-momentum and energy of the emitted photon. We
present (4.1) in the 4-dimensional form

p—hk=p, p=(pE/c). ‘ (4.2)
‘ . 22
Squaring both sides of this equation and taking into account that p? = p' = mc’ (m
is the rest mass of a moving charge), one gets
(k) =hR*/2, k= (Fko), ko=uwec. (4.3)
Or, in a more manifest form 7
n? — 1 hw

1
c030k=[7(1+ 7 ?)

Here 8, = v/es, ¢ = ¢/n is the light velocity in medium, n is its refractive index. When
n

deriving (4.4) it was implicitly suggested that the absolute value of photon 3- momentum

i i i : k| = w/en.
d it are related by the Minkowski formula: | .
a’lhelnstize;i,rgy of the emitted Cerenkov photon is much smaller than the energy of a

moving charge, Eq.(4.4) reduces to
cos by = 1/8,, (4.5)
which can be written in a manifestly covariant form'
(pk) =0. . (46)

Up to now we suggested that the emitted photon has definite enérgy and mox:nentum.
The wave function of a photon propagating in vacuum [17] and medium look alike

CiNEexpli(kF —wt)], (k)=0, &=1, 4.7)

where |k| = w/c and |k| = w/e, for the motion in vacuum and medium', resp., N is the
real normalization constant.and € is the photon polarization vector lying in the plane
passing through k and 7 ’ .

| & =—cosly & =sinfy =0, (ck)=0. ‘(48)

The photon wave function (4.7) identified with the classical vector potential is obtained

" in the following way. We take the positive-frequency part of the second-quantized vector

potential operator and apply.it to the coherent state with the fixed k. The eigeavalue

13 =
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of this VP operator is jﬁst (4.7). Below we show that gauge invariance permits one to
present a wave function in the form having the form of a classical vector potential

iN'p,exp (ikz), (pk) =0. _ " (4.9)

where N' is another real constant. Now we take into account that photons described by

the wave function (4.7) are created by the axially symmetric current of a moving charge.

According to Glauber ([18], Lecture 3), to obtain VP in the coordinate representation,
one should make superposition of the wave functions (4.7) by taking into account the

relation (4.6) which tells us that that photon is emitted at the Cerenkoy angle 6 defined"

by (4.5). This superposition is given by
Ay(z) =1iN’ /p“ exp (1kz)5(pk)d3k/w

The factor 1/w is introduced using the analogy w:th the photon wave function in vacuum
where it is needed for the relativistic covariance of A,. The expression p,8(pu) is (up
to non-essential factor) the Fourier transform of the clai;sical current of the uniformly
moving charge. This current creates photons in coherent states which are observed ex-
perimentally. In particular, they are manifested as a classical electromagnetic radiation.
We rewrite A, in a slightly extended form

A, =iN' / puexpi(kF — wt)]&[%(l — Ba co3 )| 5 dipd cos Gudn. (4.10)
Introducing the cylindrical coordinates (< = pfi, + z7,), we present ki in the form
ke =

2['0 sin 8 cos(¢ — @) + z cos d).

-Inserting this into (4.10) we get
AR ) = iN"fp,J exp [iw(é cos Oy — t)] exp [E:—Jp sin Ok cos(¢ — ¢, )|dgduw,

where N is the real modified normalization constant and ¢, is the azimuthal angle in
the usual space. Integrating over ¢ one gets

AF 1) = A 0)/8, AR ) = / exp (—iwt)A, (7, w)dw,
0

where
'N”

sin 0

A (Fw) = exp (g— cos Bkz)Jg(ip sin B;). (4.11)

We see that A,(7,w) is the oscillating function of the frequency w without a pronounced

é- type maximum. In the 7,¢ representation A,(F,t) (and, therefore, photon’s wave
function) is singular on the Cerenkov cone vt — z = p/~,

ReA, = 2 N" ,fsinw(t - z/u)JD(;-‘cff sinO¢)dw =

=14

v
[t~ vt ~ /7
ImA, = 2nN"p, /cosw(t - Z/U)Ju(“zﬁ sin 0} )dw =

= 27N"p, O((z ~ v1)? = p*/42),

v
/- (=
Despite the fact that the wave function (5.10) satisfies free wave equation and does
not contain singular Neumann functions Ny (needed to satisfy Maxwell equations with a
moving charge current in their r.h.s. ), its real part (which, roughly speaking, corresponds
to the classic electromagnetic potential) properly descrlbes the main features of the VC
radiation.

