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1 Introduction 

The vacuum oscillation of neutral I{ mesons is well investigated at the 
present time [1]. This oscillation is the result of d, s quark mixings and 
is described by Cabibbo-Kobayashi-Maskawa matrices [2]. The angle 
mixing 0 of neutral I( mesons is 0 = 45° since J( 0

, !( 0 masses are 
equal (see CPT theorem). Besides, since their masses are equal, these 
oscillations are real, i.e. their transitions to each other go without sup­
pression. Oscillations of two particles having the masses overlapping 
their widths were discussed in works [3]. Then we calculated probabil­
ities of 7r f-+ I( oscillations in an approach where the phase volume of 
particles at these transitions is taken into account [4,5]. 

. This work is devoted to the development of the model of dynam­
ical analogy of Cabibbo-Kobayashi- Maskawa matrices [6] and to the 
calculation of probabilities of 1r f-+ I( oscillations in framework of this 
model in the diagram approach [7] which was used while calculation of 
J( 0 

f-+ !(0 oscillations. 

At first, we will consider the general elements of the theory of os­
cillations, elements of the model of dynamical analogy of Cabibbo­
Kobayashi- Maskawa matrices and its further development, then come 
to the calculation of probabilities of 1r - I( transitions. 

As it is stressed in previous works [4,5] these transitions are vir­
tual since masses of 1r and J( mesons differ considerably. And we can 
make these virtual transitions real through their strong interactions, 
i.e. bring them up on the own mass shell through strong interactions 
,after the weak interaction transforming 1r mesons in virtual I( mesons. 

Let us to consider the general elements of the theory of oscillations. 

2 Probabilities of Real and Virtual Vacuum 1r ~ I( 

Oscillations (Transitions) 

The mass matrix of 1r and J( mesons has the form 

( 
m" 0 ) 
0 ffil( . 

(1) 
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Due to the presence of strangeness violation in the weak interac­
tions, a nondiagonal term appears in this matrix and then this mass 
matrix is transformed in the following nondiagonal matrix: 

( 
ffi7r ffi7rl() 

- m1r K m K ' 
(2) 

which is diagonalized by turning through the angle ,8 and then 

( 
m1r 

m1rK 
m1rK.) ~ ( m1 0 ·)--
mK O m2 s 

. (3) 

where 
tg2,8 = -, ~- _ -,, 

m1r - mK 

2m1rK 

T • ~ l : • 

. 2m1rK 
szn2,8 = -- ', -

J(m1r - mK)2 + (2m1rK)2 
(4) 

m1,2 = ~((m1r - mK )± J(rn1r - mK)2 + 4(m1rK )2). 

It is interesting to remark that expression (4) can be obtained from 
the Breit-: Wigner distribution [8] 

(r /2)2 

P ~ (E- Eo)2 + (r /2)2 
(5) 

by using the following substitutions: . 

. E =:= 'r(/,K, -Eo = m1r, r/2 =,Zm1rK, (6) 

where r = W( ... ). 
'.':l,·. 

If the mass matrix· coritains_ II1assef> in 11 squared form, then oscil­
lations (or mixings) will be described by the expressions (3)-(6) with 
the following substitutions: 

2 m - 2 _ 2 
m1r -t m1r, K ~,mx, ffitrif -t m1rK. 

. . 
Here two cases of 1r, I{ oscillations [4] take place: real and virtual 

oscillations. 
.i. 

n ... t(•.. . - <t1 ~-· .... --""ll"II' I '-tUi&\.A ....... kt.t~f u . ..,. ...... a,. 
'rul~~~ril nc~~e.c:.a;.11 
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1. If we consider the real transition of 1r into I( mesons, then 

sin22{3 ~ 4
m;K ~ O, 

(m,,.-mK)2 (7) 

i.e. the probability of the real transition of 1r mesons into I( mesons 
through weak interactions is very small since m,,. K is very small. 

How can we understand this real 1r - I( transition? 

If 2m,,-K = f is not zero, then it means that the mean mass of 1r 

meson is m,,. and this mass is distributed by sin22{3 ( or by the Breit­
Wigner formula) and the probability of the 1r - I( transition differs 
from zero. So, this is a solution of the problem of origin of mixing angle 
in the theory of vacuum oscillation. 

In this case the probability of 1r - I( transition (oscillation) 1s 
described by the following expression: 

P( 1r - K, t) = sin22{3sin2 
[ 1rt ;; ] , (8) 

where p is momentum of 1r meson. 

