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1. Introduction 
The Hamiltonian mechanics (HM) is in the ground of mathematical de

scription of the physical theories [1]. But HM is in a sense blind, e.g., it does 
not make difference between two opposites: the ergodic Hamiltonian systems 
(with just one integral of motion) and integrable Hamiltonian systems (with 
maximal number of the integrals of motion). 

By our proposal [2] Nambu's mechanics (NM) [3, 4] is proper generalization 
of the HM, which makes difference between dynamical systems with ctifferent 
numbers of integrals of motion explicit. · 

In this paper we investigate the integrals of motion and corresponding al
gebraic structures, which are an important step in the general program [2] of 
the Nambu-Poisson formulation of the theory of the dynamical systems. In 
Sec.2 of this paper, we consider the Hamiltonian extension [5] of the general 
dynamical system (1). In Sec.3 we consider the Lagrangian and Hamiltonian 
dynamics of the geodesic motion of the point particles and construct polyno
mial (in the velocities and/or momentum) integrals of motion using Killing
tensor structures. In Sec.4 we introduce a Modified Bochner- I<illing-Yano 
structures which defines the integrals of motion of the Hamiltonian extension 
of the general dynamical systems. In Sec.5 we define an integrals and corre
sponding algebras for the extended Hamiltonian formulation of the geodesic 
dynamics of the point particles. In Sec.6 we present our conclusions and show 
some perspectives. 

2. Hamiltonization of the general dynamical systems 
Let us consider a general dynamical system described by the following 

system of the ordinary differentia~ equations [6] 

Xn = fn(x), 1 :$ n :$ N, (1) 

or p-adic [8] and :i;n stands for the total derivative with respect to the parameter 
t. 

When the number of the degrees of freedom is even, 1 :::; n, m $ 2M, and 

8Ho 
fn(x) = Cnm-a, 1 $ n,m $ 2M, (2) 

Xm 

the system (1) is Hamiltonian one and can be put in the form 

Xn = {xn, Ilo}o, 

where the Poisson bracket is defined as 
+-- ➔ 

aA aB a a 
{A,B}o=t:nm-a -a =A-a Cnm-a B, 

Xn Xm Xn Xm 

2 
© 06beA"1HeHHblH "1Hcrnryr s:it:tepHblX 1,1ccnet:toBaH1-1H. Ay6Ha, 1999 

(3) 

( 4) 

I 
,ho 

l 
/ 

and (the Einstein's) summation rule under repeated indices has been used 
(throughout this work). 

Let us consider the following Lagrangian 

L = (xn - fn(x))7Pn (5) 

and the corresponding equations of moti<;m 

Xn = fn(x), 
. ofm 

7Pn = --a 7Pm• Xn 
(6) 

The system (6) extends the general system (1) by linear equation for the vari
ables 'ljJ. The extended system can be put in the Hamiltonian form [9, 5] 

Xn = { Xn, H1}i, 
!fan = Nn, H1}i, 

where first level (order) Hamiltonian is 

H1 = fn(x)'ljJn 

and (first level) bracket is defined as 

+- --+ t- ➔ 

_p__ __q_ - __q_ _p__) B. 
{ A, B}i = A( OXn Olpn Olpn OXn 

(7) 

(8) 

(9) 

Note that when the Grassmann grading [7] of the conjugated variables Xn and 

7Pn 

{ Xn, 7Pmh = 0nm (10) 

are different, the bracket (9) is known as Buttin's bracket[lO]. 

3. Geodesic motion of the point particles and integrals of motion 
Geodesic motion of the particles maybe described by the following action 

functional 
2 

s = J L(lxl)ds, (11) 
I 

where 
1±12 = 9abXaXb (12) 

and 9ab is metric tensor. The corresponding Euler-Lagrange equation 

:!.._ fJL _ 8L = O 
dt ( fJxa) 8xa 

(13) 

1 @C>btS~,s~ i;.~~ ti!.;i~nfif 
,•m,<t:r,_io~•"' uc~-.. ---~~ .. n ~ 

. ~ ... ""JU;.J.O, ...... 1""A\;-;.o1,,tr.~C:.Zj I' 
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gives the extremal trajectories of the variation of the action ( 11) 

2 _ J oL d oL a oL a 2 JS - ds( ~ - -d (-;-:- ))ox + ( -;-:-ox )i, uxa s uxa uxa 
1 

with fixed ends, oxa(l) = oxa(2) = 0, and have the form 

xa + r;:c:ixc = 0, 

where dxa 
xa=7_; 

is the proper time derivative, 

ds 2 = 9abdxadxb 

gives the geodesic interval and 

ra 1 ad( ) be = 29 9db,c + 9dc,b - 9bc,d 

is the Chistoffel's symbols. 

