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1 Introduction 

Time plays a central and peculiar role in Hamiltonian quantum mechanics. In 
the standard non-relativistic quantum mechanics one can describe the motion 
of a system by using the canonical variables which are only functions of time. 
The scalar product specifies a direct probability of observation at one instant 
of time [1 ]. Time is the sole observable assumed to have a direct physical 
significance, but it is not a dynamical variable itself. It is an absolute parameter 
differently treated from the other coordinates, which turn out to be operators 
and observables in quantum mechanics. 

In the cases of non-relativistic and relativistic point particle mechanics 
generally covariant systems may be obtained by promoting the time t to a 
dynamical variable [1, 2, 3, 4, 5, 6, 7, 8]. The idea behind this transformation 
is to treat symmetrically the time and the dynamical variables of the system. 
This is achieved by taking the time t as a function of an arbitrary parameter 
T (label time) in Dirac's approach [2]. The arbitrariness of the label time Tis 
reflected in the invariance of the action under the time reparametrization. 

In this work we give the two-stage procedure for constructing generally 
covariant systems. Using additional gauge variables we rewrite the original ac­
tion of the system in the reparametrization invariant form [2, 3]. The structure 
of the reparametrization transformations leads to zero Hamiltonian (first-class 
constraint) associated to the original action [3, 6]. At the quantum theory 
this constraint imposes condition on the state vector, which becomes time­
independent Schri:idinger equation [3, 8]. After that we consider an additional 
action invariant under the time reparametrization, which does not change the 
equations of motion of the original theory, but modifies only the first-class 
constraint, becomes now the time-dependent Schri:idinger equation [3, 5]. In 
the case of different versions of supersymmetric quantum mechanics [9, 10, 11] 
such a procedure finds its application, when the transformations of repara­
metrization belong to a wider group of local transformations arising from the 
construction of the generally covariant systems. In this case, the set of aux­
iliary gauge variables are components of the world-line supergravity multiplet 
[19]. . 

Here we construct a local supersymmetric action for n = 2, d = l su­
persymmetric quantum mechanics, in which the first-class constraints become 
time-independent Schri:idinger equation, supercharges and the fermion number 
operator. However, there exists an additional supersymmetric invariant action, 
which permits the generalization of the above local supersymmetric quantum 
theory. Hence, we obtain the square root representation of the time-dependent 



Schrodinger equation. 
The plan of this work is as follows: in section 2, applying the canonical 

quantization procedure to reparametrization invariant action, we obtain the 
time-dependent Schrodinger equation. In section 3 the same procedure is ap­
plied to relativistic case. The extension to supersymmetric model is performed 
in section 4. Finally, section 5 is devoted to final remarks. 

2 Non-relativistic parametrized 
particle dynamics 

In this section the central idea is illustrated with the aid of a simple model 
of parametrized dynamics. We start by considering the theory of a non­
relativistic particle moving in the D-dimensional space with dynamical vari­
ables x; (i = 1, 2,, D) and with t denoting the ordinary physical time parame­
ter. The action for this simplest model may be written as 

So= j { ~mi;(t) - V(x;)} dt, (2.1) 

where m is the mass of the particle, i:; = ~ is its velocity and V(x;) is the 
potential. The action (2.1) is invariant under the global translation of the time 

t' ➔ t+ c, c = constant. (2.2) 

We see, that the Lagrangian is non-degenerate in the sense that the relation 
between the momentum and the velocity is one to one 

8L . 
Pi= 8xi = mx;. 

The Hamiltonian for this model has the form 

p2 
Ho = -

2 
1 + V(x;). 
rn 

(2.3) 

(2.4) 

In the action (2.1) time tis an absolute parameter, differently treated from the 
other coordinates which turn out to be operators and observables in quantum 
mechanics. On the other hand, it is well known, that in non-relativistic point 
particle mechanics generally covariant systems may be obtained by promoting 
the time t to a dynamical variable [2, 3]. The same procedure has been applied 
to relativistic particle case [6, 7]. So, having in mind the application of the 
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procedure to the supersymmetric case we will proceed as follows. First of all, 
we will rewrite the action (2.1) in the parametrized form 

-_ j { rni; ( T) } S -
2
N(T) - N(T)V[x;(T)] dT, (2.5) 

where the dot denotes derivative with respect to the parameter T. N(T) is the 
so called "lapse function" and relates the physical time t with the arbitrary 
parameter T through dt = N(T)dT. This canonical variable is a pure gauge 
variable and it is not dynamical. N(T) in (2.5) defines the scale on which 
the time is measured, and in the "gauge" N(T) = 1 the time parameter T 
is identified as the "classical" time t and (2.5) becomes (2.1). On the other 
hand, N ( T) can be viewed as one dimensional gravity field, then the action 
(2.5) describes the interaction between "matter" x;(T) and the gravity field 
N(T) [12]. The action (2.5) is invariant under the local time transformation 

T1 =T+a(T), 

if N(T) and x;(T) transform as 

d 
oN(T) = dT (aN), Ox;(T) = ai;(T). 