2. If we consider the virtual transition of 1r into I( meson, then, 
since m,,. = mK, 

tg2{3 = oo, 

i.e. f3 = 1r / 4, then 

sin22{3 = 1. (9) 

In this case the probability of 1r - I( transition (oscillation) is 
described by the following expression: 

P(1r - K, t) = sin2 [1r LL·], 
osc 

where L = vt, v- is a velocity of 1r meson, at v ~ c L ~ ct, 

2.48p,,.(MeV) 
Lose= I 2 2 I ( V2)m. m 1 - m 2 e 

(10) 

Let us consider elements of the model of dynamical analogy of 
Cabibbo-Kobayashi-Maskawa matrices and its development. 

..... 
,~t,f" ..... ~ 
A-A""...,.. 
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3 Elements of the Model of Dynamical Analogy of 
the C~bibbo~K~bayashi-Maskawa Matrices and . . . 

•It~ Development :,; ) 

In the case of three families of qu_arks, the current Jµ has the following 
form: · 

. . : . . , ( d) 
Jµ ~. (ucl)L-?; · s .. · 

. . ... , b · 
. L 

(11) 

, ,·(Yud 
v~ -~; 

·vus Vub )·. 

~::· i:. 'i 
where Vis Kobayashi-Maskawa matrix [2]. 

Mixings of the d, s, b"quarks, art not connected with the weak in­
teraction (i.e., with w±, Z0 bosons exchanges). From equation (1) it 
is well seen that mixings-·of the d, s, b quarks and exchange of w±, Z 0 

bosons take place in an indepen'cient manner (i.e., if matrix V were 
diagonal, mixings of-the d, s, b quarks would not have taken place). 

If the mechanism of this mixings is realized independently of the 
weak interaction (W±, ~~ boson exchange) with a probability deter­
mined by the mixing angles 0, f3, 1 , 8 ( see below), then this violation 
could be found in the strong and electromagnetic interactions of the 
quarks as a clear violations of isospin, strangeness·aira beatity. But, 
the available experimental results have shown, that there is no clear 
violations of the number ~~ns'ervations in strong and electromagnetic 
interactions of the quarks. Then we must connect the non-conservation 
of isospins, strangeness an<l, beapty (or mixings of the d, s, b quarks) 
with some type of interaction mixings of the quarks. We can do it in­
troducing ( together with the w±, Z 0 bosons) the heavier vector bosons 
B±, c±, D±, E± which.inte~act~ith thed, s, b quarks with violation of 
isospin, strangeness and beauty .. 

We shall choose paraniet'i·ization of matrix V in the form offered by 
Maiani [9] 
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V=U 
0 
c, 

-s, 
Q ) ( Cp s, 0 
c, -spexp(i6) 

0 spexp(-i6)) ( co so O) 
1 0 -so co O , 
0 · Cp O O 1 

co= cos 0, so= sin 0, exp(i6) = cos6 + i sin 6. (12) 

To the nondiagonal terms in (12), which are responsible for mixing 
of the d, s, b- quarks and GP-violation in the three matrices, we shall 
make correspond four doublets of vector bosons B±, c±, D±, E± whose 
contributions are parametrized by four angles 0, (3, 1 , 6 . It is supposed 
that the real part of Re( s /3 exp( i6)) = s /3 cos 6 corresponds to the vec­
tor boson C± , and the imaginary part of Im( s /3 exp( i6)) = s /3 sin 6 
corresponds to the vector boson E± ( the couple constant of E is an 
imaginary value!). Then, when q2 << m?.i, , we get: 

m2 92 
tan0~ r l, 

ms9w 
2 2 

tan /3 ~ mw9e 
- 2 2 ' me9w 

2 2 ~ mwgD tan 1 = - 2- 2-_, 
. mDgW 

2 2 
c ~ mwgE tanu = - 2- 2-. 

mEgW 

If 9B± ~ Ye± ~ 9D± ~ YE± ~ 9w± , then 

2 

0 ~ mw tan .= - 2-, ms 

m2 
tan/3 ~ ~, 

me 

,.,,;m?.i, 
tan,= - 2-, mD 

2 
c~mw tan u = -.-2-. mE 

6 

(13) 

(14) 

~-

'l 

'I,. 

f'' 

. Concerning the neutral vector. bosons B 0
, c 0

, D 0
, E

0
, the neutral 

scalar bosons B'0 , c'0, n'0,E'0 and the GIM mechanism [10] can repeat 
the same arguments given in the previous work [6]. 

