


1. Introduction

The Hamiltonian mechanics (HM) is in the ground of mathematical de-
scription of the physical theories {1]. But HM is in a sense blind, e.g., it does
not make difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) and integrable Hamiltonian systems (with
maximal number of the integrals of motion).

By our proposal [2] Nambu’s mechanics (NM) [3, 4] is proper generalization
of the HM, which makes difference between dynamical systems with different
numbers of integrals of motion explicit.

In this paper* we investigate the integrals of motion and correspond-
ing structures which are an important step in the general program [2] of the
Nambu-Poisson formulation of the theory of the dynamical systems. In Sec.2 of
this paper we consider the Hamiltonian extension [5] of the general dynamical
system (1). In Sec.3 we consider the Lagrangian and Hamiltonian dynamics
of the geodesic motion of the point particles and construct polynomial in the
momentum integrals of motion using Killing-tensor structures. In Sec.4 we
introduce Modified Bochner- Killing-Yano structures which defines the inte-
grals of motion of the Hamiltonian extension of the general dynamical systems.
In Sec.5 we present our conclusions.

2. Hamiltonization of the general dynamical systems
Let us consider a general dynamical system described by the following
system of the ordinary differential equations [6]

:in=fn($)7 1Sn§N7 (1)

where some components of the state vector x may be Grassmann valued [7],
others take value from some number fields, real, complex or p-adic [8] and z,
stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, 1 < n < 2M, and
O0H,
f"(.’E) = Enmb*;“', 1 S n,m S 2M, (2)

the system (1) is Hamiltonian one and can be put in the form
:tn = {.’E", HO}O; (3)
where the Poisson bracket is defined as
« -
0A OB a d
Enma—zna = Ab—‘z—ﬂ'E,‘mEB, (4)

* The results of this paper were presented on the Workshop ”Supersymmetry and
Quantum Symmetries”, Dubna, 27-31 July, 1999.
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and (the Einstein’s) summation rule under repeated indices has been used
(throughout this work). ‘ ‘
Let us consider the following Lagrangian

L= (20— fu(2))9n ()
and the corresponding equations of hotion
En = fng?),
Y = _'a—zr:"’/’m‘ (6)

The system (6) extends the general system (1) by linear equation for the vari-
ables 1. The extended system can be put in the Hamiltonian form [9, 5]

i:n = {-'L‘na Hl}la

¥n = {¢n, H1 }1, (7)
where first level (order) Hamiltpnian is
x Hy = fu(z)in ‘ (8)
and (first level) bracket is defined as
53 53

{4, B}, = A( )B. )
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Note that when the Grassmann grading, [7] of the conjugated variables x,, and

Vn

{zn, ¥} = Gum (10)
 are different, the bracket (9) is known as Buttin’s bracket [10].
3. Geodesic motion of the point particles and integrals of motion

Geodesic motion of the particles maybe described by the following action
functional

$ = [ Lill)ds, (11)

where
[2]” = gapds® (12)

and g, is metric tensor. The corresponding Euler-Lagrange cquation

gives the extremal trajectories of the variation of the action (11)
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58 / ds(5r = gz )Ia” + (562 (14)

with fixed ends, §z%(1) = §z%(2) = 0, and have the form

i+ Ig2bac =0, (15)
where
dz®
r® = 16
=0 (16
is the proper time derivative,
ds? = Gapdz®dz® (17)

gives the geodesic interval and
Fgc = gad(gdb,c + Gdep — gbc,d) (18)

is the Chistoffel’s symbols.

Usually considered forms of the Lagrangian are L = [2] or 3|z|2 The first
one gives the reparametrization invariant action, the second one is easy for
Hamiltonian formulation [11]. In the following we restrict ourselves by the last
form of the Lagrangian.

Corresponding Hamiltonian

H=pz°-L (19)
is 1
H = -9"p.p, (20)
where the momentum is
Pa = az"’ = GabT A

and g* is the inverse metric tensor,
9*°ge = &. (22)
The Hamilton’s equations of motion are
i = {2° H}o = ¢°p,

1agbc
D, = = —_— 2
Po = {pa, H}o 2 9ze PbPe, (23)



where the Poisson bracket is

0A0B O0AOB - - - o
—_— = a — ) a 2
61“ 6pa apa a.’l,‘a A(az apa apa al )B ( 4)

— -
=A az,-. Enm 62,-,. B, (25)
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and with the unifying variables z,
Zn=2" ZpyN =Pn, 1 <n <N (26)

the Hamilton’s equations of motion (23) takes the form (1).
Integrals of motion, H(z, &), fulfil the following equation

: 0 d
i = (3° .
(&g T £ aia)f;
= (1'67 - Fgcibﬂ—ia- JH /
=1"V,H =p,V*H =0, (27)
where
d a
T —.raV = p.V ,6 |
_ b e Y 9
Va =5 =TIz 3 (28)
For the linear in £ integrals
Hy = K,(z)i* = K°p, ’ (29)
we have
. K,
iy = 8V, H, = Pegep _ re,gost
dzq
=(K,p— K I‘Z,,)i
= abx .’L' _(Kab+1{ba)z
= Kp)2* = 0 (30)

So, from the expression (30), we see one-to-one correspondence between the
expression of the first order integrals of the motion (29) and the nontrivial
solutions of the following equation for the so-called Killing vector K,

Ka) = 0. 31
For quadratic in £ integrals
Hy = Ky(z)3°4°, (32)
"

we have

Hz = (I\"ab c I{de‘ I\adI‘ ).’L‘a b ¢
= I\ab c:'v'a'-’l:b:':C _(Aabc + I{bc .o+ K. b)xa s
= Iﬂ(ab;c)l‘ i = 0 (33)