(2.6) 

(2.7) 

Varying the action (2.5) with respect to x;(T) and N(T) one obtain the classical 
equations of motion for x;(T) and the constraint, respectively. 

Now we consider the Hamiltonian analysis of this simple constrained sys­
tem. We define the canonical momentum pi conjugated to the dynamical 
variable x; as 

i 8L rn ·i 
p = 8i; = Nx' 

and the classical Poisson brackets between x; and pi by 

{ X;, pi} = o{. 

The momentum conjugate to N(T) is 

aL 
PN= -. =0, 

8N 

(2.8) 

(2.9) 

(2.10) 

this equation merely constrains the variable N(T) (primary constraint). The 
canonical Hamiltonian can be calculated in the usual way, it has the form 
He = N Ho, and the total Hamiltonian is 

Hr= NHo + uNPN, (2.11) 
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where uN is the Lagrange multiplier associated to the constraint PN = 0 in 
(2.10) and H0 is the Hamiltonian of the system defined in (2.4). The canonical 
evolution of the constraint PN is given by the Poisson bracket with the total 
Hamiltonian. Thus, we have 

PN = {PN,Hr} = -H0 = 0, (2.12) 

leading to the secondary constraint, which is the first-class constraint [5]. In 
the quantum theory the first-class constraint associated with the invariance 
of the action (2.5) under the reparametrizations (2.6) becomes condition on 
the wave function 'lj;. Any physical state must obey the following quantum 
constraint 

Ho(fi,xi)'i/J(x1) = 0, (2.13) 

which is nothing but the time-independent Schrodinger equation. 
Now we have to stress, that the physical meaning of the action (2.5) is 

different from that of the starting action (2.1). Indeed the equation (2.13) 
leads to the zero value of the energy of the system. To correct the situation 
and to get a time-dependent Schrodinger equation for the parametrized system 
(2.5) we will proceed as follows. We consider the following invariant action 

J { dt(T) } 
Sr= Pt ~ - N(T) dT. (2.14) 

Now (t,Pt) is a pair of dynamic conjugated variables, Pt is the momentum 
corresponding tot. The action (2.14) is invariant under the reparametrization 
(2.6), if 

bpt = apt, ot = at, d 
r5N = dT (aN). (2.15) 

So, adding the action _(2.14) to the action (2.5) we obtain in the first order 

form the total action S = S + Sr 

S = j {p;xi - NH0 (p, x) + Pt(i - N(T))} dT. (2.16) 

The action (2.16) is invariant under the local transformation (2.6), if N, x, Pt 
and t transform according to (2.7, 2.15). Physically, the action (2.14) ensures 
that N = f. The total action (2.16) can be symply obtained from the starting 
action (2.1) following the Dirac approach [2]. Indeed, taking t to be a function 
of local time T, t = t(T) from (2.1) we get 

- J { 1 i:; ·} So = 2mT - V(x;)t dT, (2.17) 
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where the dots now stand for -/t- Due to the definitions of momenta there 
exists the constraint 

1 2 
Pt+ 2P; + V(x;) = 0. (2.18) 

The canonical Hamiltonian is zero and the Lagrangian in the first-order form 
coinsides with (2.16) where N is~ Lagrange multiplier. The canonical Hamil-

tonian obtained from the action S in (2.16) has the form 

He= N(pt + Ho), (2.19) 

and the total Hamiltonian is 

Hr= N(pt +Ho)+ uNPN. (2.20) 

For the consistency of the theory the constraint PN must be conserved in time 

PN = {PN, Hr}= -(Pt+ Ho)= 0. (2.21) 

This equation is a first-class constraint. So, the Hamiltonian equations of 
motion then are 

i:; = {x;,Hr} = Np; 
m' 

