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1 Introduction 

At large momentum transfer, the amplitudes of the exclusive hadron 
processes due to a factorization of large and short distance dynamics 
[1 ]-[3] are expressed, in leading logarithmic approximation, as the con­
volution of hard and soft scattering amplitudes. The first ones are cal­
culable in perturbative QCD; they are dominated by hard one-gluon 
exchange diagrams. The second ones describe the soft transition of ini­
tial and final hadron states into quarks; they are determined in terms 
of the hadron distribution amplitudes (DA) [1]. These phenomenolog­
ical functions have the meaning of the amplitude of hadron decay (in 
the infinite momentum system, Ph ➔ oo) into a quark - antiquark pair 
(in the meson case), with momentum fractions xph and xph, (x = l-x) 
and virtuality p2

• Since the DAs depend on the dynamics at large dis­
tances, they can be calculated only by non-perturbative technique. 

The first attempt to calculate hadron DAs was performed in [4]. 
It resulted in a two-humped form for the pion DA. However, some 
time ago, the applicability of this form of DA to exclusive processes 
at high momentum transfer was questioned [5]. It was shown that 
in the collinear approximation, at momentum transfer far from as­
ymptotic region, there dominates the soft one-gluon exchange which 
corresponds to large values of the strong coupling constant. Moreover, 
the prediction based on this DA overshoots the large Q2 data on the 
pion transition form factor published recently by CLEO Collaboration 
[6] (for discussions, e.g., see ref. [7]). 

Later on, in ref. [8], by using refined technique to extract the 
hadronic DAs based on QCD sum rules with nonlocal condensates [9], 
it was shown that the pion DA at low energy scale is more close in 
form to the asymptotic one. It was also found that the form of the 
hadron DAs is very sensitive to the structure of the non-perturbative 
vacuum in terms of nonlocal condensates. Recently, in [10] and [11], 
the nonlocal condensates were modeled within the instanton model. 

In this letter, we will use the quark-pion dynamics developed in the 
framework of the instanton vacuum model (see for recent review, e.g., 
[12]) in order to calculate the leading-twist pion DA at a low normaliza-



tion point of the order of the inverse effective instanton size Pc· The in­
stanton model of the QCD vacuum gives the dynamical mechanism of 
chiral symmetry breaking, provides the solution of the U A ( 1) problem, 
and leads to understanding the physics of light pseudoscalar mesons. 
Moreover, it dynamically generates the momentum-dependent effrc­
tive quark mass Mq and quark-pion vertex 91rqq and, as a consequence, 
provides inherently a natural ultraviolet cutoff parameter in thr quark 
loop integrals through the effective instanton size Pc• 

The instanton model parameters are naturally related to basic quan­
tities of low energy physics. The inverse effective instanton size, p-; 1, 

directly measures the average virtuality of quarks that flow through 
the vacuum with momentum kq, where (kD = .-\.; ~ 2p-;2 [10] ~ 
0.5GeV2[13]. The quark mass parameter lvlq is given by the Goldberger­
Treiman relation lvlq = 91rqd1r, with the quark-pion coupling being 
fixed by the compositeness condition. Finally, the effective instanton 
density, nc, is determined via the gap equation. 

Earlier attempts [14] (see also [15]) to calculate the pion DA have 
been done in the framework of the model developed in ref. [16], which 
had further improvements. The effective action suggested in [16] is 
valid only in the chiral limit and was modified consistently in [17]. In 
[11], it was shown that the kernel of the effective instanton-induced 
four quark interaction can be expressed in terms of a gauge invariant 
quantity, nonlocal quark condensate, effectively resuming nonpertur­
bative effects of the instanton field. What is important, in the context 
of the present work, is that in general within the nonlocal models the 
form of the conserved currents is different of the usual local currents 
(see, e.g. [19]). These points lead to the conclusion that the approach 
of [16] is not fully consistent with the low energy theorems. Consid­
ering these facts, some of the previous calculations also need to be 
revised. In particular, the approach of [16] fails to satisfy the axial 
Ward-Takahashi identities (WTI). As shown in [19] the local part of 
the axial current is modified by the nonlocal term. Physically, it means 
that usual local currents are defined via (free) current quarks and 
the modification by nonlocal terms occurs due to the transition from 
current to constituent quark description in effective models. These 
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additional t<'rms are not suppressed by small instanton density pa­
rameter and lead to the correction of the order of 30% to the value 
of the pion decay constant F". Since the pion decay constant is an 
integral measure of the pion DA, the main motivation of the present 
work is to estimate the effect of such terms on the leading term of the 