The proposed Lagrangian for expansion of the weak interaction 

theory (without CP-violation) has the following form: 

L;nt = i 'z::: g;( Ji,o: A~ + c.c.), 
i • 

. (15) 

where Ji,o: = ,;/J;,c(°T<p;,L, 

T = ( ~1 ~)' 

i=l i=2 i=3 

~i,L = ( : ) L' ( ~ ) L' ( ~ ) 1' 

i=l i=2 i=3 

<?i,L = ( : ) L ' ( ! ) L ' ( : ) L. 

The weak interaction carriers A~, which are responsible for· the 
weak transitions between different quark families are connected with 

the B, C, D bosons in the following manner: 

A~ -t B;,A;, -t C;,A!-t D;. (16) 

Using the data from [1] and equation (14) we have obtained the 

following masses for B±, c±, D±, E± bosons: 

mn± ~ 169.5 -;-171.8 GeV, 

me±~ 345.2-;- 448.4 GeV, (17) 

mv± ~ 958.8-;- 1794 GeV, 

mE± ~ 4170-;- 4230 GeV. 
Now consider some development. of onr model. 

7 



a. It is clear that the masses of quarks and B, C, D, E bosons can be 
introduced using the Riggs's mechanism. Here arises a question about 
correspondence of the physical picture given by Riggs's mechanism to 
the real physical picture of quarks and vector bosons. In the Higgs 's 
mechanism the quarks and vector bosons get their masses through their 
interactions with Riggs's bosons [11] (in an analogy with the mechanism 
of superconductivity), i.e. in the presence of Riggs's fields the quarks 
and vector bosons are massive. It is clear that free quarks and vector 
bosons (in reality, we have free quarks and vector bosons) must be 
massless. Then we see that Riggs's mechanism is for introducing masses 
in the theory without singularity (i.e. without straight violation gauge 
invariance), but not a mechanism of masses generation. 

On the other side, the standard weak interaction cannot generate 
masses for its 15 invariance. 

Then the following question arises: how are masses of these particles 
generated? 

It is obvious that these quarks and bosons must have a structure,i.e., 
they consist of subparticles which take part in some interactions which 
generate masses. So, we see that it goes in an analogy with the strong 
interactions, where the fundamental interaction is the chromodynamics 
and the hadrons consist of the quarks. It is clear that if the quarks and 
massive bosons consist of subparticles, then in our approach (the Model 
of Dynamical Analogy of the Cabibbo-Kobayashi-Maskawa matrices) 
the problem of singularity does not appear since at small distances 
interact subparticles but not quarks and massive bosons. And then 
the problem of singularity must be solved in the theory of subparticle 
interactions in full analogy with the strong interactions theory. It is 
obvious that in the framework of our model it is not needed to use GIM 
mechanism [10] to cancel the singularity. 

b. Let us have J(± which is produced in strong interactions and we 
want to consider its decay. Since I( meson includes s quark, then when 
we take into account the weak interaction, we must use the Cabibbo 

8 
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\l 

matrix [2] mixing s, d quarks: 

d1 = dcos0 + ssin0, 
s1 = -dsin0 + scos0, 

i.e., s quark transforms in superpositions of s, d quarks 

s -t -dsin0 + scos0. 

(18) 

(19) 

The matrix element of I< meson decay [7] is proportional to sin0, 
i.e., we take into account only the sin0 part from expression (19) and 
then the term proportional to cos0 is remained. It means that only 
the part proportional to sin0 decays. However, from the current ex­
periments we know that I< mesons decay fully. It can happen only if 
I< mesons decay through massive bosons B but not W boson and the 
sin0 term of Cabibbo matrix. Then the mass of this massive boson B 
must be determined through the following expression: 

2 
2~ mw 

mb =--. 
sin0 

(20) 

We see that this massive boson is like B boson which appears in the 
above considered model of dynamical analogy of Kabibbo-Kobayashi­
Maskawa matrices [6]. 

Let us pass to a more detailed consideration of the virtual oscillation 
case since it is of a real interest (i.e. we compute nondiagonal term of 
the mass matrix). 

4 The 1r /!+ K Meson Transitions in Diagram Ap­
proach in the Model of Dynamical Analogy of 
Kabibbo-Kobayashi-Maskawa Matrices 

When one takes into account d, s quark mixings and B exchange, the 
diagraJl]. for 7f ~ I< transitions has the form 
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u u 

B 

J C 
· It is clear that at d, s mixings the transition of 1r meson mass shell 

does not take place, Le.· K meson produced from 1r meson remains on 

the mass shell of 1r meson. 
The amplitude of this process has the following form ( we use Feyn-

man rules): . 

