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1 Introduction 

The vacuum oscillations of neutral K mesons are well investigated ,at 
the present time [1]. These oscillations are the result of d, s quark 
mixings described by Cabib'\)o-Kobayashi-Maskavva matrices [2]. The 
angle mixing 0 of neutral I{ mesons is 0 = 45° since K 0

, 1{0 masses 
are equal ( see C PT theorem). Besides, since their masses are equal, 
these oscillations are real, i.e. their transitions to each other go without 
suppression. Oscillations of two particles having the masses overlap
ping their widths were discussed in works [3]. ';['hen in previous works 
[4] we computed probabilities of 1r +-+ K 9scillations in an approach 
where the phase volume of particles at these transitions is taken into 
account. The same oscillations arise in the model of dynamical analogy 
ofCabibbo-Kobayashi-Maskawa matrices [6]. 

This work is devoted to 1 computation of the same values in a dia
gram approach which was used at computation of K 0 +-+ 1{0 oscillations 
[5]. 

At first, we will consider the general elements of the theory,.of vac
uum oscillations, then come to computation of probabilities of 7r +-+. K 
transitions. 

It is clear that these transitions are virtual since masses of 1r and 
K mesons differ considerably. 

Let us pass to consideration of general elements of the' theory of 
vacuum oscillations. 

2 . Pr(?babilities of 1r ~e K Vacuum R~al a.nd Vir
tual, Transitions (Oscillations) 

The mass matrix of 1r and K mesons has a form 

( 
m1r O ) 

, .0 . ffiK . 

Due to the presence of strangeness violation in the weak interac
tions, a nondiagonal term appears in this matrix and then this mass 



matrix is transformed in the following nondiagonal matrix: 

( 
ffi,r ffi,rK) 

ffi,rK ffiK ' 
(2) 

which is diagonalized by turning through the angle /3 and then 

( 
m,r. m,r i< ) _. ·( m1 0 ) 

'f!/,,r K m K O m2 
. ' . ' 

and 
2m,rK 

tg2{3 = 1· . 1 •· m,r - mK 

. 2·13 2m,rK sin = · , 
J(m,r,-:- mK)2 +. {2m,rK)2 (3) 

m1,2 ~ t((m,r - mK)_± J(m,r - mK)2 + 4(m,rK)2), 

and since 1r meson without external interactions cannot change its mass 
shell, the nondiagona~ mass tenn in (1). is equal to the mass difference 
1.~,, 

~m12 = 2m,rK. (4). 

It is necessary to remark _that expression (3) can be obtained· from 
the Breit-Wigner distribution [7] · 

(r /2)2 

P ~ (E - Eo)2 + (r /2)2 
(5) 

by using the following substitutions: 

E = mK, Eo = m,r, r /2 = 2m,r/{j (6) 

where r is width of 1r t--t I( transitions. 

If the mass matrix contains masses in squared form, then oscilla
tions ( or mixings) will be described by the expressions (3):.(6) with the 
following substitutions: 

2 2 2 m,r -. m,r, ml< -. mK, m,rK -. m,rl< 

Herc the two cases of 1r, I( oscillations take places [4]: real and 
virtual oscillations. 
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,,;_:, 

:, 

L If we consider the real transition of.1r into]( mesons, then ; . . . . 

· • 4m2 ._. · :_ ,· 
sin22{3 ~ ,rn · ·~ 0, 

(m,r-mK)2 
(7) 

i.e. the probability of the real transition of 1r me~ons iri J( mesons 
through a weak interaction is very small since m,r K is very small. 

How can we understand this•real 1r-. ]( transition? 

If 2m,rK = ~ is not zero, then it m~ans that the mean mass of 1r 
meson is m,r and this mass is distributed by sin22{3 ( or by the Breit
Wigner formula) and the probability of the 7r -. I( transition differs 
from zero. So, this is a solution of the problem of origin of mixing angle 
in the theory of vacuum oscillation. 

In this case the probability of 7r -. I( transition ( oscillation) 1s 
described by the following expression (see also Exp. (23): 

P( 1r -. I(, t) = sin22{3sin2 
[ 1rt 

1;i{] , {8) 

where p is momentum of 7r meson. 

2. If we consider the virtual transition of 1r into I( meson then. 
since m,r = ml<, 

tg2{3 = oo, 

i.e. {3 = 1r / 4, then 
sin22{3 = 1. (9) 

In this case probability of 1r -. I( transition( oscillation) is dC'
scribed by the following expression: 

P(1r-. K, t) = sin2 [1r LL ] , 
O,',C 

where L = vt, v- is velocity of 1r meson, at v ~ c L ~ ct, 

2.48p,r(MeV) 
Lose = I 2 2 I ( 2) m. m1 - m 2 eV 

(10) 

Let us pass to a more detailed consideration· of the second case since 
it is of real interest (i.e. we will compute nondiagonal term of the, umss 
matrix). 
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3, The 1r w 4n9, K Me~9n ~ar1sitions ( Os_ c_.illatior1s) 
in. the Sta~dard Theory of Weak Interaction 

~ ,, ·, , ·~- ; ' , . ·, ' - ', , , 

When d, s quark mixings and W exchange are taken into account the 
d. r W sin 0 T/ - • • h h r iagram 1or 1r --,...-+, •• n. trans1t10ns as t e· 1orm 

u u 

J s 

It is clear that a~ d, s mixings the transition of 7r meson mass shell 
does not take place, i.e. I<. meson produced, , . from 7r meson remains 
on the mass shell of 7r meson. 