wave-function. 
The paper is organized as follows. In Sect. 2, we introduce the 

definition for the pion DA. In Sect. 3, we write the effective instanton 
induced action in terms of quark fields gauged by P exp phase factors. 
The gauge fields in the phase-factor (vector, axial-vector, etc) are in 
general unphysical; however, their introduction is convenient in order 
to generate conserved curr.ents of the model. The results and main 
conclusions are presented in the last section. In an appendix we show 
how the axial WTI is satisfied within the nonlocal four-quark model. 

2 Pion distribution amplitude at low energy scale 

The axial projection of the pion light-cone DA <f'A(x) defines the lead­
ing asymptotic behaviour of the pion form factor. It parameterizes 
the structure of the matrix element 

< OIJ;(z, -z)l1r+(p) >= ipµFrr /41 
dxei(2

x-l)p·z <f'A(x), (1) 

of the bilocal operator 

J;(z, -z) = d(z)"/µ 15P exp (i f~z Aµ(z)dzµ) u(-z), (2) 

where the light-cone limit is considered, zµ = .-\.nµ, nµ is the light-like 
vector, n2 = 0, normalized by p · n = 1, F" = 130Me V is the weak pion 
decay constant and the leading-twist pion light-cone DA is normalized 
by 

fo1 
dxcpA(x) = 1. (3) 

The path-ordered Schwinger phase factor is required for gauge invari­
ance and the integration is performed along the light-like direction z. 
This factor will be neglected in the following, since the possible contri­
bution of :1 classical field (instanton) produces higher-twist corrections 
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to the DA and that of a quantum field gives the corrections in small 
instanton density parameter. 

The bilocal current (2) is defined in terms of current quarks and 
the effective low energy model, which we are going to use, is described 
in terms of constituent quarks U and D. Thus, to derive the matrix 
element (1) we consider the vertex (0 IJ;(z, -z)I U(k)D(k)) which be­
comes after the extraction of the pion pole 

(o IJJ(z, -z)I U(k)D(p - k)) = 

(o IJJ(z, -z)I 7r+(p)) 2 1 2r~q (k,p)' 
m1r - p 

(4) 

where 
r~q (k,p) = (1r+(P)IU(k)D(p- k)). 

Then, expressing the matrix element 

\ 0 I J J ( z, - z) I U ( k) D (p - k)) 

through a loop integral, taking into account the constituent quark 
rescattering, selecting the pion pole, the expression for the DA is re­
duced to1 

pµ F1r'PA(x) 
d4k 

2Ncj 4 _6(x-k·n) 
(21r) z 

tr{f~q (k,p) S(k)Arµa(k,p)S(k - p)}, (5) 

where x is the fraction of the pion momentum, p, carried by a quark. 
The 6- function in (5) accumulates information about all the moments 
of the DA and is related to them by the Mellin transform. 

In the above expression S(k), Arµa(k,p) and r~q (k,p) are the 
dressed quark propagator, quark-axial current and quark-pion ver­
tices, respectively. It is the main subject of the rest of this letter to 
specify these functions. To this goal we shell use the covariant effec­
tive low-energy model with separable nonlocal four-quark interaction. 

1This expression generalizes one given previously in (14] (and also in (15]). In these works the 
local axial current vertex, 1µ 15 , was used instead of the dressed one, fµ(k, q). As it will be clear 
this approximation is inconsistent with the axial WTI. 
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l\foreover. the actual calculations will be clone within a model with in­
tnquark interaction induced by instanton exchange. The advantages 
of tlw instant.on model is that die form of the nonlocal interaction 
is given by quark zero mocks and the parameters of the model are 
directly relat<-d to th<' fundamC'ntal low-energy constants. One can 
verify that the numerical clepend<'nC<' of the results on the pion and 
current quark masses is negligible' and can be ignored within the fol­
lowing consickrations: HZ1r = 0. mcu,·r = 0. However, the interplay of 
tlw effC'ctive quark mass. Afq, and the scale of the nonlocality of the 
vacuum fic·lcl, .\.~. has an important C'ffect on the form of the DA. 