Pi= {p;,Hr} = -NdV 
dx;' 

N = {N,Hr} = uN, 

i = {t,Hr} = N, 

Pt= {Pt,Hr} = 0. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The first two equations (2.22) and (2.23) are the equations of motion for the 
physical degrees of freedom. The action (2.16) contains one extra canonical 
pair (t,p1) over (2.1), but also contains the constraint (2.21). This constraint, 
being the only one, ·is of the first-class. Furthemore, the action (2.16) describes 
the same number of independent degrees of freedom as the action in (2.1). The 
equation (2.24) shows that N(T) is an arbitrary function playing the role of 
gauge field of the reparametrization symmetry. If we take the gauge condition 
N(T) = 1, then as it follows from (2.25), we have t = T. On the level of the 
equations of motion the action Sr is zero, and inserting N = i in the action S 
in (2.5), we can exclude the auxiliary gauge N(T) and obtain Dirac's approach 

5 



for reparametrization invariant action in the case of non-relativistic systems 
(2.17) [2, 7, 8]. 

At the quantum level Dirac's brackets must be replaced by the commutator 

[t,1\] = i{t,pt}* = i, (2.27) 

and the classical momentum Pt by the operator Pt with the representation 
-ift (we assume units in which h = c = 1). Following the Dirac's canonical 
quantization the first-class constraints must be imposed on the wave function 
1/;(x, t). So, the constraint (2.21) may be written as 

.d1/;(x
1
, t) = Ho(-i!!_, xrn)1/;(x1, t). z , xi dt 

(2.28) 

Hence, the inclusion in (2.5) of an additional reparametrization invariant ac­
tion (2.14) does not change the equations of motion (2.22, 2.23), but only the 
constraint (2.13), which becomes (2.21). Thus, canonical quantization pro­
cedure applied to the parametrized theory (2.16) yields the correct equation 
for the wave function 'I/; (2.28), which is just the conventional time-dependent 
Schri:idinger equation. 

In the following two sections it will be shown, that the same procedure 
without any difficulties can be extended to the relativistic and supersymmetric 
cases. 

3 Relativistic Point Particle 

In this section we will consider a free relativistic particle. The action in this 
case has the form 

S = -m J J1 - x;(t) dt, (3.1) 

where m, t and x; (i = 1, 2, 3) are, respectively, the mass, proper time and the 
position of the particle. After parametrization dt = N(T)dT the action (3.1) 
becomes 

fJ = -m I ✓N2 (T) - xr(T) dT. (3.2) 

This action is invariant under the local time reparametrization (2.6), if N(T) 
and x;(T) transform as (2.7). The canonical Hamiltonian in this case has the 
form 

He= NHo = N ( Jp; + m2
), (3.3) 
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where 
al m X; 

p;=-. =---. 
ax; N J1 _ E.. 

N2 

is the canonical momentum conjugated to dynamical variable x;. So, we will 
rewrite the action (3.2) by considering (2.14) in the first order form, we get 

S = I {p;x; + Po(x0 
- N) - NJp; + m2

} dT, 

where p0 = Pt and x 0 = t. The relativistic canonical Hamiltonian is 

H c = NH = N ( J pf + m2 +Po) , 

(3.4) 

(3.5) 

where His the classical relativistic constraint corresponding to the action (3.4). 
At the quantum level this constraint becomes condition on the wave function 

(-i d~o + JfJt + m2
) 1/;(xo, x;) = 0, 

1/; 

(3.6) 

which is the time-dependent Schri:idinger equation for the relativistic free mas­
sive particle. Note, that if we take the lapse function as 

N(T) = e(T) ✓Pr+ m2 - Po 
2 ' 

(3.7) 

and insert it in (3.5) we have then 

He= e~) ( Jp; + m2 +Po) ( Jp; + m2 
- Po) = e~) (p; + m2 

- P~). (3.8) 

Using the relations (3.7), (2.7) and (2.15) for the N(T),p;(T) and Po(T), it is 
easy to show, that e(T) transforms as 

d 
c5e = dT (ae), (3.9) 

corresponding to the transformation of N(T) in (2.7). 
So, the action (3.4) takes the form 

S = j {PµXµ - e(T) (P!: m2

)} dT, (3.10) 
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where µ = 0, l, 2, 3. The action (3.10) describes a massive relativistic particle 
moving in the four-dimensional space-time. The e(T) is an einbein, which plays 
the role of Lagrange multiplier. Variation of the action (3.10) with respect to 
e( T) leads to the relativistic constraint 

