


1. Introduction

The Hamiltonian mechanics (HM) is in the ground of mathematical de-
scription of the physical theories [1]. But HM is in a sense blind, e.g., it does
not make difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) and integrable Hamiltonian systems (with
maximal number of the integrals of motion).

By our proposal [2] Nambu’s mechanics (NM) [3, 4] is proper generalization
of the HM, which makes difference between dynamical systems with different
numbers of integrals of motion explicit. ’

In this paper we investigate the integrals of motion and corresponding al-
gebraic structures, which are an important step in the general program [2] of
the Nambu-Poisson formulation of the theory of the dynamical systems. In
Sec.2 of this paper, we consider the Hamiltonian extension [5] of the general
dynamical system (1). In Sec.3 we consider the Lagrangian and Hamiltonian
dynamics of the geodesic motion of the point particles and construct polyno-
mial (in the velocities and/or momentum) integrals of motion using Killing-
tensor structures. In Sec.4 we introduce a Modified Bochner- Killing-Yano
structures which defines the integrals of motion of the Hamiltonjan extension
of the general dynamical systems. In Sec.5 we define an integrals and corre-
sponding algebras for the extended Hamiltonian formulation of the geodesic
dynamics of the point particles. In Sec.6 we present our conclusions and show
some perspectives.

2. Hamiltonization of the general dynamical systems
Let us consider a general dynamical system described by the following
system of the ordinary differential equations [6]

tn=Ju(e) 1S SN, (1)

or p-adic [8] and &, stands for the total derivative with respect to the parameter
t.
When the number of the degrees of freedom is even, 1 < n,m < 2M, and

Fo(®) = Eam g, 1 < mym < 20, (2)

m

the system (1) is Hamiltonian one and can be put in the form
.’i?n = {.’E", 110}0, (3)

where the Poisson bracket is defined as

94 0B 9 B
{A,B}ozsnm’é;;m *AEEM"(—,)-:B, (4)
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and (the Einstein’s) summation rule under repeated indices has been used
(throughout this work).
Let us consider the following Lagrangian

L= (l'n - fn(l'))d)n (5)
and the corresponding equations of motion
Tp = fnng),
I[)n = _Ez_md)m- ‘ (6)

The system (6) extends the general system (1) by linear equation for the vari-
ables ¥. The extended system can be put in the Hamiltonian form {9, 5]

i:n = {IL'", Hl}la
Il)n = {d)naHl}la (7)
where first level (order) Hamiltonian is
Hl = fﬂ(x)wn (8)
and (first level) bracket is defined as
5 5 &
{A, B} = A( )B. (9)

02, 0¢n O, 0n

Note that when the Grassmann grading [7] of the conjugated variables z,, and

¥n
{znad)m}l = Jnm (10)

are different, the bracket (9) is known as Buttin’s bracket[10].

3. Geodesic motion of the point particles and integrals of motion
Geodesic motion of the particles maybe described by the following action
functional

§= [ L(il)ds, (11)

where
2] = gasd®2® (12)
and g, is metric tensor. The corresponding Euler-Lagrange equation
d oL aL
Sy == =0 13
dt(ai“) dze (13)
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gives the extremal trajectories of the variation of the action (11)

2
_ oL d 0L . OL_ .,
Jsgl/ds(aza 75 (57a )%= + (58700, (14)

with fixed ends, §z2(1) = 6z%(2) = 0, and have the form

4Tt =0, (15)
where e
%= Is (16)
is the proper time derivative,
ds? = ggpdz®dz® (17)

gives the geodesic interval and

1
be = Egad(gdb,c + Gdep — Goe,d) (18)
is the Chistoffel’s symbols.

Usually considered forms of the Lagrangian are L = |z| or 2|2[*. The first
one gives the reparametrization invariant action, the second one is easy for
Hamiltonian formulation [11]. In the following we restrict ourselves by the last
form of the Lagrangian

1
L= 59u8°¢" (19)
Corresponding Hamiltonian
H=p,z" - L (20)
: 1 ab 5
= 59" PPty (21)
here th tum i
where the momentum is oL

’ (22)