M(1r -t K) = GB[d,1,(l - 15)ul[s1µ(l - 15)u], · 

or 
M(1r-+ K) = GB[dQµul[sQµu], (21) 

where GB is Fermi of B boson constant which is connected with Fermi 

constant Gw of W by the following relation 

G G 
. 0 GF g2 

B = Fsin , rn = - 2-, v2 8mw 

and Qµ = 1µ(1 - 15) . 
The mass Lagrangian L for this diagram in the framework of stan-

dard approach is [7] 
. L = M(1r-+ K). (22) 

Then the mass differences in squared form which. response for 7r -+ I( 

and K -+ 7r transitions is 

mi - m~ =< 7r I L I K > + < K I L I 7r > (23) 

(we suppose that I( meson is on the mass shell of 7r meson). Therefore 

mi - m~ ~ 2mir.6.m12 
(24) 

10 

or 

.6.m12 ..,,.,,..-
1
-[< 1r IL IE>+< l{ IL I 1r >]. (25) 

2mir 

Now we compute mass difference. For this goal we use the following 
expressions: 

< O I dQµu I zr > <l>irfirPµ, 
< O I sQ1'u I I{>= </>1d1,~, (26) 

where <Pir, <PI, , fir, f1,, correspondingly, are the wave functions and the 
constant decays of 7r and E mesons, p1, is momentum of 1r meson. 

It is necessary to remark that the following relation for constant 
decays on mass shells will be: 

fir(mir) = h·(mir)- (27) 

Then from equation (23) using equations (26), (27) we obtain the fol­
lowing expression: 

A 2 2 2 !2 2G uni = ni1 - ni2 = irmir B, (28) 

or (see Eq. ( 4)) 
2 mir1, = .6.m12 = firmirGB. (29) 

5 Probability of 1r ~ K Virtual Oscillations with 
Account of 1r Decays 

If at t = 0 we have the flow N(1r, O) of 7r mesons, then at t -=/- 0 this 
flow will decrease sine<' 7r mesons decay and then we haw the following 
flow N ( 1r, t) of 1r mc'sons: 

N(1r, t) =exp(_!_ )N(1r, 0), 
To 

(30) 

where 7i = 7,' E, . · 0 Om, 

The expression for the flow N( 1r ---+ I{. t), i.('. probability of ,r to A. 
meson transitions at•time t, has tlw following form: 

N(1r - E,t) = N(1r,t)P(1r---+ l{,L) (31) 
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where 

and 

P(1r --t K, L) = si'n2 [1r L:J, 
2.48pir(MeV) 

Lose = I 2 2 I ( V2) 1n, m} -m2 e . 

2 2 !2 2G m 1 - m 2 = irmir B· 

The expression for proba1:>ility of .1r --t I( oscillations P(1r --t K, t), 
in. theapproach where the phase volume is taken into account, has the 
following form [4,5]: · 

N(1r --t K, t) = N(1r, t)sin2 
[ ~ ] = 
T(1r -t K) 

. ,, . . [ m
4 l 

t 1rt ~ 
=N(1r 0)exp(--)sin2 

(~)2 · 
' To To mu+mJ 

(32) 

Probability of 1r --t I( real oscillations P( 1r --t K, t) in the case of 
real oscillations is described by the following expression ( see Eq. ( 8)) 

[4,5]: 

"' . -:;__; ~ _P(1r rJ(,,t) = sin
2
2,Bsi:1

2
"[rt;;], 

where ,.,,.' (,' 

.. 2 ' 

sin22,B ~ 4
mirK ~ O. 

1 .•.•• (mir,-mK)2 

The kinematics of I( meson production processes in quasielastic 
processes is given in work [4]. 

6 Conclusion 

The ,elements of the theory of vacuum oscillations and. the m:odel of 
dyna~lcal expansio~ of the theory -~f weak interactions works at the 
tree level, i.e. the model of dynamical analogy ofCabibbo-Kobayashi­
Maskawa·1matrices and its further. development, were given. It was 
shown that the quarks and massive vector bosons must be structural 

12 

aud these structural particles (subpart.ides) must interact to generate 
quark and vector boson masses. In this case the problem·of singularity 
cancellations does not arise in this model. It was also shown that, for 
self consistence of the theory, the weak decays of I( mesons must go 
through massive vector boson B but not TV boson. 