Pt+ m 2 = 0, (3.11) 

which is nothing but the mass-shell condition. When we go over to quantum 
mechanics, the constraint (3.11) is replaced by the condition on the scalar field 
¢ 

(
EJ2 EJ2 ) 

ax5 - ax; + m2 
¢(xo, x;) = 0, (3.12) 

which is the Klein-Gordon equation. Hence, inclusion of an invariant under 
reparametrization, action leads us to the Schrodinger time-dependent equation 
for the wave function 'lj;(x;, t) in the case ofrelativistic particle, and at the same 
time it leads to the Klein-Gordon equation in the case of quantum scalar field 
¢(x;, t). 

4 n=2, d= 1 Supersymmetry 

In the global n = 2 supersymmetric one-dimensional quantum mechanics the 
simplest action has the form [10, 13, 14] 

I { ±
2 

. _ • ag 2 a29 _ } 
Sn=2 = 2 - ixx - 2(ax) - 2 ax2 XX dt, (4.1) 

where the overdote denotes derivatives with respect to t. In the action ( 4.1) x 
is an even dynamical variable, unlike x, which is odd. Note, that the action in 
(4.1) is the supersymmetric extension of (2.1). The corresponding supersyrn­
metric Hamiltonian is 

p2 (ag)2 EPg _ 
Ho= 2 + 2 ax + 2 ax2XX, (4.2) 

where p = i:, 1fx = -ix and 7fx = -ix are the momenta conjugated to x, x 
and x, respectively. The Dirac's brackets are defined as 

{x, x} • = -i, {x,p}* = 1. (4.3) 

Applying the Noether theorema to then= 2 supersymmetry invariant action 
one finds the corresponding conserved supercharges 

(. ag) - t ( . ag) S = ip + 2 ax X, S = S = -ip + 2 ax X, (4.4) 
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and F, which is the generator of the U(l) rotation on x 

F=xx- (4.5) 

In terms of the Dirac's brackets (4.3) the quantities H0 , S, S and F form a 

closed super-algebra 

{S, S}* = -2iH0 , {Ho, S}* = {Ho, S}* = 0, (4.6) 

{S,S}* = {S,S}* = o, {F,S}* = iS, {F,S}* = -iS. 

Now, our goal will be to obtain the time-dependent Schrodinger equation 
for the supersyrnmetric case. The approach will be similar to that we have 
followed earlier. Dirac's approach applied to the action (4.1) for the n = 2 
supersymmetric mechanics in the reparametrization invariant form requires 
a modification. A direct way to construct such action is a supersymmetric 
extension of the action (2.5), to the local n = 2 supersyrnmetry (rather n = 2 
superconforrnal group in one-dimension) extending simultaneously the time 
repararnetrization (2.6). As a consequence of this extension the new gauge 
fields 'lj;(T), {;(T) and V(T) in the action will appear. These gauge fields are 

the superpartners of the "lapse function" N(T). 
In order to obtain the supersymrnetric extension of the action (2.5) the 

transformation of the time repararnetrization (2.6) must be extended to the 
n = 2 local conformal time supersymmetry (T,0,0) [15, 16, 17, 18]. The 
transformations of the supertime (T, 0, 0) can be written as 

OT 
- 1- - 1 -

IL(T, 0, 0) + 
2

0D01L(T, 0, 0) -
2

0D01L(T, 0, 0), 

i -
00 = 

2
D01L(T, 0, 0), 

- 2 -
o0 = -2Do1L(T, 0, 0), (4.7) 

with the superfunction JL(T, 0, 0) defined by 

IL(T, 0, 0) = a(T) + i0{J'(T) + i0/3
1
(T) + b(T)00, (4.8) 

where Do = fo + i0 fr and D0 = -fo - i0 fr are the supercovariant derivatives 
of the n = 2 global supersymmetry, a(T) is a local time repararnetrization 
parameter, f3'(T) = N- 11213 is the Grassmann complex parameter of then= 2 
local conformal supersymrnetry transformations and b( T) is the parameter of 
the local U(l) rotations on the complex Grassmann coordinates 0 (0 = 0t). 

The local supercovariant derivatives have the form Do = IN-½ Do and D0 = 

JN-½Do. 