(14) 

(15) 

(lG) 

( 17) 

(18) 

Usually considered forms of the Lagrangian are L = lxl or ½lxl2
. The first 

one gives the reparametrization invariant action, the second one is easy for 
Hamiltonian formulation [11]. In the following we restrict ourselves by the last 
form of the Lagrangian 

Corresponding Hamiltonian 

IS 

where the momentum is 

£ 1 . a ·b = 29abX X · 

H = PaXa - L 

1 ab 
H = 2g PaPb, 

oL ·b 
Pa = {)i;a = 9abX 

and gab is the inverse metric tensor, 

gac 9cb = O/;. 
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(19) 

(20) 

(21) 

(22) 

(23) 

I 
""' 
\ 
I 
..t-" 
f 

The Hamilton's equations of motion are 

· a { a H} ab X = X, O = 9 Ph 
. 1 ale 
Pa= {Pa,H}o = - 2 oxaPbPc, 

where the Poisson bracket is 

oA aB oA aB ,._, ➔ ,._, ➔ 
{ A, B}o = -;:;-;;-~ - ~-;:;-;;- = A(oxa Opa - Opa Ox• )B 

UX UPa UPa uX 
f- ➔ 

= A Ozn €nm Ozm B, 

and with the unifying variables Zn 

Zn= 3:n, Zn+N = Pn, 1 :=:; n :=:; N 

the Hamilton's equations of motion (24) take the form (1). 
Integrals of motion H fulfil the following equations 

dH( ') ('a 8 ··a a )H -d x,x = x -
8 

+ x -8 . 
s '!ja xa 

-(•a __ fa ·b·c_!!___)H 
- X OXa bcX X OXa 
= xa'vaH = 0, 

d o 1 alc 8 
dsH(x,p) = (gabPb oxa - 2 oxaPbPcap)H, 

= Pb'vb H = 0, 

where 

d . a'7 - Pb'vb -=Xva- ' 
ds a b . e_!!___ 
" - - - f aex !l • b' 
Va - axa ux 1 a be a 

ba O _ _jj_p -. 
'vb= la'va = 9 oxa - 2 axa eaPa 

For the linear in x integrals 

we have 

H1 = I<a(x)xa = Kapa 

H. - ·a'{"7 H - [)J{b ·a ·b K re ·a ·b 
1 - X v a 1 - ~x X - c abx X 

uXa 
= (I<a,b - J{ef~b)xa:i 

K · a • b l (K K ) · a · b = a;bX X = 2 a;b + b;a X X 
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(24) 

(25) 

(2G) 

(27) 

(28) 

(29) 

(30) 



,, ·a•b 0 = 11(a;b)X X = . (31) 

So, from the expression (31 ), we see one-to-one correspondence between the 
expression of the first order integrals of the motion (30) and the nontrivial 
solutions of the following equation for the so-called Killing vector Ka 

J{(a;b) = 0. (32) 

For quadratic in ::i: integrals 

H "()•a•b 2 = 1\ab X X X (33) 

we have 

H. ( ,, ,, rd ,_, rd ) . a • b • C 

2 = 1\ab,c - 11db ac - 11ad be X X X 

}' ·a·b·c l(F I{ V )"a·b·c = \ab;cX X X = 3 \ab;c + bc;a + lca;b X X X 

T/ •a·b•c 0 = H(ab;c)X XX = . (34) 

So, we have one-to-one correspondence between the existence of the second 
order integrals of motion (33) and the nontrivial solutions of the following 
equation for the tensor I<ab 

J{(ab;c) = 0. (35) 

Now we prove the following: 
Theorem 1. A necessary and sufficient condition that the following poly

nomials 

H _ F ( ) •a1 •a2 •an T.'a1a2.,.an( ) 
n - 1\a1a2 ... an XX X ... X 1\. X Pa,Pa2···Pan (:36) 

are integrals of the geodesic motion, (15, 24) is that the symmetric tensors 
I<a 1a2 ... an, fulfil the equation 

In fact, 

l{(a1a2 ... an;a) = 0. 