So, we have one-to-one correspondence between the existence of the second
order integrals of motion (32) and the nontrivial solutions of the following
equation for the Killing tensor K,

K(ab;e) = 0. | (34)
Higher order Killing tensors K, q,..0, fulfil the equlation
Koy = 0 (35)
and give the following integrals of motion
H, = K, aq..0, (€)1 8.8 = K% (£) D4, Pay---Pan- (36)
In fact,

Hy = 8°VoHy, = Kooy, ania)i™ 8.5
= pVOH, = Kz-enitlp o pepa = 0. (37)

Note that, there is always the second 6rder Killing tensor
Kap = gas . (38)
and the corresponding integral of motion, Hamiltonian, H,,
2Hy = gupi®2®. o (39)

4. Modified Bochner-Killing-Yano (MBKY) structures
* Now we return to our extended system (6) and formulate conditions for the
integrals of motion H(z,)

H = Ho(z) + Hy + ...+ Hp, (40) -
where ’
Hy = Aty ko ()0 Py ks 1 <Sn <N (41)
and we are assuming Grassmann valued v,. For integrals (40) we have

H= {ZH,.,H,} = Z{HmHl} = ZH =0. (42)

n=0



In particular for Hamiltonian systems (2), zeroth, Hy and first level H; (3)
Hamiltonians are integrals of motion. Now we see, that each term in the sum
(40) must be conserved separately.

Forn =10 .

Ho = Hoxfr =0, (43)
which reduce to the condition (27), in the case of the geodesic motion of
the particle (23) and define corresponding modifications of the polynomial
integrals of motion (36).

For 1 < n < N we have

Ha = ArghaoknPha Ok - Db + Ak by o Wby Py oo Py + oo+ Apta bk Dy - Pty
= (Akikyokn i S5 — Akkyoon S b — Akybeden frp =
v = Aky bk S ) Ok Yk Pk (44)

and there is one-to-one correspondence between the existence of the integrals
(41) and the existence of the nontrivial solutions of the following equations

Akykaokn b Sk = Akyooin fra b — Akikokn Fip b=

o = Aky sk frn e = 0. (45)
For n =1 the system (45) gives
Ak fe — Apfr =0 (46)

and this equation has at list one solution, Ax = fi.

The system (45) defines a Generalization of the Bochner-Killing-Yano struc-
tures of the geodesic motion of the point particle, for the case of the general
(1) (and extended (6)) dynamical systems.

The structures defined by the system (45) we will call the Modified Bochuer-
Killing-Yano structures or MBKY structures for short.

5. Conclusions

The Modified Bochner-Killing-Yano structures (equations) (45) are natural
generalization of the Killing(-Yano) structures of the geodesic dynamics of the
relativistic (spinning) particles, [12] and we hope give an useful tool of the
investigation of any dynamical system (1). Some applications of this formalisimn
see in [17].

The method of Hamiltonization of this paper is applicable also to the in-
finite dimensional systems (partial differential equations). As an example, let
us consider [15] many-field Korteveg-de Vries (KdV) equations [16]

‘/ti = V::zr + a;kvj‘/_z‘k‘ . . (47)
Corresponding Lagrangian is
L= 1/)1'(‘/!1' - V;:zz: - a;kvjv;:)v (48)

6

momentum is

oL
P= v = ¥i, (49)
Hamiltonian is
H = i(Vier + a3 VV), (50)

the extended system of the equation of motion is
‘/ti = ‘/J:i.rz + a;k Vj"{rkv
’(/)it = 1/’:'1‘1‘1‘ + a:‘cjv']d’k.ry (’31)
the (fundamental bracket) is
{Vi(t.2),%5(t,9)} = 5id(x —y),
«

ABY=[d g i s : .
{ } /xA((SV'(t,.’IJ)(S’(/),(t,T) 51[)1'(t,;l‘)5V’A(t,;1r))B'k (02)

Tl.lt‘ work on the applications of tlis formalism for several dynamical svs-
tems is in progress [17). )
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HHTerpaisl ABUKEeHHS H MOJH(HLHUPOBaHHbIE CTPYKTYPHI
Boxuepa-KunuHra—51Ho Uit IHHAMUYECKHX CHCTEM

g mo6oH AMHAMHYECKOH CHCTEMBI ¢ KOHEYHBIM YHCIIOM CTENEHEH CBOOOIbI
MBI OflpefeideM MOAHGHLHPOBaHHYIO CTPYKTYpY Boxnepa—Kunminnra-fHo, koto-
pas aBnﬂeTcaveCTecmeHHoﬁ MogHdHKaluuel COOTBETCTBYIOLIECH CTPYKTYpBI IS
reone3H4ecKOd TUHAMHKH PEeIATHBUCTCKOH 4YacTHIbl CO CIIMHOM.

Pabota BeinonHeHa B JlabopaTopuu BEIMHCIUTENBHOH TEXHHKH H aBTOMaTH3a-
uun OMSIN.

CoobuieHue O6bENHHEHHOTO HHCTHTYTA ANepHbIX HccnepoBauuil, lybua, 1999

Baleanu D., Makhaldiani N. E2-99-338
The Integrals of Motion and Modified
Bochner-Killing-Yano Structures of the Dynamical Systems

_ For any finite dimensional dynamical system we define a modified Bochner—
Killing—Yano structures, which are a natural modification of the corresponding
structures of the geodesic motion of the relativistic spinning particles.
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