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2 Introduction 

Among the proble~s formulated by Hilbert at. the turn of the XX century, there is 
the sixth problem: the mathematical formulation of the axioms of physics. Hilbert 
wrote: 

To construct the physical axioms according to the model of the axioms of geometry, · 
one must first try to encompass the largest possible class of physical phenomena by 

means of a small number of axioms and then, by adding each subsequent axiom, to 
arrive at more special theories, after which there may arise a classification principle 
which can make use of the deep theory of infinite Lie groups of transformations. 
Moreover, as is done in geometry, the· mathematician must bear in mind not only 

the facts of actual reality, but also all the logically possible ·theories, and must be 

particularly careful to obtain the most complete survey of the totality of consequences 

which follow from the adopted systematization. 

In this talk the progress in Hilbert'_s sixth problem solving is demonstrated. That 
became possible thanks to the gauge field theory in physics and to the geometrical 
treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is 
the best basis for solution of the problem being discussed. 

Usually Hilbert's sixth problem is citing in connection with an axiomatic for­
mulation of probability theory. But this Hilbert's idea is only one of the ways of 
this problem realization. Moreover now the probability theory is not regarded as a 
chapter of physics. 

The modern physics is very spacious and ramous science. In principle different 
ramifications of the physics tree can have their own axiom systems. Is there the 
axiom system covering all physics branches that is the question. But classical field 
theory, mechanics and, partially,· elementary particle physics can be axiomatically 
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formulated by analogy with geometry as Hilbert supposed. The base of such axiom 
system is, really, Sophus Lie's finite and infinite group theory in accordance with 
Hilbert's hypothesis. In his VIth problem Hilbert suggested also that all theorems 
of solid body motion would be obtained by passage to the limit from the axiom 
system being based on idea of undergoing continuous change state of matter, which 
fills continuously the whole space. In the gauge field theory the equations of particle 
motion followed from the equations of field. Hence, mechanics and solid body motion 
theory can be obtained from the field theory by a process of passage to the limit as 
Hilbert supposed. 

This progress in solving of Hilbert's sixth problem became possible thanks to 
some new branches in physics and mathematics: gauge field theory, fibre bundle 
space geometry and development of variational methods mentioned in Hilbert's 23rd 
problem. 

3 Structure of Mathematical and Physical 
Theories 

In order to discuss the means of solving Hilbert's sixth problem, we compare struc­
ture of mathematical theory with physical one. It is. necessary to take note of 
a distinction between purely mathematical inferences and the usually employed 
physical inferences. Mathematical inference is analytic, i.e. it is done in accordance 
with definite logical rules on the basis of the adopted definition and axioms. No 
additional information which is not contained in the initial definitions and axioms 
is admitted in the process of logical deduction. Otherwise, it would be possible to 
obtain arbitrary consequences. Mathematical propositions are valid for the abstract 
objects introduced by means of the definitions, these being logical atoms of the 
theory. 

The reasoning scheme of mathematical (analytic) inference is as follows: 

I Axioms I-------
- I Logic f j Consequences I 

I Definitions I / 
As a rule, a physical theory is based on concepts which arc poorly defined from 

the point of view of mathematics. These have descriptive nature and bear the marks 
of the various methods of experimental study of physical objects, as well as the 
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sense perception of them by the experimenter. Therefore, for the· axiomatization of 
physics it is necessary, first and foremost, to go over from concrete ideas to general 
concepts. The general concepts usually reflect a small part of the properties of real 
objects, but then the distinguished properties arc inherent in many real objects, so 
that arguments based on the general concepts have a certain degree of generality, 
which is necessary for scientific inferences. 

Thus, the logical atoms of a physical theory are abstract objects which possess 
properties that are common to some class of real physical objects. Consequently, 
under different conditions one and the same physical object can serve as a model .of 
the logical atoms of physical theories which differ from their mathematical technique. 
Conversely, one and the same mathematical technique can be used to describe 
phenomena which arc completely different to their physical nature (for example, 
d'Alembcrt's equations and all possible periodic processes). A mathematical theory 
becomes physical if a physical 'realization of its basic concepts has been found. 