H
. _ ·a't, }[ _ r.r ·a1 ·a2 ·an •a_ 0 

n - X Va n - 1\(a1a2---an;a)X X ... X X - ' 

(37) 

't,aH r.r(a1a2---an;a) O (3Q) = Pa V n = 11 Pa1Pa2 ···PanPa = , 0 

which proves the theorem, see [12]. 
The symmetric tensors, which fulfil the equation (37), is known as Killing 

tensors. 
Note that, as the metric tensor is covariantly constant, 9ab;c = 0, there is 

always the second order Killing tensor 

Kab = 9ab (39) 
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and the corresponding integral of motion, Hamiltonian, H0 , 

2Ho = 9ab:i;a:i;b_ 

Let us define an interesting algebra on Killing tensors. 

(40) 

Theprem 2. The following symmetrized product of the I{illing tensors l\·n 
and Km 

J((a1a2 ... an [{an+1an+2··•an+m) _ /1_~a1a2.,.an+m, (41) 

is (reducible) Killing tensor. 
In fact, let us multiply the corresponding integrals of motion 

H H = J{(a1a2 ... an J{an+1an+2··•an+m)p p ... JJ = 
n m a1 a2 an+m 

== I<(a1a2 ... an I<an+l an+2··•an+m)xa 1 j,a2 ... i:(lntm == Hn+m' (-t2) 

which, using the Theorem 1, proves this theorem. 
We have the following bracket algebra of the integrals of motion 

{Hn,Hm}o = Hn+m-1· ( 43) 

This algebra gives another method of the construction of the l{illing tensors. 
As an example let us calculate the bracket for the integrals H 1 = l\·aJJa and 

Hz = J("bPaPb 

{Hi, H2}0 = l{a{pa, l{bc}PbPc + J{bc{l{" ,PbPc}Pa 

( 
T. rab T.'C J 'aC r.rb ,.,be T. ·a) = 1\ 1\ ,a + \ 1\ ,a - 1\ ,a 1\ PbJJc 

= J(abPaPb· p4) 

Let us consider another, tensor, generalization of the scalar integral of 

motion (30) 

Ha1a2.,.am-l == Aa1a2,,.am(:i:);i·a
111

, 

Ha1a2,,.am-l := Aa1a2 .. ,a,n(x)Pam, (-15) 

where the tensors Aa,a2.,.am(x) and Aa,a2---am(.r) are skew-symmetric. \Ve have 

the following: 

Theorem 31 • A necessary and sufficient condition that the tensors (-15) are 
( covariantly) constant (parallel) along any geodesic 1,"( 8) is that the covariant 
derivative of the skew-symmetric tensor Aa,a2 ... am(i,) is also skew-symmetric 

Aa1a2.,.am;am+1 + Aa1a2,,.am+1;am == Q. 

In fact, as xa(s) is geodesic, we have 
D"a 

X ••a + ra • b • c 0 
Ds = X bcx X = , 

Dpa . l ale D;i-b 

Ds = Pa + 2 axa PbPc = 9ab Ds = 0 

and 
1This theorem is slight modification of the corresponding theorem from [13] 
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(46) 

( .J,) 



!}_(A (x):i;am) _ A j;amj;am+I Ds a1a2 ... am - a1a2 ... am;am.+i 

- !(A + A ):i:amj;am+I _ 0 - 2 a1a2 ... am;am+1 .a1a2 .. ,am+1iam - , 

!}_(Aa1a2,-,am(x)p ) = Aa1a2 ... am;am+1p P 
Ds am am a11l+l 

= !(Aa1a2 ... am;am+t + Aa1a2 ... am+1;am) 
1 

= 0 
2 J amPam+I , (-18) 

which proves the theorem. From the tensor integrals ( 45) we can construct the 
second rank Killing tensor. 

Theorem 4. The following (symmetric) product of the tensors An and Bn 
gives a second rank Killing tensors 

Aa1a2 ... an(aBa1a2 .. ,anb) = [(ab_ 

In fact, if we multiply the integrals 

we obtain again integral 

An = Aa1a2, .. an = Aa1a2 ... anaPa, 

Bn = Ba 1a2 ... an = Ba1a2 ... an bPb, 

An Bn = Aa1a2 ... an(a Ba1a2 ... an b)PaPb 

= J{anbmPanPbm = H2, 

and using the Theorem 1, we prove the theorem 4. 

(4D) 

(50) 

(51) 

So, if we have a nontrivial solution of the equations ( 46) , we can construct 
second integral of motion H2 

H2 = J{abPaPb, 

and with original Hamiltonian (21) 

Hi = 2H = gabPaPb, 

(52) 

(53) 

we will have bi-Hamiltonian system. So, we can apply the general method 
of the integration of the bi-Hamiltonian systems [14,· 15, 16]. Also we can 
construct the Nambu-Poisson formulation [2] of this system 

Xn = {xn, Hi, H2} 
fJHi fJH2 

= Wnmk ( X) ~ ~, 
UXm UXk 

(54) 

where the Nambu-Poisson structure tensor Wnmk we identify (16] by compari
sion of the system (54) with the original system (24). 
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Note, that the skew-symmetric tensors, Aa,a2 ... an, which have the prop
erty, that its covariant derivative is also skew-symmetric, were considered by 
Bochner [17] (see [13]) and/but in literature are known as the Killing-Yano 
tensors [18]. 

