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1 INTRODUCTION

Before deriving the law of transformation between time-space coordinates of an
event measured in two inertial frames S, and S,, one must at first specify the
frames themselves. In the case of the special (pure) Lorents transformation (boost),
the triple 75 of mutually orthogonal space axes of the reference frame S, (named
triad T, below) is set to be parallel to the S, triad T}. However, T, moves relative to
Ty, and determination of their parallelism is more complicated as compared to the
case when T is at rest relative to T5. In the latter case, it is sufficient to measure
the projections of each axis of T; relative to T} and verify that T} axes are parallel
to T, axes (two vectors @ and b are parallel if a; = kb;, i = 1,2, 3).

Moving axes parallelism is discussed in sect. 2. It is shown in sect. 3 that the
notion is needed not only for the boost definition but also for refinement of the
general Lorentz transformation definition.

Section 4 demonstrates that the property of the parallelism of the Lorentz triads
is nontransitive (unlike the case of immovable triads), i.e., if Ty || T» and Ty || T3,
then TY is not parallel to T3 in the general case. This is directly related to the
well-known property of boosts: They do not form a group, i.e., the product By B, of
two boosts is not a boost B in general. Instead, By B, is equal to a boost multiplied
by a space rotation R: B;B, = RB e.g., see the books [1] and [2]. Two names are
used for R in the literature: Thomas rotation or Wigner rotation (apropos of the
terminology, see e.g. [3],[4]). [ shall use the appellation ” Thomas-Wigner rotation”.

Physical applications of the rotation cannot be understood if transitivity prop-
erty of Lorenz triads’ parallelism is unconsciously assumed. This is illustrated in
sect. 5 using as examples the Thomas precession and relativistic phase analysis for
spinning particle scattering. The rotation is also known to-be of importance when
measuring the abnormal electron and muon magnetic moments, see e.g.[5].

The summary is given in the concluding section 6. ‘

2 PARALLELISM OF LORENTZ
FRAMES’ TRIADS

As usual, it is supposed that in each Lorentz frame there are synchronized clocks,
rulers, radars and other devices which allow one to measure lengths, angles and
velocities. The information interchange between S; and S; (e.g. by radio or light
signals) is also assumed to be possible.

2.1 Definition of moving triads parallelism

Fisher [6] emphasized the necessity of a particular definition of triads’ parallelism

and proposed the following one. An observer in S; measures the projections (vy;); -

i = 1,2,3 of the 5, velocity relative to S, (with respect to his triad T;). The
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projections (v12); of the S) velocity relative to Sz (with respect to 73) are measured
in S5. The S; observer informs the S; observer of his results. Fisher proposed to
consider T, being parallel to 77 if

(’Ugl)i = (—‘012);, 1,= 1,2,3 or 0,(1) = 052) (1)

~(1)

where 6( ) are the angles between the 05 and triad Ty axes e } and 6(2) are the ‘

angles between —t5 and 6(2)

Obviously, the triads are not parallel if eq.f1) does not hold, i.e., it is a necessary
condition for the triads’ parallelism. But I stress that it is not a sufficient one.
Indeed, eqs.(1) survive if one rotates arbitrarily 77 around @2, or T; around #,.
This is evident if one considers the equivalent rotation of a vector with respect to
invariable axes. The vector does not change when rotating around itself. One may
also use the formula for rotation around a direction 7 at an angle a:

ad'=d+17 % gsina + [i(id) — a}(1 — cosa). (2)

If i = d/a, then a} = a;. Therefore Fisher’s proposal needs a complement.

Note that Fisher proposed a check of the Ty and T parallelism. I shall at first
consider a construction of the T} triad which can be regarded as being parallel to
T,. Measurements or observations, which may be performed in the frames S, and
Sy, will be used for the construction. Relative velocities are the basic supporting
observables which can be used following [6].