The amplitude of this process has the following form (we use Feyn
man rules): 

GF - . 
M(1r-+ K) = v'2sin0[d,µ(1-:--- 15 )u][s,µ(l - ,s)u], 

or 
GF . - -

M(1r-+ K) = v'2szn0[dQµu][sQµu], (11) 

where G F is Fermi constant; Qµ = 1µ(1 - ,s) and 

GF g2 

v'2 = 8m~," 

The mass Lagrangian L for this diagram in the framework of the 
standard approach is [5] 

L=M(1r-+K). (12) 

Then the mass differences in square which response for 7r -+ I( and 
I( -+ 1r transitions are 

~t - ni~ =< 7r I L I J( > + < 'I( I L I 7r > (13) 
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I 
,·') 
., 

I 

I 

,\ 
1( 

I 

(we suppose that I( meson is on the mass shell of 7r meson). Therefore 

mr: - m~ ~-2mlr~m12 . (14) 

or 1 - --
~m12 = 

2
m [< 7r IL I J( >+<I( IL I 1r >]. 

lr 
(15) 

Now we compute mass difference. For thi~ purp<;>se we use the following 
expressions: 

< 0 I dQ;.,u I 1r > </Jlrf?rPµ, 
< o I sQµu I K >= </JK!K~, 

(16) 

where <plr, ¢K , flr, h<, correspondingly are the wave functions and the 
constant decays of 7r and I( mesons, Pµ is momentum of 7r meson. 

It is necessary to remark that the following relation appears for 
constant decays on mass sheHs 

flr(mlr) = !K(mlr). (17) 

Then from equation (13) using equations (16), (17) we obtain the fol
lowing expression: 

. 2 2. 2 2 2GF · ~m = m1 - m2 = flrmlr v12,szn0. (18) 

or 
A ' !2 GF . 0 um12 = lrmlr v'2szn . (19) 

4 Probability of 1r -~ K Virtual Oscillations with 
account of 1r decays 

If at t = 0 we have the flow' N( 1r, 0) of 7r mesons, then at t -/= 0 this 
flow will decrease because of 1r mesons decay and then we have the 
following flow N(1r, t) of 1r mesons: 

t 
N(1r, t) = exp(-, )N(1r, 0), 

To 
(20) 

where r6 = rob.. m, 
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· · Theexp'ression for.the flow N(1r +-+ I(, t), i.e. probability of 1r +-+ J( 

meson transitions at time t, has the following form 

N(1r-+ I(, t) = N(1r, t)P(1r-+ ](, L) (21) 

where 

P(1r +-+ K, L) =. sin2 [1rLL ] , 
' osc 

L _ 2.48pir(MeV) 
osc - I 2 . m m1 - m~ I (e v2) , 

and 
2 . 2 2 , 2 GF . 

m1 - m2 = firm,r ./2sm0. 

In the approach where phase volume is taken into account the ex
pression for the probability of 1r-+ K oscillations P(1r-+ K, t) has the 
following form [4]: 

N(,c - K, t) = N(,c, t)sin' [ r(,c 1 K)] = 

[ 
t 

2

0 l t 2 1rt g 
_ N(1r O)exp(--)sin (~)2 · 
- ' To To mu+md 

(22) 

In the case of real oscillations the probability of 1r -+ I( transitions 
(oscillations) is described by Exp. (8): 

P(1r +-+ K,t) = sin22(3sin2 [1rtmJ<], 
. 2p 

where 
' ( 2 

2 J2m Gr sin0 
. 22/3 ~ .6..m12 :_ " ",/2 . ) ~ 0 szn - --2 - - 2 - • 

mK mK 
(23) 

The kinematics of the process of I( virtu.al mesons transition on its 
mass shell is given in work [4]. 
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5 Conclusion 

The clements of the theory of vacuum oscillations were given. Then the 
probability of real and virtual 1r +-+ I{ transitions ( oscillations) in dia
gram approach was calculated. The probability of real vacuum 7r +-+ I( 

transitions is very small therefor.e only virtual transitions are the sub
ject of our interest. These transitions (oscillations) can be registered 
through I{ decays after transitions of virtual I( mesons to their mvn 
mass shell by using their quasiclastic strong interactions. 
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