Pa = 928 = GabT
and g is the inverse metric tensor,

9%ge = 05

s, Ly s f e

The Hamilton’s equations of motion are

#* = {z° H}o = ¢°°ps,

be

. 1%
pa = {pa, H}o = =55 pepe, (24)

where the Poisson bracket is

SAOB AOB « 4  « =
A Bl =222 T TE 2 )
{ ’ }0 dz° 8p,  Opa Jz° A(ax Ora Opa 0z )B (25)
by -+
=A Oz Enm Oz B, ) (26)
and with the unifying variables z,
anaz", ZndeN = Pn, 1 Sn _<_ [\/r (27)

the Hamilton’s equations of motion (24) take the form (1).
Integrals of motion H fulfil the following equations

d 0 0
—H(z, &) = (£° ®
g H@d) = @go+e azca)b;
o (aa_ 2 1azbse
= (z oy | Bae YH
=2V .,H =0,
d w0 10g" d
dSH(z,p) =("m5 3 azapbpcb—};)H_
=pV'H =0, (28)
where
d
— =3V, =V,
ds a 9
_ 9 pbe 9
b__ bavaz ba______g_ -
V=g 9 bz T 29ze " 0pa (29)
For the linear in & integrals
Hy = K,(z)¢° = K°p. (30)

we have

Hy = i°V.H = (;I:b:b“ib — K,I'%,3%%"

= (K, — K.,z

= Kopi®d® = o (Kop + Kiza)3°8"
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= K(gp3*3® = 0. (31)

So, from the expression (31), we see one-to-one correspondence between the
expression of the first order integrals of the motion (30) and the nontrivial
solutions of the following equation for the so-called Killing vector I,

K@) = 0. (32)
For quadratic in & integrals
Hy = Ky(2)3°2b (33)
we have
Hy = (Koo — KT8, — Koo )20 43¢
= Ixrab;c-i‘a‘i'bic = E(I(ab;c + I{bc;u + 1"ca;b)xa$b$c
= K(aps)3°2°2° = 0. (34)

So, we have one-to-one correspondence between the existence of the second
order integrals of motion (33) and the nontrivial solutions of the following
equation for the tensor K .
1((ab;c) = 0 (35)
Now we prove the following:
Theorem 1. A necessary and sufficient condition that the following poly-
nomials

Hn = 1(11.1a2...a.n(:l:)x.a'l'iln"“i‘a'l = Arala2man(z)pa1pa2"-Pun (36)

are integrals of the geodesic motion, (15, 24) is that the symmetric tensors
Kayag...0,, fulfil the equation

I{(alaz...an;a) =0. (37)
In fact,

I_'I - iav I{ = I{(alag an,a)i 1302  20ngd — 0,
= pa VO H, = K(®192-2m%)p, b pa,pa = 0, (38)

which proves the theorem, see [12].

The symmetric tensors, which fulfil the equation (37), is known as Killing
tensors.

Note that, as the metric tensor is covariantly constant, g, = 0, there is
always the second order Killing tensor

Ko = YGab (39)
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and the corresponding integral of motion, Hamiltonian, Ho,
2Ho = gapi®s". (40)
Let us define an interesting algebra on Killing tensors.
Theorem 2. The following symmetrized product of the Killing tensors A™
and K™

1"(a1a2...an I(an+la,.+2...un+m) — 1x'a;a2...a,.+m’ (41)

is (reducible) Killing tensor.
In fact, let us multiply the correspondmg integrals of motion

; wln J7Q a et =

H.H,=K (a1a2 nent1ant2 "+"')Palpa2 Pan+m =
7 - o) 502 0 = >

- I\(axu2...anI‘an+lan+2---”n+m)l Lt "+”' - Hn-f—mv (42)

which, using the Theorem 1, proves this theorem.
We have the following bracket algebra of the integrals of motion

{Hnallm}() = Hn+m—l- (43)
This algebra gives another method of the construction of the Killing tensors.
As an example let us calculate the bracket for the integrals H, = K*p, and
Hy = K®papy
{Hh H2}0 =K* {paa 1‘ }Pch + K bc{l\ ’Pbpc}Pu
= (K®K®,, +K*K®,, — K%, K*)pop.
= Kp,py. (44)
Let us consider another, tensor, generalization of the scalar integral of
motion (30)
Ha|u2...am_1 = Aalag..,am(ﬂf);i‘amv
Hereans = Anean(a)y, (45)
where the tensors A a,..q,, (T) and A®92-om (x) are skew-symmetric. We have

the following:

Theorem 3'. A necessary and sufficient condition that the tensors (43) are
(covariantly) constant (parallel) along any geodesic x°(s) is that the covariant
derivative of the skew-symmetric tensor A q,..a,, () is also skew-symmetric

Aaxaa---am;am“ + Aaxaa-..amu;am =0 (46)
In fact, as z°(s) is geodesic, we have
?; _z+F6j:br =0, .
Dp, 10g™ a -
= Pa e = — =0 4
Da t 55 PP = gab o (47)

and

1This theorem is slight modification of the corresponding theorem from [13]
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D

E—.;(Aa‘az“'“m (‘T)i‘am) = Aalaz...am;amﬂ‘iami‘“"‘“
1

P— Qm W Gmt]
- 2(Aa]a2...am;am+l + Aalag,..am_,,l;am)l' mptmtl — O7

DA (2)pa) = Amamtniy, b

1 . .
= (AT A Parnas = 0, (48)

which proves the theorem. From the tensor integrals (45) we can construct the
second rank Killing tensor.