9 



Then, the superfield generalization of the actions (2.5) and (4.1), which 
is invariant under the n = 2 local conformal supersymmetry transformations 
(4.7), has the form [19, 20] 

Sn=2 = J {i.o'r'Do<I>Do<I> - 2g(<I>) }d0d0dT, (4.9) 

where g(<I>) is the superpotential. In the superfield action (4.9) IN(T, 0, 0) is 
absent in the numerator of the second term, this is related to the fact that 
the superjacobian of the transformations (4.7), as well as the Be,Et is equal 
to one and the quantity d0d0dT is an invariant volume. In order to have the 
component action for ( 4.9) we must expand in Taylor series the superfields IN, 
<I> and the superpotential g( <I>) with respect to 0, 0. 

In the case of the real superfield IN (INt = IN) we have the following 
expansion 

JN(T, 0, 0) = N(T) + i01/;1(T) + i01/J'(T) + V'(T)00, (4.10) 

where N(T) is the lapse function, ¢' = N 112(T)1/J(T) and V'(T) =NV+ if;¢. 
The components N, 7P, if; and V of the superfield IN( T, 0, 0) are gauge fields of -
the one-dimensional n = 2 supergravity. The superfield ( 4.10) transforms as 
the one-dimensional vector field under the local supersymmetric transforma­
tions (4.7) 

d i i 
oIN = -d (JLJN) + -DolLDolN + -DolLDuIN, (4.11) 

T 2 2 

The transformation law for the components N(T), 7P(T), 1/;(T) and V(T) may 
be obtained from (4.11): 

d i - -
ON = -d (aN) +-(IN+ IN), 

T 2 

d ~ 
oV = dT (aV) + b, (4.12) 

d i A 

O?p = -d (a¢)+ D/3 - -b?p, 
T 2 

- d - - i--
o'lj; = dT (a¢)+ D/J + -l'lj;, 

where D/3 = J + ½V/3 and D/J = P- ½V/3 are the U(l) covariant derivatives 

and b = b - 2~(/Ji/;- /J7/J). 
For the real scalar matter superfield <I> ( T, 0, 0) we have 

<I>(T, 0, 0) = x(T) + i0x'(T) + iBx'(T) + F'(T)00, (4.13) 
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where x' = N'l 2x and F' =NF+ ~(7,i;x.- 7PX)- The transformations law for 
the superfield <I>(T, 0, 0) is 

. i i 
o<I> = IL<I> + 2D01LDo<I> + 2Do1LD0<I>. ( 4.14) 

The component F(T) in (4.13) is an auxiliary degree of freedom (non-dynamical 
variable), X(T) and x(T) are the "fermionic" superpartners of the x(T). Their 
transformations laws have the form: 

ox 
i -

ax+ 2(/Jx + /Jx), 
. 1 - - -

oF = aF + 2N(/3Dx - /JDx), ( 4.15) 

/3 (Dx ) i, ox = ax+ 2 Ii+ iF - iX, . jJ (Dx . ) i-
ox = ax+ 2 Ii - iF + ix, 

where Dx = :i:-½(1/Jx+if;x), bx= Dx-½( °: +iF)'lj;, bx= Dx-h °;-iF)if; 
are the supercovariant derivatives and Dx = x + ½ V X· 

It is clear, that the superfield action (4.9) is invariant under then= 2 local 
conformal time supersymmetry. Let us denote the expression under the inte­
gral (4.9) by means of certain superfunction J(JN,<IJ). Then, the infinitesimal 
small transformations of the action (4.9) under the superfield transformations 
(4.11,4.14) have the form 

OSn=2 = ~ J { De(ILDof) + Do(ILDef)} d0d0dT. (4.16) 

We can see, that the integrand is a total derivative, i.e. the action ( 4.9) is 
invariant under the n = 2 local conformal time supersymmetry. 

After integration over the Grassmann complex coordinates 0 and 0 we 
find the component action, where F(T) is an auxiliary field, and it can be 
eliminated using its equation of motion. Finally, the action Sn=2, in terms of 
the components of the superfields IN and <I>, takes the form 

- !{(Dx)
2 

._ (8g)
2 

8
2
g_ 8g - -} Sn=2 = 2N - ixDx - 2N fJx - 2N fJx2XX + fJx ('1/Jx - WX) dT, 

(4.17) 
where Dx and Dx are defined above. The action (4.17) does not include the 
kinetic terms for N, '1/J, if; and V, they are not dynamical. This fact is reflected 
in the primary constraints 