To construct the needed triple € "( ) , let us choose in S, an auxiliary spherical
coordinate system with —7)2 as an axis z. The polar angles of e( ) in this system
coincide with the angles 0f ) which are required to be equal to 05 ). Evidently, one
has

cos’ 8y + cos? 0 + cos’ O3 =1, ;= 6 or 6 (3)

In order to construct e( ) , one must know in addition to 6; the azimuthes @; of €; e,

Note that the needed € 2) must be mutually orthogonal
(“(2) é' )) = cosf; cosf; +sin6;sinb; cos(p; — ;), Vi#j 4)

One can show that the differences 2 — @1, ¢3 — ¢ (and consequently 3 — 2 =
(ea— 1) — (w2 — 1) are fixed by eqs. (4) (6; being given) together with eq. (3) and
by the requirement that & 52), € 9’, € 5,2) should form the right-hand triple (as € 1(1) do).
Only these differences are fixed but not the very azimuthes ¢, @9, @3, €.g., ¢1 may
be arbitrary. This arbitrariness has been discussed above when criticizing Fisher’s
proposal. So the given angles 6; allow one to construct continually many triples e( )
To complete the construction of the needed (parallel to T}) triple, one must fix any
of the azimuthes, e.g. ¢,.

I shall outline the following example of a measuring device Wthh allows doing
this. Let us take a luminous rod which represents the vector € 1 ) of the triad Tj.
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The observer S» photographes it using a camera which is at the S, origin. Its optical
axis is directed along 7, the photographic plate being orthogonal to #j2. So a line
(segment) is obtained on the plate which is the image of the (moving) rod €} ), see
the dashed line on Fig. 1. i

€;3

Fig. 1. Boldface dot represents the S, origin. The dashed line is the image of
on a photographic plate (shown by the circle).

The image and the optical axis determine a plane [];. A unit length vector is

constructed which is in [[; and makes the angle 6; with (~712) 1 This vector is

declared (defined) to be the axis &2 which is parallel to &{".

Let us make some subsidiary notes. We suppose that-at ¢, = t, = 0 the origins of
T, and T; coincide and the velocity of S; origin observed from S, origin is represented
by the same vector ¥ at all times (%2 does not depend on time). This means
that one deals with a pure Lorentz transform but not with its combination with a
translation.

The moment of photographing and the time of exposure are inessential.

The image given by the camera is not inverted or rotated (about the optical
axis) as compared to its prototype. This may be verified in a separate experiment
performed in Ss.

Of course, instead of the suggested T5 construction one may check the T, and
T, parallelism. The observer S, finds the plane []; and verifies that € 52) is in thle
plane and makes the angle ¢, with (~@12) which is equal to the angle between €& 5 )
and 7y, etc.

Remark. The proposed definition of the triads’ parallelism is valid for both the
finite limiting (invariant) velocity (Lorentz case) and the infinite one (Galilei case).
The definition allows one to obtain, in the usual manner, the Lorentz boosts in the
former case and Galilei transformation in the latter case (e.g., see [2]).

The suggested construction of T3 || Ti can be applied to the case when T is at

—

rest relative to 7} but is translated by a vector R. To this end one can treat R

g

1The described device does not measure 6, of course. The numerical value of §; is communi-
cated from S to S» by radio. There exist two possible vectors in [], having the same angle 6,

. A o ={1
with (~#12). The right vector makes an acute angle with the image if eg )

L k4

in the same way as the vector of relative velocity has been considered above. The
construction can be used if there are difficulties in simple measuring of all projections

of & 52), e g”, € §2) with respect to T (see Introduction).

2.2 Other variants of the definition of parallelism

Measuring the photographic'i‘mages of & gl) and & gl), one can obtain the ”planes

[1, and [; in the same way as [[; has been determined abové. Note that the angles
between the planes [];, [1,, [1; are equal to the differences of azimuthes cp?), <.0§2), 905,2)
of € 52). Indeed, one may define cp,(-z) as the angle between the plane []; and an
arbitrary plane containing the line connecting the S, and S, origins (it is directed
along 7),). Let us emphasize that measuring [T, and []; in addition to [], is excessive
(i-e., it would give no new information) if all polar arigles 6; of € 22) are known. Indeed,
the differences ¢; — @; of the angles between the planes [], are fixed if §; are given,
see the text below eq.(4). A

But one can construct T; || Ty using chiefly the azimuthes o, cp§2), <p§2’ (mea-
sured with the help of the planes [];,I]s,[1s) instead of 6,6s,6; and <p(12). It is
possible to show, using eq. (4), that 0§2) are determined by <p§2) - (p(12) and <p§"” - cp(12)
if one knows in addition whether 6; (or 8, or 6;) is either acute or obtuse (note that
0 S 9,‘ S ﬂ'). )

