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I. INTRODUCTION 

The description of quark dynamics inside the hadrons remains an actual problem of the 
elementary particle theory. The asymptotic freedom in the Quantum Chromodynamics 
(QCD) enables one to investigate the quarks interaction at small distances by making 
use of the standard perturbation theory. The quark dynamics at large distances (the 
confinement region) lies beyond such calculations. For this purpose other approaches are 
used: the phenomenological potential models [1], the string models [2], the bags models [3], 
the lattice calculations [4], the explicit account of nontrivial QCD vacuum structure [5], 
the variational perturbation theory [6]. 

Recently a new analytic approach to QCD has been proposed [7]. Its basic idea is 
to combine the renormalization group (RG) summation with the analyticity requirement. 
The essential merits of this approach are the following: absence of unphysical singularities 
at any loop level, stability in the infrared (IR) region, stability with respect to loop correc
tions, and extremely weak scheme dependence. The analytic approach has been applied 
successfully to such problems as the T lepton decays, e+ e--annihilation into hadrons, sum 
rules (see [7] and references therein). 

In the work [8] the analytic approach has been employed to the solution of the RG 
equation. The analyticity requirement was imposed on the RG equation itself, before 
deriving its solution. Solving the RG equation, analytized in the above-mentioned way, 
one gets, at one-loop level, a new analytic running coupling [8], which possesses practically 
the same appealing features as the Shirkov-Solovtsov running coupling [7] does. An 
essential distinction, that will play a crucial role in the present paper, is the IR singularity 
of the new analytic running coupling at the point q2 = 0. 

In this paper we shall adhere to the model [5], [9] of obtaining the quark-antiquark 
( qq) potential by the Fourier transformation of the running coupling. However, the per
turbative running coupling a,(q2

) does not enable one to obtain the rising qq potential 
without invoking additional assumptions [9]. 

The objective of this paper is to construct the quark-antiquark potential by making 
use of the new analytic running coupling. This potential proves to be rising at large 
distances (i.e., providing the quark confinement) and, at the same time, it incorporates 
the asymptotic freedom at small distances. It is essential that for obtaining this potential 
no any additional assumptions, lying beyond the standard RG method in the Quantum 
Field Theory and the analyticity requirement, will be used. 

The layout of the paper is as follows. In Sec. II the quark-antiquark potential, gen
erated by the new analytic running coupling is derived by making use of the Fourier 
transformation. Further the asymptotic behavior of the potential at large and small dis
tances is investigated. In Sec. III the higher loop corrections and the scheme dependence 
of the potential are discussed briefly. For practical purpose a simple approximate formula 
for the potential is proposed which interpolates its infrared and ultraviolet asymptotics. 
This formula is compared with the phenomenological Cornell potential. Proceeding from 
this an estimation of the QCD parameter A is obtained. In the Conclusion (Sec. IV) the 
obtained results are formulated in a compact way, and the further studies in this approach 
are outlined. 



II. QUARK-ANTIQUARK POTENTIAL GENERATED BY THE NEW 
ANALYTIC RUNNING COUPLING 

We proceed from the standard expression (5], (9] for the qq potential in terms of the 
running coupling a(q2) 

( 2) iqr 1671" {oo a q _e_ dq. 
V(r) = -3 lo 7 (2 71-)3 (1) 

For the construction of the new interquark potential NV(r) we shall use the new 
analytic running coupling (8] 

471" z - 1 
N (Q2) - - - ' 
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where /Jo = 11 - 2 n f /3 is the first coefficient of the /J-function. Upon the integration over 
the angular variables and the substitution q/A ➔ q, rA ➔ R in Eq. (1) one gets 

where 
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is the dimensionless potential. 
In order to perform the integration in Eq. ( 4) we consider the auxiliary function 

l
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I(n,R)= lim It 2 )sin(qR)dq. 
a-+O+ o n a+ q 
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Here the parameter a is introduced for shifting the origin of the cut along the imaginary 
axis Im q. It is obvious that 

- 1 
V(R) = R [I(0, R) - I(-2, R)]. 