= 2rN"p, vt)zp,ze(p’/%’, - (2= vt)?)

4.1 Choice of polarization vector

The Maxwell equations in medium with the constant € and g are given by

divE:O, curlE*—laB
cot’
= 18D  4n-
divD = 4rp, curlH:—_(-?T.{._gJ’

D = CE, B= ;zH .
The first two Maxwell equations are satisfied if we put

. S, 1
B=curlA, E=-V®—--A
¢
Then, two other equations give equations for Aand &

10% - dmp~ 10% .  4n
B-FppA=——"0 (B-ggp)t=-T7r

These electromagnetic potentials meet the following gauge condition:

divd+ 6—“%?- =

We apply the gauge transformation

Ao A=A+Vy, dod=0-1¢
[

to the vector potential (4.7) which plays the role of the photon wave function. We chose
the generating function x in the form

- x = aexp [i(EF — wt)),
where a will be determined later. Thus,

A = (N& + iak)exp[i(FF — wt)], &' = iwafcexp [i(F7 - wi)],
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where € is given by (4.8). We require the disappearance of the p component of A", This
fixes a: : : )
a= E cotd
T A

The nonvanishing components of A’ are given by

1

z

. N .
(T N it
sy exp [i{kF ’wt)], Ay ~ cot B¢ exp [i (k7 — wi)].

It is easy to see that A} = SA;. This completes the proof of (4.9).

5 Space distribution of Fourier components

The Fourier transform of the vector potential on the sphere Sy of the radius Ry is given
by

Od B
ReA, 26 _chos[%(g;+2)],
ImA L [ 4z 5.1
mAy=—— [ Z m[——(B—n—-f- ) (5.1).

—cg

" Here Z = (14 2% —2zcos §)!/2. For 20 << R these expressions should be compared with
the real and imaginary parts of Tamm’s approximate VP (2.2):
eBq_

ReA., (——), A, = =L (22

—). (5.2)

These quantities are evaluated (in units e/2rc) for

“igﬂ =100, B=099, n=1334, =01

(see Figs. 11, 12). We observe that angular distributions of VPs (5.1) and {5.2) practically
coincide having maxima on the small part of Sy in the neighbourhood of cos6 = 1/8,.
It is this minor difference between (5.1) and (5.2) that is responsible for the Cerenkov
radiation which is described only by Eq. (5.1).

Now we evaluate the angular dependence of VP (5.1) on the sphere S, for the case when
zp practically coincides with Ry (€ = 0.98). Other parameters remain the same. We see
( Fig. 13) that angular distribution fills the whole sphere So. There is no pronounced
maximum in the vicinity of cos§-=1/8,.

We cannot extend these results to larger zp as the motion interval will partly lie outside Sq.
To consider a charge motion on an arbitrary finite interval, we evaluate the distribution
of VP on the cylinder surface C' co-axial with the motion axis. Let the radius of this
cylmder be p. Making the change of varlables =2+ psmh x under the sign of integral

n (2.1), one obtains

X2 .
Red, = = wrz 4Ll
ReA, = 2“_6)[ cos| - (pﬁ + ﬂsmhx+ncoshx)]dx,
1

16 -

e e i L B e

X2
ImA, = ——e—/si (—— —smhx + ncoshx Jdx, (5.3)
27c

where sinh 1 = —(z0 + z)/p, sinhx: = (Zo - z)/p. . :
The distributions of ReA, and ImA, (in units e/2mc) on: the surface C as function of
% = z/p are shown in Figs 14-17 for different values of ¢ = zo/p and p fixed. The
calculations were made for 8 = 0.99 and wp/c = 100. We observe that for small ¢ the
electromagnetic field differs from zero only in the vicinity Z = 7,, which corresponds to
cos 8 = 1/8, (Figs. 14 and 15). As o increases, the VP begin to diffuse over the cylinder
surface. This is illustrated in Figs. 16 and 17 where only the real parts of A, for ¢ =1
and €p = 10 are presented (as the behaviour of ReA, and ImA, is very much alike (Figs.
14 and 15 clearly demonstrate this), we limit ourselves to the. consideration of ReA,).
We observe the disappearance of pronounced maxima at cos6 = 1/8,. For the infinite
motion (zp — 00) Egs. (5.3) reduce to : :