3 Gauged nonlqcal four-fermion model and con­
served currents 

1. Let us considn the nonlocal chirally invariant action giv<'n by 

S =So+ S4q, 

with 

S4q 

So= f rt1:rdy6 (:i: - y) Q(.r,X)i8_,1Q(X,y). 

1 4 

9G1 j d4X j IT d'1:r" l{1(:r1,:r2,:r3,:r4) 
~ 11=! 

{ L [Qu(X - .r1,X)f;QL(X,X + :r:1)] · 
l ; 
· [QR(X - :i:2,X)f;QL(X,X + :i:,1)] +(RB L)}, 

where the matrix combinations, ri c~ r ;. ar<' 

(G) 

(i) 

(8) 

1 ® 1 - Ta 0 Ta, 
2 

(
2
; _ l) (<J/lv ® <J/Lv - T"<J1w G1 Ta<Jp 11), (9) 

T" arc the Pauli matrices for the flavor space, Ne = 3 is the mimber 
1 ± /5 

of colors, and Qu(L)(:i:, y) = ~Q(.1:, y) ar<' the gauged quark fields 

with clPfinite chirality. The form of th<' action is motivat<'d by the 
instanton vacuum model and, in the local limit, it rc•ducrs into the 
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t'Hooft vertex. In the following we neglect the terms induced by ten­
sor interaction in Eq. (9) since they do not contribute to the scalar 
channels. The action (6) effectively describes the interaction between 
quarks induced by instanton exchange and is a nonlocal generaliza­
tion of the Nambu-Jona-Lasinio (NJL) model. The nonlocal kernel 
K1(x1,x2,x3,x4) is chosen in a separable approximation 

K1(x1, x2, X3, X4) = f(xi)f(x2)f(x3)f(x,i), (10) 

where the function f ( x) is related to a profile function of the quark 
zero mode in the instanton field ( see below). 

In order to make the nonlocal action (6)-(8) gauge invariant with re­
spect to external fields, the quarks are coupled by path-ordered phase 
factors: 

{ 
y Ta} Q(x,y) = P exp -i J, dzll A~(z)- q(y), 

X 2 
A;(z) = Vlla(z) + A;(z),5. 

We use a formalism which is based on the path-independent definition 
of the derivative of the line path integral [21] 

/ [Y dzv Av(z) = All(y). 
uyll fx 

(11) 

It means that the terms induced by non-minimal couplings are ig­
nored. This formalism has been used in [18] (see also [22, 23]) for 
gauging nonlocal interactions. The incorporation of a gauge - invari­
ant interaction with gauge fields is very relevant in order to treat 
correctly the hadron characteristics probed by external sources such 
as hadron form factors [19] and parton distribution functions [11]. 

2. The conserved currents are given by the derivatives of the action 
with respect to the external fields at zero. In the presence of nonlocal 
interaction the currents consist of local and nonlocal terms. For our 
purpose, it is enough to regard the vertice which involves one external 
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isovector axial-vector current. It is given by2 

Arti (/,:,, k2, k3, k4, q) = ,P,5Ta /2 + G1 J(J,:1)f(k2)f(k3)f(k4) 
I JI 
LL [(f7}13 (Oio )24].i H'j (k1, k2, k3, k4, q), (12) 
j=l i 

where k; are the quark in ( out )-going momenta and q is the momen­
tum flow through the current. The usual local piece of the vertex is 
obtained by gauging the kinetic term (7), which is equivalent to the 
application of a covariant derivative, iDy = i8y + V(y) + A(y),5. 

The nonlocal four-quark part of the current is generated from the 
interaction term (8). In order to expand the path-ordered exponentials 
entering the interaction, \ve use techniques described in [18] (see also 
[24]). This method consists first in to obtain the Fourier transform and 
make the Taylor expansion of the kernel K1(x1,x2,x3,x4); after, it is 
necessary to convert the powers of momenta into derivatives acting on 
the path-ordered exponentials and quark fields, to make the inverse 
Fourier transform, and then to resume. 