Besides the two stated ways of defining parallelism let us indicate the third one.
It uses the particular case when the axis & §” of Ty is chosen along ;.  Then, the
axis 12 of Ty must be directed along (~2). The directions of other axes & 9 and
€ §2’ are determined as stated above, e.g. & ,ﬁ?) must be directed in the plane [],
along € gl) image (in this case f; = 7/2). The general case can be reduced to this
particular one. To ascertain that T) and T3 are parallel, both triads T} and T3 must
be rotated so that their new z-axis would coincide with the direction of the relative
velocity (i.e., Uiy for T} and —)5 for T3). If these rotations are equal (more exactly
if they differ only by rotations around relative velocity), then further verification of
the parallelism proceeds as in the particular case above. If they are not, then T is
not parallel to T5. .

Remark 1. Aharoni [2] at the beginning of his ch. 1.11 discussed the triad
parallelism. In distinction to my approach, he did not strive for a definition which
would precede Lorentz transformation derivation. But he pointed out that the
parallelism in the general case can be reduced to the parallelism in the case when
the relative velocity is parallel to the z-axis.

Remark 2. The difficulty of the parallelism definition may be illustrated when
discussing the following simple suggestion: ”T} and T3 are parallel if they coincide
when the origins of S| and S coincide”. It is implied that the coincidence is detected
in any of the frames, e.g., in S;. The S; triad T} must coincide with an image of T
which is to be measured in S;. For example, T3 can be a triple of mutually orthogonal



rods, and the measurement can be exemplified by the device for detecting moving
rod lengths. In the Lorentz case, the image of T3 turns out to be, in general, a triple
of vectors which are not mutually orthogonal. Such a triple cannot coincide with
the triad 7, and the suggestion fails.

3 LORENTZ FRAMES’ PARALLELISM AND
DETERMINATION OF THE GENERAL
LORENTZ TRANSFORMATION

As has been stated above, the definition of the triad parallelism must precede the
boost determination. Let us show that the definition allows us also to refine upon
the definition of the general Lorentz transformation (GLT) when the triads 7; and

T, are not parallel.

The boost matrix depends on three parameters, viz. the projections of relative .
velocity. One usually says that the GLT matrix depends, in addition, on three-

Euler rotation angles. But the triad 7> moves relative to 7y while the Euler angles
determine the mutual orientation of two immovable triads. The following refinement
of the GLT angles is propesed. In the Lorentz frame Sg, the triad T, parallel to
T, is constructed in the manner explained in subsect. 2.1. The triads Tfy‘ and T,
are mutually immovable, and there are Euler rotations which turn Tfl,' into T,. The
angles of these rotations can be taken as GLT parameters. Of course, one ”can deﬁn‘e
the latter using the rotation which turns the triad 71 into the triad T, which is

parallel to Ts. | .
Let r,@ denote space coordinates of an event relative to Ty, and p;”" are t_h?

event coordinates relative to T5. We have

r® = EjDijP_S'Z) or 7@ =Dp® (5)

where D is the matrix of the rotation which turns Tzu into Tp. As T} [ (17)11 the
coordinates (r{?, 1) of the event are expressed in terms of its coordinates (r; , 1)

relative to S; with the help of a boost (for the boost matrix derivation see e.g. [1],[2])

7@ = 7O 4 gy FO - ) (Y21 — 1)/v3, — Tyt

t® =yt — (FD - ) /), m=[1- vl /7
It follows from eqs.{3) and (4) that
5(2) = 'D~17_"(2) = ’D—l’l’_‘.(l) +D_1621(F(l) . 1721)(721 - 1)/1)%1 - D—l’l_)'gl’)"zlt(l);
(M

12 = [t — (FWn) /]

®-

wA

So GLT is represented as a product of a boost and a rotation.