In the framework of this model the probability of 1r +-+ E tran­
sitions (oscillations) in the diagram approach was computed. These 
transitions are virtual since masses of 1r and E mesons differ consid­
erably. These transitions (oscillations) can be registered through E 
decays after transitions of'virtual E mesons to their own mass shell by 
using their quasielastic strong interactions. 
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EeunoeB X.M. 
it± ~ K ± Me30H-BaKY)'MHhle rrepexouh1 (ocu11mrn1.um) 
B miarpaMMHOM ITO)lXO)le B MO)lem1 )ll1HaMl1'1eCKOH aHarronm Ma-rp11u 
Ka611660-Ko6aaum-MacKaBbl 

E2-99-306 

,llaJOTC51 3JieMeHTbl Teop1111 BaKyyMHblX OCUIIJIJl5IU11H 11 M0)lemI )ll1HaM11'1eCKOfO 
pacrnupeH1151 Teop1111 cJia6oro B3aIIMOJleHCTB1151, pa6orn10mei1 B upeBecHOM rrp116JI11)Ke­
HIIH, T.e. M0)leJI11 )llIHa\IH'IeCKOH anarronm MaTp11U Ka611660-Ko6aarn11-MacKaBhl. 
TaK)Ke paccMaTpHBaeTC51 )laJibHettrnee pa3BHTHe .3TOH MO)leJIH. IToKa3auo, 'ITO KBapKII 11 

rn)KeJibie BeKTOpHbie 6o30Hhl .LIOJI)KHhI 6bITh CTPYKTYPHhIM11 11 3Tl1 CTPYKTYPHhle (co­
CTaBJia10m11e) '-!aCTIIl..\hl )lOJl)KHbl B3alll,,!O)leHCTBOBaTb, 'IT06bl reHep11poBaTb MaCCbi 
KBapKOB H T51)KeJiblX BeKTOp!!bIX 6o30HOB. B 3TOM CJiyqae rrpo6JieMbl COKpameHH51 CIIH­
ryJiap!iOCTeH B MO)lemI He B03HIIKaeT. TaK)Ke 110Ka3aHo, 'ITO )lJl51 CaM0C0rJiaCOBaHH0CTl1 
TeopIIH CJia6hie pacrra)lhl K-Me30HOB )lOJI)l(Hbl H.LITII qepe3 MaCCIIBHbie BeKTOpHble 6030-
Hbl B, a He qepe3 W-6o30HhI. 

B )l11arpaMMH0M IT0)lX0)le B paMKax 3TOH MO)leJlll Bbl'Il!CJI5IeTC51 BepoaTHOCTb pearrh­
HblX H BlIPTYaJibHb!X it ~ K-rrepeXO)lOB (OCU11JIJl51U11H). BepoaTHOCTb pearrhHblX 
it ~ K-rrepeXO)lOB 51BJI51eTC51 O'IeHb "Marroj:j BeJil1'IHHOH, 1103TOMY rrpe)lCTaBJI5l!OT HHTepec 
TOJibKO BHPTYaJibHble rrepeXO)lbl. 3n1 BHPTYaJibHble rrepeXO)lbl ( OCUJ1JIJI51UHH) MO)KH0 
3aperncTpIIp0BaTh 110 pacrrauy K-Me30HOB, ecm1 3TH BHpryarrhHble K-Me30Hbl rrepeBeCTH 
Ha IIX co6crneHHY!O IT0BepXHOCTb qepe3 KBa3Hyrrpyroe CHJlbH0e B3al1MO)leHCTBHe. 

Pa6orn BblIT0JIHeHa B Jla6oparnp1m qm3HKII '-!aCTIIU Ol15Il1 lI HayqHO-IICCJie)lOBa­
TeJibCK0M HHCTHTYTe rrpHKJia)lHOH MaTeMaTIIKH II aBT0MaTH3au1111 KEHU P AH, 
r. Harrh'IHK. 

Coo6mem1e 06be)lmlellHOro HHCTHTyra l!/lepH!,IX HCCJle)lOBa!lllll. )ly6Ha, 1999 
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The elements of the theory of vacuum oscillations and the model of dynamical ex­
pansion of the theory of weak interactions works at the tree level, i.e. the model of dy­
namical analogy of Cabibbo-Kobayashi-Maskawa matrices and its further develop­
ment, are given. It is shown that the quarks and massive vector bosons must be struc­
tural and these structural particles (subparticles) must interact to generate quark and 
vector boson masses. In this case the problem of singularity cancellations does not arise 
in this model. It is also shown that, for self-consistence of the theory, the weak decays 
of K-mesons must go through massive vector boson B but not W-boson. 

In the framework of this model the probability of it ~ Ktransitions (oscillations) in 
the diagram approach is computed. These transitions are virtual since masses of it- and 
K-mesons differ considerably. These transitions (oscillations) can be registered through 
K-decays after transitions of virtual K-mesons to their own mass shell by using their 
quasielastic strong interactions. 
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