ReA, / [ %sinh X + ncosh x)]dx,

ImA, = —5— / [—(—- ~ smh xX+n cosh x)]dx (5.4)

These expressions can be evaluated in the analytical form (see Appendix)

Z;:c T [J"(__) sm(—) + No(—“) cos(—)]
i'/?;l:: = [ No( E) Sin(‘v_) - JD(;’Y—n) cos(—;—)] . (5.5)
for v > ¢, and
- Red, wz pw ImA, _ _ W2 o :
e = 2cos(“‘)Ko(—7:), Jamc 2sin(> )KO(U%) (5.6)

for v < ¢, (remember that v, = [1 - ﬂ2|“1/ 2). We see that for the infinite charge motion
the Fourier transform ‘A, is-a pure periodical function of z (and therefore, of the angle
8). This assertion does not depend on the p and w values. For example, for wp/vy, >> 1

one gefs . :
ReA, .~ 2b7r7,, Y Py T ImA, 20y, . m
e/27rcb—~‘-'v pw Sln[v(z+'yn) 4]’ e/2mc pw s[ (z+ 4]
for v > ¢, and v o
ReA, 20T, wz, pw ImA, uny, | w2 ‘ pw
e/2mc v pw cos( v )ex;?( v'y,.)’ e/2mc pw sin v )exp( v'y")
for v < ¢c,. v ' »

In Fig. 18, by comparmg the real part of A, evaluated according to Eq (5.4) with
the analytical expression (5.5) we observe their perfect agreement on the small interval
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of cylinder C surface (they are indistinguished on the treated interval). The same coin-
cidence is valid for ImA, .

The absence of pronounced maxima of potentials and field strengths for the charge motion
on the finite interval may qualitatively be understood as follows. We begin with the exact
equations (3.1) and (3.3) for the field strengths and potentials in the space-time represen-
tation. Making inverse Fourier transform from them, we arrive at Egs. (5.1)-(5.5) of this
section. Now, if the charge motion takes place on the small space interval, field strengths
and potentials (3.1) and (3.3) have singularities on a rather small space-time interval (as
the Cerenkov beam is thin in this case). Therefore, Fourier transforms of (3.1) and (3.3)
should be different from zero in the limited space region. For the charge motion on a
large interval field strengths and potentials (3.1) and (3.3) have singularities in a larger
space-time domain (as the Cerenkov beam is rather broad now). Consequently, Fourier
transforms of (3.1) and (3.3) should be different from zero in a larger space region.

By comparing (5.4) with (5.5) and (5.6) we recover integrals which, to the best of our
knowledge are absent in the mathematical literature (see Appendix).

6 Discussion

So far, our conclusion on the absence of a Cerenkov radiation in Eqgs.(2.2) and (2.3) was
proved only for the dispersion-free case (as only in this case we have exact solution). At
this moment we are unable to prove the same result in the general case with dispersion.
We see that Tamm’s formulae describe evolution and interference of two BS shock waves
emitted at the beginning and at the end of the charge motion and' do not contain the
Cerenkov radiation. ’

Now the paradoxical results of Refs. [10,11], where the Tamm’s formulae were inves-
tigated numerically become understandable. Their authors attributed the term Jej, in
Egs. (24) to the interference of the bremsstrahlung shock waves emitted at the moments
of instant acceleration and deceleration. Without knowing that Cerenkov radiation is
absent in Tamm’s equations (2.2) they concluded that the Cerenkov radiation is a result
of the interference of the above BS shock waves.We quote them:

”Summing up, one can say that radiation of a charge moving with the light velocity along
the limited section of its path (the Tamm problem) is the result of interference of two
bremsstrahlungs produced in the beginning and at the end of motion. This is especially
clear when the charge moves in vacuum where the laws of electrodynamics prohibit radiation
of a charge moving with a constant velocity. In the Tamm problem the constant-velocity
charge motion over the distance [ between the charge acceleration and stopping moments
in the beginning and at the end of the path only affects the result of interference but does
not cause the radiation. :

As was shown by Tamm [1] and it follows from our paper the radiation emitted by the.
charge moving at a constant velocity over the finite section of the trajectory ! has the
same characteristics in the limit I — co as the VCR in the Tamm-Frank theory [6]. Since
the Tamm-Frank theory is a limiting case of the Tamm theory, one can consider the same
conclusion is valid for it as well. ’

Noteworthy is.that already in 1939 Vavilov {10] expressed his opinion that deceleration of
the electrons is the most probable reason for the glow observed in Cerenkov’s experiments”.
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(We left the numeration of references'in this citation the same as it was in Ref. (10)).
We agree with the authors of [10,11] that Tamm’s approximate formulae (2.2) and (2.3)
can be interpreted as the interference between two BS waves. This is due to the fact that
Tamm’s formulae do not describe the Cerenkov radiation properly. On the other hand,
exact formulae found in [12] contain both the Cerenkov radiation and bremsstrahlung
and cannot be reduced to the interference of two BS waves.