PN 8Ln=2 = o, 
= {)JV 

8Ln=2 _ o - --. - , Pv - 8V 

8Ln=2 _ o 
- ' P,µ=a;-

11 

8Ln=2 = o, (4.18) 
P,1;= 8~ 



where PN, P,t,, Pv, and Pv are the canonical momenta conjugate to N, 'lj;, if; and 
V, respectively. Then, the canonical Hamiltonian corresponding to the action 

Sn=2 in ( 4.17) is 
- if; 'lj;- V (4.19) H = NR0 + -S - -S + -F 

C 2 2 2 > 

where Ho, S, Sand Fare defined in (4.2, 4.4, 4.5), and the total Hamiltonian 

is 
Hr= He+ uNPN + u,t,P,t, + U,i;P,i; + uvPv. (4.20) 

The secondary constraints are first-class constraints 

Ho =0, S=0, S=0, F=0, (4.21) 

which are obtained using the standard Dirac's procedure, i.e., the time deriva­
tives of the primary constraints must be vanishing for all the PN, P,t,, P,i;, and 

Pv. 
In the quantum theory the first-class constraints (4.21) associated with 

the invariance of the action (4.17) become conditions on the wave function 

'lj; = 'lj;(x, X, x)- The quantum constraints are 

H
0
'lj; = 0, S'lj; = S'lj; = 0, F'lj; = O, ( 4.22) 

which are obtained when we change the classical dynamical variables by their 
corresponding operators. The first equation in (4.22) is the Schri:idinger equa­
tion, a state with zero energy. Therefore, we have the time-independent 
Schri:idinger equation, this fact is due to the invariance under the reparame­
trization symmetry of the action (4.17), this problem is well-known as the 

"problem of ti_me" [1, 2, 3, 4, 5, 6]. 
So, in order to have a time-dependent Schri:idinger equation for the super-

symmetric quantum mechanics, we consider the generalization of the repara­
metrization invariant action Sr in (2.14). In the case of n = 2 local supersym-

metry it has the superfield form 

Sr(n=2) = J {JP - ~lN- 1(D0TDoJP - D01PDoT)} d0d0dr. (4.23) 

The action (4.23) is determined in terms of the new superfields T and 
JP. The superfield Tis determined by the odd complex times, r1(r) and r;(r), 
which are the superpartners of the time t(r), and one auxiliary field m'(r). 

Explicitly, we have 

T(r, 0, 0) = t(r) + 0r,'(r) - 0t;'(r) + m'(r)00, 
(4.24) 
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( 

where r/ = N 112 11 and m' = Nm+ ½(-0r; + 'lj;TJ). The transformation rule 
for the superfield T(r, 0, lJ) under the n = 2 local conformal supersymmetry 
transformations ( 4. 7) is 

. . 
. i i 

JT = JLT + -D0ILD0T + -D0JLD0T. 
2 2 

( 4.25) 

The superfield JP( T, 0, 0) has the form 

JP(r.0, 0) = p(r) + i0p~(r) + i0p~(r) + p~(r)00, (4.26) 

where p~ = N 112p,1 and p~ = Npi + ½(1)ip1J - 'lj;pfJ)- P1J and Pf/ are the odd 
complex momenta, i.e. the superpartners of the momentum Pt· The superfield 
JP transforms as 

. . 
. i i 

JJP = ILIP + 2D0ILD0JP + 2DolLD01P. ( 4.27) 

It is easy to show, that the infinitesimal small transformations of the action 
Sr(n=2) under the transformations ( 4.11, 4.25, 4.27) is a total derivative, then 
the action Sr(n=2) is invariant under the n = 2 local supersymrnetric transfor­
mations ( 4. 7). 

After integration over () and 0 the action (4.23) may be written in its 

component form 

Sr(n=2) = J {Pt(i + N) + iiJp1J + i~Pt; + i(p1J + iiPt) (4.28) 

'lj; V _ . i i- } 

2(Pr; + T/Pt) + 2 (rJp,, - T/Pr;) + Pp(p - 21/!Pti - 21f;p,i) c!T. 

As we will see later, the variables p and pp are auxiliary, in the sense, that they 
can be eliminated from the physical variables by some unitary transformation. 