4. Modified Bochner-Killing-Yano (MBKY) structures 
Now we return to our extended system (6) and formulate conditions for the 

integrals of motion H ( x, ip) 

H = Ho(x) +Hi+ ... + HN, (55) 

where 

Hn = Ak1k2.,.kn(x)1/Jk11Pk2··•1Pkm l::; n::; N, (56) 

we are assuming Grassmann valued 1Pn and the tensor Ak1k2 ... kn is skew-symmetric. 
For integrals (55) we have . 

N N N 

if= n= Hn,Hi} = I:{Hn,Hi} = L Iln = 0. (57) 
n=O n=□ n=O 

Now we see, that each term in the sum (55) must be conserved separately. 
In particular for Hamiltonian systems (2), zeroth, Ho and first level Hi, (8), 
Hamiltonians are integrals of motion. For n = 0 

Ho = Ho,dk = 0, (58) 

which reduce to the condition (28), in the case of the geodesic motion of 
the particle (24) and defines corresponding modifications of the polynomial 
integrals of motion (36). 

For 1 :S n S N we have 

Hn = A,_k1k2 ... k,.1Pk11Pk2•••1PkN + Ak1k2 ... kn'lfak11Pk2•••1PkN + ••· + Ak1k2, .. kn1Pk11Pk2·••'lfakN 

= (Ak1k2.,.kn,dk - Akk2 .. ,knik1,k - ••• - Ak1,,,kn-1dkn,k)1Pk11Pk2 •••1PkN = 0, (59) 

and there is one-to-one correspondence between the existence of the integrals 
(56) and the existence of the nontrivial solutions of the following equations 

D . 
flt Ak1k2.,.kn = Ak1k2 .. ,kn - fk1,kAkk2 .. ,kn - ••• - fkn,kAk1, .. kn-1k 

= Ak1k2.,.kn,kfk - Akk2.,.knfk1,k - ••• - Ak1,,,kn-1kfkn,k = 0. (60) 

For n = l the system (60) gives 

Ak1,dk -Adk1,k = 0 

and this equation has at list one solution, Ak = fk• 
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The system (60) defines a Generalization of the Bochner-Killing-Yano struc
tures (37, 46), of the geodesic motion of the point particle, for the case of the 
general ( 1) ( and extended ( 6)) dynamical systems. 

The structures defined by the system ( 60) we will call the Modified Bochncr-
Killing-Yano structures or MBKY structures for short. 

5. Extended geodesic motion of the point particles and 
Grassmann valued integrals of motion 

Let us take the following Lagrangian 

L ( ·a ab ),/., ( · l ale )ol,a = x - g Pb '-Pa - Pa + 2 axa PbPc '-I' 

( ·a ab ),/., (•i,a 1 Ogab .1,e ) d (•t,a ) = x - g Pb '-Pa + '-I' - 2 axe '-I' Pb Pa + ds 'I' Pa 

= L1 + :S (i.papa)• 

New momentum variables are 

8L1 = <Pa, 
f)i;a 

8L 1 

0Ja = Pa, 

(fundamental) brackets are 

{ xa' <Pb h = ob' 
{i.p\pb}i = o!, 

+-- ➔ t-- ➔ t-- ➔ t-- ➔ 

{A,B}i = A(ax•04>. + 0,f;•Opa - 04>.0x• - Op.O,f;•)B 
t-- ➔ 

= A OZn €nm OZm B. 

The Hamiltonian is 

H 
ab,1., 1 ale .1,a 

1 = g '-l'aPb + 2 axa 'I' PbPe, 

the equations of motion are 

• a ab 
X = g Pb, 
. 1 ale 

Pa = -2 axa PbPe, 
. ale 1 a2le , 

<Pa = - axa Pb<Pc - 2 axaax,PbPe 1P ' 

· a f)gab c ab 
i.p = f)xc Pb1P + g <Pb· 

(62) 

(63) 

(64) 

(65) 

(66) 

Note that the extended system (66) and Hamiltonian (65) can be obtained 
from the system (24) and Hamiltonian (21) by the following simple shift of the 

variables 

xa ⇒ xa + Bi.pa, 
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... 