Further, we insist that Eq.(1.2) defining the field strength maxima in the Fourier rep-
resentation is valid when the point charge moves with the velocity v > ¢, on the finite
space interval small compared with the sphere radius Ry (z << flg). When the value
of 2o is compared or larger than Ry, the pronounced maximum of the Fourier transforms
of the field strengths at the angle cos8 = 1/, disappears. Instead, many maxima of
the same amplitude distributed over the finite region of space arise. In particular, for
the infinite charge motion the above mentioned Fourier transforms are highly oscillating
functions of space variables distributed over the whole space. Thus, Eq. (1.2) cannot be
used for the identification of the Cerenkov radiation on large motion intervals.

However, in the usual space-time representation field strengths in the absence of dis-
persion have a singularity at the angle cosf = 1/8,. When the dispersion is taken
into account, many maxima in the angular distribution of field strengths (in the usual
space-time representation) appear; but the main maximum is at the same position where
Cerenkov singularity lies in the absence of dispersion ([8)). _

It should be noted that doubts on the validity of Tamm’s formula (1.2) for the max-
imum of Fourier components were earlier pointed out by D.V. Skobeltzyne [19] on the
grounds entirely different from ours. . We mean the so-called Abragam-Minkowski contro-
versy between photon energy and its momentum. :

7 Appendix
We start from the Green function expansion in the cylindrical coordinates

1 exp(—ikn[F— 7]
4r | -

GW(F’ 7-") =

oo kn
- z_:o € cosm(¢ — ¢'){ﬁ / dk; explk.(z — 2')]|G Y (p, p')+

—kn
1 —kn 00
' - +§F(/ +k/)dk= explk.(z — )]G P (p, p")},

where
G Noc,p5) = In(\/k2 — k20 ) HO( K2 = R2p3),

G p<,p>) = In(\/k2 ~ R2p ) Kon(/R2 = K2p5).

The Fourier compénent of VP satisfies the equation
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where k, = w/c, > 0 and j, = é(z)d(y) exp(—iwz/v)/2m The solution of (A.1) is given

by 1,51 . o

1 e A 4 1
A, = -,/Gw(r,r Vu(7)dV' =
(o4

= —ir exp(—iwz/v)H(()z)(‘-‘;ﬁ\/ﬂ,f - 1) .
1,0_ 881 '1:?."

= 2exp(-iwz'/v’)1{o(“§,/1 - B?) , ' — v

for B, < 1. Separating the real and imaginary parts, we arrive at (5.5). Equating (5.4)

for 8, > 1 and

and (5.5) and collecting terms at sin(wz/v) and cos(wz/v), we get the integrals 0s- s | \ 6\0 -
° w wp’ ) 2 -..- ‘-'. . 1’/,
/cos(—psinh x) sin{— cosh x)dx = : v | 3\
v Cn . - e ]
) . . ) "..3 2
T wp wp dz 7 WP /) sin( 2P ) dz 0.0 oo L SR eé »
= /cos(—l—)—z) sin('-c:\/.z2 + 1)—Iz\/_ﬁ = 1/cos(—l—)— z? — )sm(-cja: e 0= -11 = 6 2 i
0 : » | ‘

4

Figure 1. Position of shock waves at the fixed ' moment of time. BS; and BS; are
bremsstrahlung shock waves emitted at the points Fzy of the z axis. The solid segment
between the lines 7 = P — 20 and z = py, + zg is the Cerenkov shock wave (CSW),

= 5h(L\/B: = 1)

for v > ¢, and = 0 for v < ¢,.