There are two types of nonlocal vertices, generated from (8), which 
contribute to the isovector axial current: type-I and type-III. The 

type-I is given by 

Hf (k1, k2, k3, k4, q) = Fil (k1 + q, k1) + Fil (k3 - q, k3), (13) 

with the corresponding matrix combinations, 

[(f?)13 (Oio )24e, 

Eabc( Tc® i,'5Tb), 

and the type-III is given by 

-Eabc(i,sTb ® Tc), 

Hfu (k1, k2, k3, k4, q) = Fil (k2 + q, k2) + Fil (k3 - q, k3) 

-Fil (k1 + q, k1) - Fil (k4 - q, k4) , 

(14) 

(15) 

2Here we are following spin-isospin classification of currents given in [19]. The difference of our 
definitions and of that work is in the definition of the path integral. This difference is displayed in 
the form of (momentum) space non-local form factors Fµ(k', k). Still the longitudinal components 
of the currents are the same in both approaches as it should be. 
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with the matrix terms 

(i,'5Ta@ 1), -(i,-5 ® Ta). ( 16) 

In the above expressions the nonlocal vertex function, Fl' (k ± q, k), 
is defined as 

F'' (k ± q, k) = (2k ± qt [f (k ± q) I { (k) - 1]2 
(k ± q) - k2 

and we use the same notation for the function f and its Fourier trans­
form.The energy-momentum conservation law is implicitly given by 
the factor (27r)4 c5(k1 + k2 + q - k3 - k4). 

3. The vertices given in the previous subsection are bare ones. Now 
one needs to "dress" the model taking into account the rescattering 
processes. The first step is to construct the dressed quark propagator 
by means of the Schwinger-Dyson equation. \Ve treat it in the ladder 
approximation, which is equivalent to working at leading order in the 
1 / Ne expansion. In the chiral limit, this equation is given by 

_ . 2 j d4 k tr [k + 1\11 ( k)] 2 • -
M(p) - z2NcGif (p) (27r) 4 k2 - lvf2(k) f (k), (11) 

where a momentum-dependent quark mass, l\ll(p) = lvfgCJ(p), (Q(O) = 
1), is defined by the dressed quark propagator: 

S-i/(p) = ft- MgQ(p). ( 18) 

The solution of the eq. (17) can be written simply as J\1(p) = lvlqf2 (p). 
From the other side, the momentum dependence of the nonperturba­
tive part of the quark propagator in the non-perturbative vacuum, 
Q(p), describes the nonlocal properties of the quark condensate, given 
by 

Q(p) 

Q(x) 

2 j d4x 2 
p NQ (

2
7r) 4 exp(-ip • x)Q(x ), 

(: q(0)E9 (0, x)q(x) :)/(: ij(0)q(0) :), 

(19) 

where the Schwinger factor, Eg(0, X) = p exp (i Io A,,(z)dz1'), in terms 
of the vacuum gluon field Aµ(z), guarantees the gauge invariance and 
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XQ giws th<' normalization. Hence. through tlw solution of the gap 
equation ( 17). the function f (p) is related to the nonperturbative 
scalar propagator ( 19) 

f(p) = JQ(p). (20) 

Now we spPcify thP QCD vacuum model as given by the instant.on in­
duced interaction. In this cas<'. the sc,ilar part of th<' quark propagator 
is:l 

. _ 8p; hrx:• ,. ·2 jcx:, cos [ j ( arctan( ~) - arctan( 71 ))] 
Q1(.1) - d11 dt [R2 .2]3/2[R2 ( I 1)2]'l/2 . 7f o -oo + t + t + .r , 

(21) 
where R'2 = p;+r'2, and cos[ ... ] factor. that comes from the Schwinger 
factor, dfectiwly sums an infinite s<'t of quark-inst.anton int.f'raction 
terms. ThP normalization coefficient. in eq. (19) is NQJ = 27r'2p-;2• To 
obtain the above equation the explicit expressions for the instant.on 
field and quark zero mode is used [20. 10]. The equation (17), obtainPd 
in the chiral limit, determirws the parameter G1 as Gr= 11I}/(1Yrnr), 
where n" is the effective instant.on density. and coincides with the 
result [16]. 