Theorem 4. The following (symmetric) product of the tensors A™ and B"
gives a second rank Killing tensors

Anir el e = K, (49)
In fact, if we multiply the integrals

An — Aa1a2‘..a" — Aalaz...anapa,
Bn = RB%i%..an Balag..‘anbpby (50)

we obtain again integral

A"B, = Aam2"'a"(aBala2...anb)papb
= K*"p, by, = Hs, (51)

and using the Theorem 1, we prove the theorem 4.

So, if we have a nontrivial solution of the equations (46) , we can construct
second integral of motion H,

Hy = K*p,p,, (52)
and with original Hamiltonian (21)
Hy = 2H = g% p.p, (53)

we will have bi-Hamiltonian system. So, we can apply the general method
of the integration of the bi-Hamiltonian systems (14,715, 16]. Also we can
construct the Nambu-Poisson formulation [2] of this system

-i'n = {I'm Hla H2}
0H, 8H,
Oz, Oz’

where the Nambu-Poisson structure tensor w,,;, we identify [16] by compari-
sion of the system (54) with the original system (24).

(54)

= w'nmk(z)

8
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Note, that the skew-symmetric tensors, A,,a,..q,, which have the prop-
erty, that its covariant derivative is also skew-symmetric, were considered by
Bochner [17] (see [13]) and/but in literature are known as the Killing-Yano

tensors [18].

4. Modified Bochner-Killing-Yano (MBKY) structures
Now we return to our extended system (6) and formulate conditions for the

integrals of motion H(z,)
H=Ho(z)+ H + ...+ Hy, (55)

where

H'n = Aklkg...k"(z)¢kl¢k2---d"k)v, 1 S n S N7 (56)

we are assuming Grassmann valued ,, and the tensor Akiky. k., 18 skew-symmetric.
For integrals (55) we have .

. N N N .
1= {3 Ho I} = {0, ) = 32y =0, 657)
n=0 n=0 n=0

Now we see, that each term in the sum (55) must be conserved separately.
In particular for Hamiltonian systems (2), zeroth, Hy and first level H, (8),
Hamiltonians are integrals of motion. For n = 0

Ho = Houfx =0, (58)

which reduce to the condition (28), in the case of the geodesic motion of
the particle (24) and defines corresponding modifications of the polynomial

integrals of motion (36).
For 1 <n < N we have

Hﬂ = Akx’=2--~kn¢k1¢’=2"'¢k1~: + Aklk2---kn’¢;kl ¢k2"'¢kN +ot AklkZH-knd)kl "r/"kz“"‘r/"'k)v
= (Akikyekn b fr = Akbyoben Siik = oo = Akyokn ik Fon e )0k Vky o py = 0, (59)

and there is one-to-one correspondence between the existence of the integrals
(56) and the existence of the nontrivial solutions of the following equations

D )
EAklkg...k,, = Akykgekn = Jla kAkkokn — oo = Frn k Akyo bk
= Akikgeknk Sk~ Akkgokn iy b~ oo — Ay ks k frn g = 0. (60)

For n =1 the system (60) gives
Arefe — Aefiu e =0 (61)

and this equation has at list one solution, A; = f;.
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The system (60) defines a Generalization of the Bochner-Killing-Yano struc-
tures (37, 46), of the geodesic motion of the point particle, for the case of the

general (1) (and extended (6)) dynamical systems.
The structures defined by the system (60) we will call the Modified Bocliner-

Killing-Yano structures or MBKY structures for short.