Let us classify the various types of physical propositions according to their degree 
of generality. The following scheme presents the result: 

I Fundamental general principles I 
I 

l\Iathcmatical teclmique 

I 
I Theoretical models I 

I 
I Experiment I 

The proposition of each level is valid for the classes of concrete propositions 
of the level below it and is general in relation to thrm. Thus, using exactly the 
same fundamental general principles, it is possiblr to construct different forms of 
mathematical technique. At the present time, the following are known in theoretical 
physics: 1) the Lagrangian formalism; 2) the Hamiltonian formalism; 3) the axioma­
tic approach in quantum field theory; 4) the geometrical formulation of gauge field 
theory. The principles of invariance and symmetry arc being used as the fundamental 
general principles for construction a physical theory. A symmetry can be local, valid 
in the neighborhood of a point, or global, valid over all space-time. Local symmetry 
is source of infinite S.Lie's groups appearance in physics and geometrical treatment 
of interactions. 
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4 S.Lie's and F.Klein's concepts: Erlangen 
Program 

S.Lie and F.Klein ,vere first who understand the role of symmetry principks in 
geometry axiomatics. The ideas were formulated by Klein in 1872 in his "Erlangen 
Program". In this lecture Klein proposed to regard as geometrical only that pro­
perties of figures which are invariable under space transformations forming a Li_e 
group. He implied the finite Lie group which transformations depend on finite 
number of parameters. Consequently, space symmetry properties became tqe main 
subject of geometry axiomatics. In this case the properties of geometrical figures are 
described by a set of Lie group' invariants. Later the spaces admitting any Lie group 
of symmetry was named homogeneous (or Klein's) spaces. 

Geometry can be regards as physics and as mathematics. Geometry as physics 
study the extension properties of material bodies. Its statements can and must be 
proved by experiments. Geometry as mathematics is only interesting in the logical 
dependences between its statements and the process of obtaining 'them from the 
axioms. Describing by geometry a motion of matter, we unify the space and time 
into a single extension and unify geometry with physics. Axiomatic physics is a part 
of mathematical or theoretical physics. 

Structure of any physical theory reflects the process of obtaining information 
of the external world by experimental investigation. A distinctive feature of such 
investigation is the requirement of reproducibility of the results. This means that 
it is implicitly assumed that there exist a class of mutually identical objects of 
investigation, a class of identical frames of reference and instruments by means of 
which the measuring procedure is implemented. Regardless of how the identity of the 
studied objects or frames of reference is established in practice, the identity relation 
has the structure of a group. The measuring procedure consists in comparision of a 
studied object and a standard. Independent on the choice of the frame of reference 
results are formulated in terms of invariants of the symmetry Lie groups. So the 
symmetry group specifies a principle of relativity of the theory. 

An analogous situation also exists in geometry. Euclidean geometry investigates 
the properties of figures independent of its position in 2-dimentional space. To 
determine these properties we have to move the figures in space and to compare 
them with standards. Geometrical properties of figures will be that are invariable 
under these movements. So, two-dimentional Euclidean geometry can be regarded 
as a theory of the invariants of the group of motions of the plane. At the same time, 
two-dimentional rotations and displacements constitute the group of motions of the 
implements used to construct geometrical figures, to prove the congruence of some of 
them, and to prove theorems. These implements are the compass and ruler without 
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divisions. The use of other implements (for example, a ruler with divisions) would 
take us beyond the scope of Euclidean geometry. In this case the conformal group 
would become the group of motions of the implements and the symmetry group of 
the theory. 

So, every physical· theory contains in the structure of its axioms the properties 
which the instruments used to test it must possess. Conversely, the choice of 
the instruments and scheme of an experiment predetermines the possible type of 
symmetry of the. theory describing the given experiment. Although in the physical 
experiment it is often difficult to determine directly an experimentally adequate type 
of symmetry, the logical connection between experimental and theoretical methods 
of investigation the world is the same in physics as in geometry. As Heisenberg said, 
we must remember that what we observe is not Nature itself, but Nature which 
appears in the form in which it reveals itself as a result of our manner of asking the 
questions. 

5 Symmetry Groups and Axiomatics of Physics 

Until the beginning of the twentieth century, the traditional method of the physi­
cal theory construction was the inductive method, which proceeds from experiment. 
Individual fields of physics (Newton's mechanics, Maxwell's electrodynamics) were 
axiomatized only after having been sufficiently well studied experimentally. An 
understanding of the final form to be taken by a physical theory and of the rules for 
construction any theory makes it possible to costruct a physical theory axiomatically, 
as Hilbert wanted to do. As is well known, Hilbert attempted to construct a 
unified theory of gravitation and electromagnetism on the base of a few axioms. 
The equations, obtained by him but without electrodynamic part, coincide with 
gravitational Einstein's equations. Unfortunately, this unified theory was not further 
development by Hilbert. However it was rediscovered by J.A. Weeler and C.W. 
Misner in 50's years. At the present time, a physical theory exists which was 
constructed axiomatically prior to experiment and afterwards found its physical 
realization. This is the theory of gauge fields which covers all fundamental inte­
ractions. It generalized the Hilbert-Weeler-Misner theory and include Maxwell's and 
Einstein's theories. Newtonian mechanics can be obtained from it by integration and 
passage to limit. As Hilbert predicted, it makes use of the deep theory of infinite Lie 
groups to classify interactions. Moreover, it admits a purely geometrical formulation, 
in which the analogy between axiomatics of geometry and physics becomes clear. 