Tlw pion mass4 and quark-pion vertex are obtained using the Bet.he­
Salpet.er equation for the quark-ant.iquark scattering amplitude. The 
pion state is manifested as a pok in the amplitude and, in the ladder 
approximation with a separablP kernel, the quark-pion vertex nc•ar the 
pole is given by 

r;I/ (l.:,p) = g1rqf (p - I.:) f (k) i,;iT", (22) 

where the quark-pion coupling is defined by the compositeness condi­
tion 

_1 _ d.lpp (p) I 
2 - d· 2 ' g1rq p p2=m;; 

(23) 

:iTll(' nonlocal condrnsal.<' Q(i:) and form factor J(k) is naturally d<'fill<'d in the E11clickan 
region, wh<'r<' they d<'cr<'a.s<' rapidly. All loop integrals. like' that of ( J 7), ar<' pvalual<'d in Euclidean 
spac<' (k 2 ➔ -kf1,d'1k ➔ id1kE), Physical results are then obtain<'d by analytically continuing 
back to Minkowski spac<'. 

1 111 the chiral limit., that, W<' USC' in the' work, th!' pion mass is z<'ro in arcordanc<' with Coldstone 
thcor<'m and at. linit,· curr<·nt. quark masses it is ,kducPd from n<'ll-l\lann-Oakcs-lknncr rdation. 
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and 

d4 k , 
]pp (p) = i2Nc j -( )4 f 2(1.:+)f 2(L)tr[i,5SF(k_)i"f.sSr(k+)l, (24) 

21T 

is the pion field polarization operator. In ( 24), the clrPssed quark 
propagator is used and a notation I.:~ = k1' ± p1' /2 is introduced. 
Explicitly, the quark-pion coupling is given by [16] 

( 
1 )

2 
Ne d4k 2 [J2(k)-21.:2 f(k)f'(J.·)+4k 1 (f'(k)) 2

] 
- =-2 f2-f(k) 2 , 
91rqq 41T 1TZ (k 2 -l\JJ(k)) 

(25) 
where J'(k) = fJJ(k)/fJk 2

• 

4. The nonlocal four-quark vertices r 4q induce the two-quark dressed 
vertices f 2q if one quark line closed to a loop. The longitudinal part of 
the dressed two-quark axial-vector vertex resulted from (12) is given 
by[19] 

Ta q Ta . 

Ar~;(k, q) = "/152 - 15 q~ 2 {[J\!l (k + q) + 1\1 (k)] - (26) 

J4f M (lz) } 
-i4NcN1Gd (k + q) f (k) j (

2
rr) 4 l2 _ M ([2/ (l) [J (l - q) + f (l + q)] , 

where, to obtain the first term inside the curly-brackets, the gap equa­
tion (17) is used. This vertex is bare one and in particular it is free 
of singularities. To obtain the full axial-vector vertex we need to take 
into account the transition of the current into the constituent quarks 
through their rescattering in the channel with pion quantum numbers. 
In the Appendix we check explicitly that the full axial-vector current 
is given by 

A r1w ( k ) - [ /l 1\1 ( k + q) + M ( k) µ] Ta 
full , q - 1 - q2 q 152 • (27) 

It has physical singularity corresponding to pion and evidently satisfies 
the axial \,VTI: 

qµAr µ(k, q) = s-;; 1(k + q),5 + 15s-;;1(k). 
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The \VTI and the requirement that the vertices contain no unphysical 
singularities, uniquely define the longitudinal part of the vector and 
axial-vector vertices. The transverse part is model dependent and, in 
particular, within the present approach, depends on the path integral 
definition. 

4 Results and conclusions 

The pion DA is computed from (5) by using dressed quark propaga­
tor (18), quark-pion vertex (22) and quark-axial-vector current vertex 
(26). The momentum dependence of the dressed quantities is de­
fined by the nonlocality of the quark condensate (19), which in the 
present approach is specified by the instanton model (21). The set 
of parameters that we use in the actual calculations is given by [11 ]: 
Pc= l.7Gev-1, Nlq = 230 MeV, nc = 0.7 fm-4 . They are consistent 
with the low-energy observables as discussed in the introduction. In 
the calculation of integral in (5) we use the Laplace transform tech­
nique described in [11]. In the present work we do not use the constant 
mass approximation. 