Proceeding to Hamiltonian formulation we have the following constraints 

where 

IT3 (TJ) = P1J - ip1J = 0, 

Ils(ii) = Pr; - ipr; = 0, 

8Lr(n=2) 
p1J = 8iJ ' 

IT4 (p1J) = Pp~ = 0, 

Ih(Pr;) = Pp~ = 0, 

p _ 8Lr(n=2) 
p~ - a. 

p1J 

( 4.29) 

( 4.30) 

are the odd momenta conjugated to 77, p11 and their respective complex conju­
gate. We define the odd canonical Poisson brackets as 

{17,P1J}=l, {p1J, Pp~} = 1. ( 4.31) 
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So, the constraints (4.29) are of the second-class. Defining the matrix (sym­
metric for the Grassmann variables) constraint C;k (i, k = TJ,Pri, fJ,Pt;) as the 
odd Poisson brackets, we have the following non-zero matrix elements 

CT/,Po = CP,,T/ = {IJ3, Il4} = -i, cii,P1 = Cp~,fj = {IIs, Il5} = -i (4.32) 

with their inverse matrix ( c- 1 )T/,Po = i and ( c- 1 y;,p, = i. The only non-zero 
Dirac's brackets are 

{TJ,Pri}* = -i, {TJ,Pt;}* = -i. 

So, if we take the additional term (4.23) the full action will be 

S = Sn=2 + Sr(n=2) · 

Then, the canonical Hamiltonian for the action S will have the form 

(4.33) 

(4.34) 

"' 1/J - - ;j; - V 
He= N(Pt + Ho) - 2(-St; + S) + 2(Sri + S) + 2 (Fri + F), (4.35) 

where Sri = (Sri-iPpPri), St;= (St;-iPpPt;) and Sri= (p11 +fJPt), Sr;= (-pr;-T/Pt), 
F11 = (TJp11 - f/Pt;)- As we mentioned earlier the variables p and Pp can be 
eliminated. For this goal we make the canonical transformations: 

P11(l - ipp) = P11, 

Pt;(l + ipp) = Pt;, 

and after that the unitary transformation is 

H-+ UHU- 1 

~ T/ =fJ, 
1- ipp 

_!j_=~, 
1 + ipp 

(4.36) 

(4.37) 

with U = exp(iTJfJPtPp)- One can check that all Pp dependence of fie disappears. 
So, we can omit all tildes and write the Hamiltonian in the form 

1P - if; V 
He = N(pt + Ho) - 2(-St; + S) + 2(S11 + S) + 2 (F11 + F). (4.38) 

And the total Hamiltonian is 

Hr= He+ uNPN + ut/JP,/J + u,1,P,1, + uvPv. (4.39) 
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Due to the conditions 

PN = P"' = P,1, = Pv = 0, 

we now have the first-class constraints 

H =Pt +Ho, Q11 = Sr1 + S, Qt;=-St;+S, 

(4.40) 

F = F 11 + F. (4.41) 

The constraints (4.41) form a closed superalgebra with respect to the Dirac's 
brackets 

{Q 11 ,Qt;}* = -2iH, {H,Q11 }* = {H,Qr;}* = 0, (4.42) 

{F, Q1)}* = iQ1), {F, Qt;}*= -iQt;-

After quantization the Dirac's brackets (4.33) become anticomutator for the 
odd variables 

{TJ,P11} = i{TJ,P1J}* = 1, {r,,pr;} = i{'iJ,Pr;}* = 1, (4.43) 

with the operator representation P1J = ;11 and Pt;= ~- In order to obtain the 
quantum expression for H, Q11 , QfJ and F we use the operator representation 
p = -id~ and X, X as {X,X} = 1, X = a(-) and X = a(+), where a± = 
½(a1 ± ia2). We have then 

d ( a a) H = -i dt + Ho(P, x, X, X), Q11 = aT/ - i'i] at + S(p, x, x), (4.44) 

( 
a a) - ( a a) Qij = - - ar, + iTJ at + S(p, x, x), F = TJ aTJ - ii ar, + F(x, x), 

where 
d2 ag 2 d2g -

Ho= - dx2 +2(ax) + ax2[X,X] 

and F = ½[x, x] = ½a3 • In ( 4.44) S1) = (~ - iryft) and Sr; = (- %r; + iTJft) are 
the generators of supertranslations on the superspace with coordinates (t, T/, ry) 
and_Pt = -ift is the ordinary time translation operator 

a 
{S11,St;} = 2iat' (4.45) 

and F11 = (TJ%'1 - 'i]~) is the generator of the U(l) rotation of the complex 
Grassmann coordinates T/ ('i] = ryt). The algebra of the quantum generators 
H0 , S, S and F is a closed superalgebra 