Pa=} Pa+ 0</Ja, 

where 0- Grassmann parameter, 02 = 0. 
In fact, 

rr 1 ab 1 ab 0( 1 ab / c ab.< ) no = 2,g PaPb =} 2,g PaPb + 2g,c PaP&I/-' + g VaPb 

(67) 

=Ho+ BH1. (68) 

The Lagrangian 1 1 (62) can be obtained by the shift (67) from the following 
first order Lagrangian 

L 1 ab · a = - 2g PaPb + X Pa, (69) 

which is equivalent to the Lagrangian (19). 
In fact, under the shift (67) we have 

L 1 ab · a = - 2g PaPb + X Pa 
1 . 

::::} - 2(g"b + g"\c0i.pc)(Pa + 0</Ja)(Pb + 0¢&) + (x" + 04•")(pa + Oc;,,,) 

=Lo+ OL1. (ill) 

Let us define (extending the zeroth level bracket (25)) the Crassma1m e\·en 
bracket [7] 

''\,,.:_, {x\pb}o = ob, 
{1Pa, <Pb}o = 8b, 

8A 8B 8A 8B 8A oB aA 8B 
{ A, B}o = f);ra 8pa + 84,a [)¢a - [)pa a.r" - 8¢,, 8~·" 

+- ➔ +- ➔ +- ➔ +- ➔ 

= A(ox•Bv. + o,i,0 81>. - ap.a, .• - a;,JJv,0 )13 
t-- ➔ 

= A 0Zn €nm 0Zm B. 

An interesting problem is to construct an even Hamiltonian. 

(il) 

General form H(x, i./;, p, ¢) of the integrals of motion of the extended system 
(66) fulfils the following equation 

. a -o a .rJ 
H = ( ±" oxa + i./;" 04,a + Pa 8pa + ¢a a¢a ) 

= (Pb vb + <Pb v~ + i./;CV 2c)H = 0, (,2) 

where 

a I olc [J b ba _ _ -- -pc-
0

, 
V = g ox" 2 ox" Pa 

o olc 0 b ba __ - --pc-f),1.,' 
VI = g Oi.p" Ox" '-Pa 
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ogab 8 1 iJ2le [) 
v'2c = axe Pb iJipa - 2 iJxciJxaPbPe 8¢,a. (73) 

6. Conclusions and perspectives 
The Modified Bochner-Killing-Yano structures (equations) (60) are natural 

generalization of the Killing(-Yano) structures of the geodesic dynamics of the 
relativistic (spinning) particles [18] and we hope give an useful tool of the 
investigation of any dynamical system (1 ). 

The method of Hamiltonization of this paper is applicable to the infinite di
mensional systems (partial differential equations). The well known (integrable) 
system from the hydrodynamics, the KdV equation, (sec. r>.g .. [i]) 

\I;= VVx + V~xx 

can be put in the Hamiltonian form. Corresponding Lagrangian is 

L = 1/'(Vi - VVx - Vrxx), 

momentum is 

p- 8L 
- !-"lV, = w 

u t '' 

Hamiltonian is 

H = ip(VVx + Vxxx), 

the extended system of the equation of motion is 

½ = VVx + Vxxx, 
'tpt = Vi/Jx + i/Jxxx, 

the ( fundamental bracket) is 

{V(t,x),¢(t,y)} = J(x - y), 
+- ---+ +- ---+ 

J J J J J 
{A,B} = dxA(JV(t,x)J¢(t,x) - Jip(t,x)JV(t,x))B. 

(71) 

(7,5) 

(76) 

(77) 

(78) 

(79) 

Now it is ease to see [20] that for some classical system described by the 
following equation 

i½ = -~V2 + Vxx, (80) 

the companion system is given by the Schrodinger equation 

ii/Jt =-¢xx+ Vip, (m = ~). (81) 

12 

As another example, let us take the important part of the theory of ele
mentary particles, [19] the Dirac's equation for the electron's field 

(--·toµ - m)¢ = 0. (82) 

The usual form [19] of the Lagrangian 

L ={;(--·toµ-. m)i/J, (8:3) 

momentum 

p = 8L _ 
8¢1 = ¢'r° = ij,+' (84) 

and Hamiltonian 

H = ;f;eJV + m )ij, (85) 

corresponds exactly to our method of Hamiltonization. A curious possibility 
is given by the case when the variables ;/; and ¢ have different Grassmann 
grading. 

The work on the applications of the formalism of this paper for several 
dynamical systems is in progress [20]. 
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