The graph of <p A ( x) is presented in Fig. 1 in solid line, where we 
can observe that its form is close to the asymptotic DA <p~sympt (x) = 
6xx. The main contribution comes from the local part of vertex ( dash­
dotted line) and the contribution of nonlocal part ( dashed line) is flat. 
Note that the flat form of the nonlocal contribution results as a sum 
of different nonlocal terms that have more complicated form. 

The pion DA that we found is defined at low energy scale µo ~ 
p-; 1, where the application of the instanton model is expected to be 
justified. It serves as initial data for the QCD evolution to higher 
momentum transfer scales Q2• To obtain this relation, it is convenient 
to expand the DA over Gegenbauer polynomials, C~l2(x), that are the 
eigenfunctions of the kernel of the QCD evolution equations: 

<?A(x,µp) = <p~symp\x) [1 + n=E, ... Bn(µo) (::~::n Jn c~l2(2x -1)], 
(28) 
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where "In are the anomalous dimensions calculated in the leading or­
der, in coupling constant a 8 (µ); and Bn(Po) arc the coefficients of the 
Gegenbauer polynomial expansion. The model DA is well reproduced 
by the above expansion, with only the first few nonzero coefficients: 

B2(µ0) = 0.069, B4(po) = -0.061, 

B5(po) = -0.017, B112s(110) = 0. (29) 

The distribution obtained is extrapolated to higher experimentally 
accessible momentum scales using perturbative QCD, such that the 
comparison with experimental data can be made. \Ve choose the QCD 
scale parameter Afj5 = 250 MeV. In Fig. 2 we show the pion DA 
evolved to the scale 1 and 10 GeV2 in comparison with the initial 
distribution at the scale JL6 = A~ = 0.5 Ge V2

. 

Recently, new data on the pion transition form factor at rather high 
Q2, becomes available [6]. The perturbative QCD predicts the high 
Q2 behaviour of form factor as [3] 

( 
2) J Frr 

Frr,, Q = ./2, Q2 , (30) 

with the constant J being defined in terms of the pion DA 

211 dx 
J = - -<pA(x). 

3 0 X 

At asymptotically high Q2 the DA evolves to <p~symp\:c) and Jasympt = 
2. At highest presently available momenta, Q2 ~ 10 Ge V2, this predic­
tion is reduced by the lowest order QCD radiative corrections [25] to 
Jasympt(l0 GeV2) = 1.6 and fits CLEO data well. Our predictions for 
uncorrected J is very stable with Q2 evolution: pnodel (PB) = 1.98 and 
pnodel (10GeV2

) = 2.01 and thus indistinguishable from perturbativc 
QCD predictions. 

In summary, we present here some theoretical predictions for the 
pion distribution amplitude. The non-perturbative formalism is based 
on the instanton model of the QCD vacuum, expressing the hadron ob­
servables in terms of fundamental characteristics of the vacuum state. 
The parameters of the model arc the effective instant.on size Pc and 
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the quark-mass Alq. The first one is given by the average virtuality 
of the vacuum quarks and the second one is related to the pion decay 
constant through the Goldberger-Treiman relation. It is shown that 
the cotTf'ct normalization of the DA is obtained by using the compos­
iteness condition and the strict implementation of PCAC, improving 
some previous calculations given in [_14] and [15]. 

Our calculations are restricted by the instant.on vacuum model. In 
the extemkcl nonlocal NJL where the other spin-flavor terms in the 
interaction arC' possible the pion DA can get contribution from the 
vertex with wctor insertion. The contribution of this piece to Frr is 
small and estimated as -10%[19]. However, it would be interesting to 
consider its effect on the form of DA. \Ve have also to be aware that 
the nonlocality in this mo<lC'! is not fixC'd by any microscopic principle. 

The extracted pion DA corresponds to a low normalization scale. 
where the effective instant.on approach is justified. \Ve obtain the pion 
DA via standard perturbative evolution to higher momC'ntum valuC's, 
accessible by experiment. A reasonable agreement with the CLEO 
data on transition pion form factor at high monwntum transfrr was 
found. The formalism used to derive the above results constitutes a 
complementary approach to lattice simulations, QCD sum ru!C's and 
to phenomenological fits to experimental data. 

Acknowledgments 
The authors arc grateful to S.B. Gerasimov, N.1. Kochelev, A.E. 