{S,S} = 2Ho, 
[F,S] = -S, 

[S, Ho] = [S, Ho] = [F, Ho] = 0, 
[F,S] = S, S2 = S2 = o, 
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the conserved quantities are H0 , S, S and F. We can see, that the generators 
H, Qr,, Qfi and :F satisfy the same superalgebra 

{ Qri, Qfi} = 2H, 
[:F, Qr,] = -Qr,, 

[Qr,, H] = [Qfi, H] = [:F, H] = 0, 
[:F, Qfj] = Qfj, Q~ = Q~ = 0. 

(4.47) 

In the quantum theory the first-class constraints (4.44) become conditions on 
the wave function '¥. So, we have the supersymmetric quantum, constraints 

Hw = o, Qriw = o, Qfjw = o, :Fw = o. 

. We will search the wave function in the superfield form 

(4.48) 

iir(t, TJ, rj, X, x) = 'lj;(t, x, X, x) + iTJa(t, x, X, x) + irjcp(t, x, X, x) + (4.49) 

+((t, x, X, x)TJfi-

This wave function must satisfy the quantum constraints ( 4.48). In ( 4.49) 'lj;, ( 
are even components of the wave function, unlike a,¢, which are odd: We take 
the constraints 

Qriw = o, 

and due to the algebra ( 4.4 7) we have 

QfjiJ.!=0, 

{ Qr,, Qd W = 2HW = 0. 

(4.50) 

(4.51) 

This is the time-dependent Schrodinger equation for the supersymmetric quan­
tum mechanics. The conditions ( 4.50) lead to the following form of the wave 
function - 1 - - . w. = 'lj; - TJ(S'lj;) - rj(S'lj;) + 2(SS - SS)'lj;rJrj, (4.52) 

where the function 'lj;(t, x, x) satisfies the standard time-dependent Schrodinger 
equation 

id'lj;(t, X, X) = Ho(P, x, X, x)'lj;(t, x, X, x)­
dt 

(4.53) 

If we put in the Schri:idinger equation (4.53) the condition of the stationary 
states given by ¥t = 0, we will have H0'lj; = 0 and due to the algebra (4.46) 
we obtain S'lj; = S'lj; = 0 and the wave function iir. becomes wave function 
'lj;(x,x,x) [10, 11, 19, 2~. 
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5 Conclusions 

In this work we have considered systems (including susy), which are not para­
metrized. Such systems always may be done in a parametrized invariant form. 
We developed the two-stage procedure of such construction which is applica­
ble in the supersymmetric case as well. First of all, we include in the action 
the auxiliary gauge field to ensure the reparametrization invariance of the ac­
tion. Hence, the system of constraints contains generator of reparametrization, 
which is the Hamiltonian generator. It must annihilate the physical states, this 
leads to tirne-independet Schri:idinger equation H0 'lj; = 0. It means, that in the 
modified system only zero energy states are physical. 

In order to have a time-dependent Schri:idinger equation, i.e. to describe 
the quantum evolution of the initial system, as we shown in this work, an ad­
ditional invariant action Sr may be always constructed. The additional action 
does not change the equations of motion, but the constraint system, one of 
which becomes time-dependent Schrodinger equation. From our point of view, 
this fact is very important in those cases, when starting systems are invariant 
under reparametrization of time, such systems as: general relativity, cosmolog­
ical models, string theories. These theories contain auxiliary additional gauge 
degree of freedom (lapse and shift functions) [25]. Such theories have the prob­
lem which in literature is known as the "problem of time" [l, 3]. For instance, 
the Wheeler-DeWitt equation [26]. 

Naturally, the question arising as a result of this work is: could we construct 
an additional invariant under general covariant transformations action'! If the 
result of this question is positive, then the additional action will remain without 
any changes the equations for the physical degree of freedom of the system, 
but the constraint will be modified leading to time-dependent Schri:idinger 
equation. 

Without any difficulties our procedure may be generalized to D-dimensional 
extended supersymmetry mechanics [14, 21]. This is due to the fact, that the 
full algebra of the transformations is closed off-shell, and it is n = 2 local 
conformal supersymmetry. So, our procedure represents a direct possibility to 
apply the Batalin-Vilkovisky formalism [22, 23, 24] to supersyrnrnetric systems. 
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