5. Extended geodesic motion of the point particles and
Grassmann valued integrals of motion
Let us take the following Lagrangian

be

e e .13 .
L= (3" = g™pi)a = (Bo + 55 7oP)Y

(M _ ab 'a___l_agab c i a
=(z fl Ps)da + ( 59ge Y PPIPe t 2 (#°pa)
= L+ 2 (4pe). 62
1+ ds(d) Pa) (62)
New momentum variables are
oL, L,
= Qas 7 = Pa, 63
e = © e 7 (63)

(fundamental) brackets are

{xa’ ¢b}1 = 6;’
{d)a’pb}l:ész_ - « = = o ~ o
{A, B} = A(028, + OueOpo = 06020 — 0naOue) B

-
=A aZ,. Enm 32,,. B. (64)
The Hamiltonian is
H . abd) + lagbcd)a (65)
1 =g @PaPb 2 Bze PvPes

the equations of motion are

&t = gabpba
1 9g%
Pa _5 ax" PoPcs
agbc 1 2 bc .
Pa o Pbe ~ 555 -popc¥’ |
ja agab c ab '
Y= e + g% b (66)

Note that the extended system (66) and Hamiltonian (65) can be obtained
from the system (24) and Hamiltonian (21) by the following simple shift of the

variables

2% = 1%+ 0,

10

e et O (67)
where 0- Grassmann parameter, §2 = 0.
In fact,
= 1 ab 1' ab 1
Ho = 59%paps = 59 paps + (59 Pept” + g™ 6up1)

=H0+0H1. (68)

The Lagrangian L, (62) can be obtained by the shift (67) from the following
first order Lagrangian }

— 1 ab -a
L'=—=59"paps + 3°ps, (69)

whicli is equivalent to the Lagrangian (19).
In fact, under the shift (67) we have

1
L=——g"p.ps +£°pa

2
1 a a c 7
= =59 P+ g%, ) (pa + 00a)(ps + 06) + (2% + 09 (p, + 0,)
= Lo+ 0L, (70)

Let us define (extending the zeroth level bracket (25)) the Grassmanu even
bracket [7] ‘

e {emle=5,
{d)a7¢b}0 266;:,
(A, B}o = AOB 0A 8B OAOB 94 0B

Ox° 8—; b D, dre Db o

- A (l—:- Pb 6& 2¢a qu_(;).l (E)(r)u_'dlr‘

- (g‘ra apa +_'6‘¢’° a¢a - apa a.zt“ - L})t,‘)d(")(’/vn)lg

=A 0z, €um 3z, B. (71)

An interesting problem is to construct an even Hamiltonian.
General form H(z, 1, p, ¢) of the integrals of motion of the extended system
(66) fulfils the following equation )

N Y 9 . 9
H —_ a____ a_ - — -

(37 8m“+d) 6¢,a+paapa d)uagba)

=V’ + $ V5 + Vi ) H =0, (72)
wlere
o 18g* 9
Vb — ba Y __g__
9 Hge 2 Bza e Op.’

gh = gie a dg* 9

61/),, - %cha,
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agab bl 1 82gbe d

= o MGy 20wae T Do )

VZC

6. Conclusions and perspectives

The Modified Bochner-Killing-Yano structures (equations) (60) are natural
generalization of the Killing(-Yano) structures of the geodesic dynamics of the
relativistic (spinning) particles [18] and we hope give an useful tool of the
investigation of any dynamical system (1).

The method of Hamiltonization of this paper is applicable to the infinite di-
mensional systems (partial differential equations). The well known (integrable)
system from the hydrodynamics, the KdV equation, {sec. e.g.. )

can be put in the Hamiltonian form. Corresponding Lagrangian is

L= p(Vi= VVs = Vi), (75)
momentum is
oL
P = =1, 76
v =Y (76)
Hamiltonian is
H = 1/)(er + Vzrr)v (77)

the extended system of the equation of motion is

Vi=VVe+ Vige,
1/’! = v"/): + 1/).1:::.1:’ (78)

the (fundamental bracket) is
{V(t,.’b),l/)(t,y)}: Jgiv_y)a_) - N
) ) ) )
{4,B} = /dIA(JV(t,z)&/J(t,z) “weaven?t @

Now it is ease to see [20] that for some classical system described by the
following equation

. 1 :
iVi= =5V’ + Vo, (80)
the companion system is given by the Schrédinger equation
. 1
1y = — oz + Vi, (TTL = 5) (81)
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As another example, let us take the important part of the theory of ele-
mentary particles, [19] the Dirac’s equation for the electron’s field

(748, = m)y = 0. (82)

The usual form [19} of the Lagrangian

L =9(v*8, —m), (83)
momentum
oL -
P = — = 0 = ,+ Q
30, Yy =97, (84)
and Hamiltonian
H = (Y + m)y (35)

corresponds exactly to our method of Hamiltonization. A curious possibility
is given by the case when the variables ¢ and ¢ have different Grassmann
grading.

The work on the applications of the formalism of this paper for several
dynamical systems is in progress [20].
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