Maxirnov, S.V. Mikhailov, M.I~. Volkov for fruitful discussions of the 
results. One of us (A.E.D.) thanks the colleagues from Instituto dC' 
Fisica Teorica, UNESP, (Sao Paulo) for their hospitality and interest 
in the work. A.E.D. was partially supported by St. - Petersburg CC'U­
ter for fundamental research grant: 97-0-6.2-28. L.T. thanks partial 
support from Conselho Nacional de Desenvolvimento Cientifico e Tec­
nologico do Brasil (CNPq) and, in particular, to the "Fundac;;-io de 
Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)" to provick 
the essential support for this collaboration. 

13 



Appendix 

For completeness, we present an explicit derivation of the full axial­
vector vertex and demonstration of the axial \VTI. After allowing 
the constituent quark rescattering in the channel with pion quantum 
numbers, the full vertex becomes: 

Arµa (k ) _A [/LG('· ) A r''a ('· ) full ,p - n,p + reseat h,JJ , (31) 

where Ar,w (k,p) is the bare vertex given in eq. (26) and 

µ G l 
Arµa (k ) - p Pv r ( ) I ra (k ) 

reseat , P - -2 · PA P l G J (. ) 2 rrq ·' P ' 
P - I• PP P 9rrq 

(32) 

with r~q (k,p), Jpp (p) defined by (22), (24), correspondingly, and 

/l . J d4
k 1 Jp.,4 (p) = z2Nc --4 ! (k) f (k) 

(2r.) 

tr {11
rµa (k,p) [k + j\if (k:)r

1 
i,,5 [ft+ iVI (k') r

1
}, (33) , 

with k' = k + p. Due to the gap equation (17), the vertex (32) 
contains a pole at p2 = m;. Comparing the residues at the poles 
in (27) and ( 4) at z = 0 one gets the expression for the pion decay 
constant. The integral in (33) is reduced to the integral defining g;/ 
in (23), on pion mass surface, and the eq. (33) can be written as 
J~A (p) = 2i Ms.,pµ. From the other side, this matrix element defines 

9~q 

the decay constant J~ A (p) = 2FrriPµ. Thus, the pion decay constant 
Frr is reproduced as given by the Goldberger-Treiman relation [19] 
Frr = '12,j\ifq/ 9rrq· In similar way if one inserts in the integral of (33) 
the factor exp[-i (p- 2k) · z] projecting the quark with momentum 
k along light-like direction zone derives the eq. (5). 

The full vertex can be rewritten in the form explicitly satisfying 
the WTI. The first two terms in the r.h.s. of eq. (26) clearly satisfies 
the WTI. In order to compensate the third term of such equation, the 
rescattering term Ar~;scat (k,p), by using eq. (26), becomes 

_pµ G1NcNJ J(k')J(k) 
-z p2 1 - G1Jpp(p) 
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[ 
d4 l M (l2) 

GJipp(p) j (2r.)4/2 - !IJ2(f2/(l) [J(l + p) + J(l - p)]-

-j d4! tr { [fJ - j\if (l2) - M (l'2)] [P + M (l'2)] , 5 [f + j\if (l2)] , 5} 
(2r.)4 (['2 - Jv/2 (['2))([2 - 1112 (l2)) 

-f (l')J(l)] (34) 

where l' = l + p. By cancelling one of the factors l2 - J..12 (l2) in the 
denominator of the integral with the term from the Dirac trace in the 
numerator and properly shifting the integration variables, the first 
term inside the square brackets of (32) may be rewritten in the same 
form as the second. This demonstrates the required cancellation and 
the full vertex is given by (~7). 
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Figure 1: The axial projection of the pion distribution amplitude (solid line) at the 
low energy scale µ~ = 0.5 GeV2

• The contribution of the local part of vertex is 
shown by dash- dotted line and the contribution of nonlocal part by dashed line. 
The asymptotic distribution amplitude is shown by dotted line. 
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Figure 2: The axial projection of the pion distribution amplitude (solid line) at 
the low energy scaleµ~ = 0.5 GeV2 and its evolution to higher momentum trans­
fers squared: Q2 = 1 GeV2 (dashed line), Q2 = 10 GeV2 (dot-dashed line). The 
asymptotic distribution amplitude is shown by dotted line. 
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