For even n the integrand in Eq. (5) is an even function of q. Therefore 

I(n, R) =~Im lim J(n, a, R), 
2 a-+O+ 

where 

J(n, a, R) = P 1-:F(q) dq, 

The sign P means the principal value of the integral. 
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The function F( q) in Eq. (8) has the cuts (-ioo, -iva], (iya, ioo) and simple poles 
at the points q = =i=vT=a. Let us consider the integral of the function F along the 
contour r shown in Fig. 1. The function F( q) has no singularities inside the contour r, 
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therefor<' fr F dq = 0. Contribution to this integral of the semicircle of infinitely large 
radius in upper half-plane (see Fig. 1) vanishes. Performing the integration along the two 
semicircles c_ and c+ of the vanishing radius and along the cut C on the imaginary axis, 
we obtain 

J(n, a, R) 1 [( ~)n-2 iR._,rt='a ( ~)n-2 -iR._,rt='a] Joo 2in-2Xn-1e-Rr d 
-.--=- vi-a e + -vl-a e + ------- x. 
rn 2 ln2(:r2-a)+7r2 

Hence, for even 11 the function !(11, R) in Eq. (5) takes the form 

l(n, R) = ;r [~cos R- (-1)''/ 2.V(R.n)], 

where 

• loo .rn-1 c-R.r 
N ( U, n) = 2 d,r. 
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It is rather complicated to perform the• integration in Eq. ( 11) explicitly. Therefore 
we address the study of the asymptotics. First of all, we would like to know whether the 
qq potential N\/(r) in Eq. (3) provides the quark confinement. For the investigation of 
the potential behavior at large distances it is enough to consider the asymptotic of the 
function N( R, n) in Eq. (11) when R ➔ oo. This function can be represented in the 
following way 

-R:r 
8" {oo e d:r. 

N(R, n) = (-lt a Rn lo ,r [1n2 (:r2 ) + 71" 2] 
(12) 

At large R the basic contribution into Eq. ( 12) gives the integration oYer the small .r 

region. Let ns transform JV( R, n) identically: 

an loo (-l)"cRx [ 3L ] N(R.n)=-.- 2 l+-- b, 
8/l" o 4,r(ln ,r + ;r 2) 1 + L 

( l :3) 

where L = 7r 2 /(4ln2 :r). Neglecting the second term in the square brackets in Eq. (l:3), 
we use the formula ( 4.361.2) from Ref. [ 10]: 

{'x, e-i,x d,r = c'' - v(1t), 
lo x(ln2 :r + ;r 2 ) 

n(' 11 > o, 

where v(µ) is the so-called transcendental v-function (11 ]: 

r= ,1td1 
v(11)=1

0 
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Eventually, we obtain for R ➔ oo 

(-1)" [ r" Rtdt ] 
N(R,n)~~4- c11-v(R)+lo l'(l+l). 
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Taking into account Eqs. (6), {10), and (16) one can present the quark-antiquark 
potential (3) at large R in the following waf 

N 81r A [ n [ 2 R
1 
dt ] 

V(r) :::- 3/30 R 2 (e - v(R)) + lo r(t + 1) . (17) 

The behavior of the potential NV(r) at r ➔ = is determined by the last term in Eq. 
( 17).1 Integration of this term by parts gives 

where 

[
2 Wdt R

2 
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In the limit R ➔ = Eq. {18) takes the form 

2 Wdt R2 { __ _ 
lo r(t + 1) - 21n R" 

Therefore the quark-antiquark potential NV(r) proves to be rising at large distances 

81r 1 Ar 
A-- - ' NV(r) ':::! 3/3o 2 ln(Ar) r ➔ =-

{18) 
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Thus the new analytic running coupling NO'.an(q2) (see Eq. (2)) leads to the rising 
quark-antiquark potential NV(r) which can, in principle, describe the quark confinement. 

It is important to point out that the behavior of the potential NV(r) when r ➔ 0 has 
the standard form determined by the asymptotic freedom ( e.g., see Ref. [9]) 

N 81T 1 
V(r) ':::! 3/30 A. Arln(Ar)' r ➔ O. (22) 

Unfortunately, it is impossible to obtain the explicit dependence NV(r) for the whole 
region O < r < =· A simple interpolating formula, which can be applied for the practical 
use, will be given in the next section. 