[» o] . :
w,
’ /COS('% sinh X) COS(C—p cosh X)dx = 30 T T T -
4 v . n
T wp WP )2 [ (P2 /T =T cos(“Pr) 2 = —— T=1.33115 Bk
= { cos(—~z) cos(—— I2+1)—’——=/C°3 o VI TS\ mEr ) mme— = =1.331
b/ Cn vzi+l ] v Cn T 71 20+ - T=1.31
T No(22,/ B R T=1.26
= ——No(~+/B2 — 1
5 No(—=y/Bi - 1)
. . . N
for v > ¢, and = Ko(%2,/1 = 82) for v < ¢,. As we have mentioned, we did not find <<
these integrals in the available mathematical literature. 104
: 2
0 1
“ M ¥ ) ) v
-1,0 -0,5 0,0 0,5 1,0
, Coso
‘j" Figure 2. Time evolution of shock waves on the surface of the sphere Sy. For small
i times the BS shock wave occupies only back part of So {curve 1). For larger times
‘ the BS shock wave begin to fill the front part of So as well (curve 2). The jumps of
A BS shock waves are finite. The Jjump becomes infinite when the BS shock wave meets

CSW (curve 3). A, is in units /Ry, time T = ct/Ry
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Figure 3. Further time evolution of shock waves on the surface of the sphere Sq. Figure 5. The Cerenkov post-action and BS shock waves after the moment when
The amplitude of Cerenkov’s shock wave is infinite while BS shock waves exhibit finite CSW has left S,.
jumps. - :
T T T T T
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COSG . Figure 6. Further time evolution of BS shock waves on the surface of the sphere
Fxgure 4. Position of CSW and BS shock waves at the moment when CSW touches i So. They approach and pass through each other leaving after thf-msel\os the zero
the sphere Sy only at one point. electromagnetic field. Numbers 1 and 2 mean BS; and BS, shock waves, n\sp
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Figure 7. Further time evolution of BS shock waves on the surface of the sphere Sg.
After some moment BS shock wave begin to fill only the back part of Sg. Numbers 1
and 2 mean BS; and BS; shock waves, resp.
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1.0 05 0,0 0.5 1,0
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Figure 8. Time evolution of BS shock waves according to Tamm’s approximate
picture. The jumps of BS shock waves are finite. After some moment BS shock
‘waves fill both the back and front parts of Sq (curves 2 and 3).
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Figure 10. Further time evolution of BS shock waves in Tam
on the surface,qf the sphere So.
part of Sq. Numbers 1 and 2 m
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Figure 11. The real part of the VP Fourier transform (in units e/2rc) on the surface Cose
of Sp for €0 = 20/ Ro = 0.1. The radiation field differs essentially from zero in the Figure 13.. The real and imaginary parts of ‘A, for ¢, = 0.98. The el.oclrom;ignelic
neighborhood of the Cerenkov critical angle cosd, = 1/8,. The solid and dotted radiation is distributed over the whole sphere S,.
curves refer to the exact and approximate formulae (2.1) and (2.2), resp. It turns out
that~a small difference of the Fourier transforms is responsible for the appearance of
the Cerenkov radiation in the space-time representation.
‘ T T = T T ™ T
T T T N T T L2 )
0,14 .
:0'10_ A Eo=0.1. ’
3
< 0,0
(O]
o
-0,14 ..
T v L Y T v T v T
-4 -2 0 2 4
v T — — — T -— 3 Z
-1,0 -0,5 0,0 0,5 1,0

Figure 14. The real part of A, on the cylinder C surface for the ratio of the interval
motion to the cylinder radius ¢g = 0.1. The electromagnetic radiation differs from zero

in the neighborhood of z = +,, that corresponds to cosf. = 1/8, on the sphere

e ;100 (s i
Figure 12. The same as in Fig. 11, but for the imaginary part of VP. n units p, A, in units e/2mc).
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Figure 16. The same as in Fig. 14, but for ¢-= 1.

maximuni at the neighborhood of z = ¥,..
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There is no sharp“radjation

7 v L M T

-15 -10 -5 0
4

Figure 17. The same as in Fig. '14, but

5 10 15

for €o =10. There is no radiation maximum

at the neighborhood of z = 4, and the radiation is distributed over the Jarge : interval.

. T v T r T .
0,2+

3
<
@ 0,0 .
o

-0,24 -

' Y v T - T .
-0,2 -0,1 0,0 0,1 - 0,2

Z

Figure 18. The same as in Fig. 17, but for small z interval. On this interval Re A,

evaluated according to Eq.(5.4) for €5 =
motion interval are indistinguishable.
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10 and according to Eq.(5.5) for the infinite
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