The physical theory is based on the principles of invariance and symmetry like 
geometry. 
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6 Types of Geometries and Types of Physical 
Theories 

Three methods of construction geometry are used in physics: 1) Klein's approach, 
which assumes that space is homogeneous; all properties of geometrical objects in 
Klein's geometry are described by sets of invariants of the space symmetry group; 
2) Riemann's approach, which does not consider any symmetry of the space; in this 
case, the characteristics of geometrical objects are constructed step by step from local 
differential expressions; connection coefficients are required' for the construction of 
the space as a whole; 3) Cartan's approach, in which the space as a whole.constitutes 
a set of local homogeneous Klein spaces associated with each point of a Riemannian 
space and interrelated by generalized connection coefficients. 

The geometrical approaches in physics can be classified in a natural way in 
accordance with the foregoing conceptions of geometry. Klein's point of view is 
used, for example, in classical and relativistic mechanics. The images of Riemannian 
geometry - the metric, connection coefficients, and curvature - were used in general 
relativity. Cartan's approach, which was developed in the modern geometry of fiber 
bundle spaces, made it possible to geometrize the theory of gauge fields. 

The connection between physics and geometry is determined by Poincare's sym­
bolic formula: G=Go +F, where G represents the dynamical geometry, G0 is the 
geometry of the "background," and F - the forces of interaction. The meaning of this 
formula is that physics and geometry do not occur separately in experiment; only the 
combination of geometry and physical laws is subject to experimental verification. 
This idea was first expressed by Kant. Poincare understand that the decomposition 
of the sum G into a purely geometrical background and an interaction F depends 
on us. Now we can formulate it more precisely: this decomposition depends on the 
our choice of the means of measurement. 

As long as physical phenomena are described as occurring at some place and time, 
space-time ideas cannot be excluded from the theoretical description of experiment. 
But the idea of forces which produce an interaction is not essential. A forcefree 
description of interactions renders the theory purely geometrical. The actually 
observed bending of trajectories of particles is described by means of the concept of 
connection coefficients of a nonholonomic space, which replaces the concept of force. 
If one and the same phenomenon is described in two different ways, there must exist 
a "principle of equivalence" which permits the transition from one description to the 
other. But in view of the relation between the form of the theory and the choice of 
the means of measurement, we must remember that the scheme of an experiment to 
test the geometrical theory must be different from one to test the ordinary theory of 
interactions in terms of forces. A geometrical description equivalent to a description 
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in terms of forces always exists, but for an experimental verification of the geometrical 
form of the theory the test bodies and instruments must be correctly chosen. Any 
geometrical theory of physical phenomena is a theory of the motion of test bodies. 

Cartan's approach is development of "Erlangen Program" using the geometrical 
idea of a space which points arc arbitrary clements. 

7 Summary 
. 

So, the Hilbert idea being formulated in his Vlth problem is realized in the gauge 
field theory. Really, the classification principle which use of infinite Lie groups of 
transformations arises in this theory. This principle classifies the forces earring the 
interactions into effect in the field theory (classical and quantum), and in elementary 
particle physics. Newtonian mechanics can be obtained from the gauge field theory 
by integration and passage to limit as Hilbert proposed. In its geometrical form 
the gauge field theory (i.e. the physics) is the theory of connection coefficients of 
fibre bundle space. Consequently, the axiomatic theory of corresponding class of 
physical phenomena is possible in accordance with axiomatization of geometry. But 
the relevant axiom system will describe physics as geometry. Axiomatics of physics 
as physics is also possible, but it is other than axiomatics of physics as geometry. 
The common axioms in both cases will be Lie group symmetries. 

The next step in Vlth Hilbert's problem solution consists in answer the question: 
what is the largest possible class of physical phenomena admitting a pure geometrical 
theory as its description? 
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The progress in Hilbert's sixth problem solving is demonstrated. That became 
possible thanks to the gauge field theory in physics and to the geometrical treat­
ment of the gauge fields. It is shown that the fibre bundle spaces geometry is the 
best basis for solution of the problem being discussed. 
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