1 It follows directly from the asymptotic of v(R) (see Ref. [11]), and from a simple reasoning. 
Really, if R > 0 the term f(R) = eR - v(R) is nonnegative and f'(R) ~ 0. Hence, f(R) ➔ const 
when R ➔ oo, and its contribution to NV(r) at large R is of 1/ R-order. 
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III. DISCUSSION 

Let us discuss briefly the higher loop contribution. One can show that the singularity 
of i-loop analytic running coupling Nal,~(q2) at the point q = 0 is of the universal type 
at any loop level. Therefore, when q ➔ 0 we have Na~i(q2) ~ Nal,~(q2) Ci, where Ci 
are constants. Taking into account that the maximal difference between Na~i(q2) and 
N al,~( q2 ) is in the small q2 region, we arrive at the following conclusion. The account of 
the higher loop corrections leads to changing the slope of the qq potential NV(r) when 
r ➔ =· This corresponds to a simple redefinition of the parameter A in Eq. (21) at the 
higher loop levels. • 

As far as the scheme dependence of this approach, we have to point out the following. 
It was shown in [8) that the solutions of the analytized RG equation at the higher loop 
level have extremely weak scheme dependence. In particular, the solutions of the two
loop RG equation with MS and MS schemes, are practically coinciding. Hence, at the 
higher loop level (there is no scheme dependence at the one-loop level), the use of different 
subtraction schemes leads to the slight variation of the qq potential. 

Thus, neither higher loop cor~ections, nor scheme dependence can affect qualitatively 
the result obtained in the previous section. 

For the practical use of the new potential it is worth obtaining a simple explicit ex
pression that approximates it sufficiently well. For this purpose one can use, for instance, 
the approximating function 

81r [ 1 ( 1 R) 1 (3 ) U(r)=-A - -+- +-- -+Rfi(2) 
3/30 In R R 2 1 - R 2 

( 1 1 11)] 
+Rf1(2) ln2 R - (R - 1)2 + 12 ' (23) 

which has no any unphysical singularities and possesses the asymptotics (21) and (22). 
This function is obtained by smooth sewing the asymptotics 

N 81T [ R Rfi(2)] 
V(r) ':::! 3/3/ · 2ln(R) + ln2 (R) ' R ➔ =, 

N 81r 1 
V(r) ':::! -/3 A·--(-)' R ➔ 0, R = Ar. 

3 o Rln R 

(24) 

(25) 

The formula (24) keeps explicitly the second leading term of the expansion (18), 
Ji (2) = 0.461. Some terms have been introduced into Eq. (23) only for eliminating the 
singularity at the point R = 1. It should be mentioned here that the next terms in the 
expansion (18) practically do not affect the shape of U(r). Of course, the function (23) is 
not the unique interpolating function between asymptotics (24) and (25). Nevertheless, 
the comparison of U(r) with the phenomenological potential 

c 4a 
V(r) = --- + a-r + const 

3r 
(26) 

(the so-called Cornell potential [l]) shows their almost complete coincidence (see Fig. 2). 
The fit has been performed with the use of the least square method in the physical meaning 
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region 0.1 :S r :S 1.0 fm [5]. The varied parameter in Eq. (23) is A. The possibility of 
shifting the potential 0 V(r) in Eq. (26) by a constant was also used. A rough estimation 
of A in the course of this fitting gives A ::: 500 MeV. This is in agreement with the values 
obtained earlier in the framework of the analytic approach to QCD [7]. 

IV. CONCLUSION 

In the paper. the quark-antiquark potential is constructed by making use of the new 
analytic running coupling in QCD. This running coupling arises under analytization of 
the renormalization group equation before its solving. The rising behavior of the quark
antiquark potential at large distances, which provides the quark confinement, is shown 
explicitly. The key property of the new analytic running coupling, leading to the confining 
potential, is its infrared singularity at the point q2 = 0. At small distances, the standard 
behavior of the potential, originated in the QCD asymptotic freedom, is revealed. It is 
also demonstrated that neither higher loop corrections, nor scheme dependence can affect 
qualitatively the obtained result. The estimation of the parameter A in this approach 
gives a reasonable value, A::: 500 MeV. 

In further studies it would undoubtedly be interesting to consider in this approach the 
dependence of the qq potential on the quark masses. 
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FIG. 2. Comparison of the potential U(,·) given by Eq. (23) (solid curve) with the pll('
nomenological Cornell potential (o), Eq. (26). The values of the parameters are: n = 0.39, 
a= 0.182 GeV2 (5], A :c 530 MeV, n1 = 5. 
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Quark-Antiquark Potential in the Analytic Approach to QCD 

The quark-antiquark potential is constructed by making use of a new analytic 
running coupling in QCD. This running coupling arises under analytization of the 
renormalization group equation. The rising behavior of the quark-antiquark poten
tial at large distances, which provides the quark confinement, is shown explicitly. 
At small distances the standard behavior of this potential originated in the QCD 
asymptotic freedom is revealed. The higher loop corrections and the scheme de
pendence of the approach arc briefly discussed. 
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