Moller [1] gives another writing of eq.(7). If @ is S, velocity relative to S; (the
projections of #,; or T} are implied), then —5, is S; velocity relative to T-y. The
velocity @12 of S relative to Ty is connected with —v5, by the rotation

—Ty =Dty or Gp=-D'ty. (8)
Using eq. (8), one cau rewrite eq.(7) in the form of eq. (2.28b) from [1]

PO =D W — G (T - By )y — 1)/3 — Tyt

1 = [tV — (7D ) ]

4 NONTRANSITIVITY OF THE LORENTZ
TRIADS’ PARALLELISM AND
THOMAS - WIGNER ROTATION

The property ”if a = b and b = c then a = ¢” may serve as an example of the notion
of transitivity. The equality of elements «,b and ¢ and can be replaced by other
binary relations, e.g., by the property of being parallel in the casc when a,b and ¢
arc vectors. It is natural to ask whether the binary relation ”Lorentz triads T} and
T, arc parallel” is transitive, i.e., is it true "if 77 || T and T3 || T3 then T) || T3"7
Of course, if onc draws on a sheet of paper these three triads, as one usually does
it (see, c.g., Figure 2), then all triads turn out to be parallel pairwise. But really
we ascertain in this manner that this is the property of immovable triads. It wil
be shiown in this section that triads’ parallelism (defined above iu sect. 2) has no
transitive property when invariant (limiting) velocity is finite (the Loreutz casc).

4.1 Nontransitivity of the Lorentz triads parallelism

The nontransitivity results from the following reasoning. If T || Ty, then the trans-
formation from S) to Ss is a boost Byy. If T || T3, then the transformation Sy « S,
is also a boost Byy. If T || T3, then the transformation Sy «— Sy must also be a boost
according to the boost definition, see Introduction (1). However, the transformation
Sy ¢ S) may be determined as the product Bs,B,;. It is not difficult to show that
the product is not a boost in the general case, c.g., sec [1],[2]. So T} cannot be
parallel to T3, and transitivity does not hold.

Let us demonstrate using the following simple example [2], that ByaBs; is not
a boost. Let By be the boost with the relative velocity @, || €{ and By, be the
boost with @3, || €9, see Fig. 2.



Using eq. (6) we can write the matrices By and By, calculate their product
B33 By and compare it with the matrix of a boost B corresponding to a velocity 7,
see again eq. (6). It turns out that presupposed equalities of the matrix elements
(Bs2Ba1)uw and By, p, v = 1,2,3,0 are mutually exclusive. In particular, the equal-
ity of the last columns of Bz By (i.e., elements y, 0) give some values for v,, v, while
the equality of the last row (i.e., elements 0, i) gives differing values for v;, v,.

A simpler proof of the nontransitivity is given in [1]. Suppose that T} || T3 along
with T1 || T> and Ty || T3. Then the projection of the velocity ¥, of S; relative to
Sy and of the velocity 3 of S) relative to S3 must satisfy

(1731) = —(1713)ia 1= la 2,3 . (10)

See subsect. 2.1, eq.(1). I remind that (73,); are projections onto 7} while (v3); are
projections onto T3. Both the velocities #3; and 713 can be computed as functions of
U2 and U3, For example the velocity @) of 53 relative to S; can be determined with
the help of the boost By (the corresponding velocity being 75;) and the velocity
#isy of S3 relative to Sy, e.g. see [1) ch. 2.7, eq. (2.55). Let us record the result as
U3 = 5(T32/V1), for explicit expression see [1], eq. (2.55). Analogously 73 can be
determined as ' '

‘ i3 = s(Uh2/Vs) = s(—Un/ — U32) ' (11)
see [1], eq..(2.55’). It turns out that eq. (10) does not hold in general. This means
that the triads T} and T3 are not parallel.

Note. The function s(7/%") is referred usually to as "sum of @ and ¢')”. This
name seems to be inappropriate in the general case because s(7/7") depends upon
¥ and 7' in different ways and does not have the property s(0/7') = s(¢’/7) except
for the case ¥']] 7.

4.2 ThomaS-Wigner rotation as the measure of the differ-
ence of 7T} vs. T3 orientations

Let us consider quantitative difference of the T} and T3 orientations provided that
T1 ” T2 and T2 ” T3.

Lorentz transformations form a group; therefore, the product B3;Bj; of two
boosts is generally speaking a GLT i.e., the product RB of a boost B and of a
rotation R, see sect. 3. Here, R denotes the 4 x 4 matrix such that its time-space and
space-time elements are zero, time-time element is unity and space-space elements
form a 3 x 3 rotation matrix, see sect. 3. The parameters of B and R must be

determined from the equation _
B13By = RB. (12)

This is a hard algebraic work, which has been carried out, e.g., see [7]-[11]. It
turns out that the boost B velocity is equal to U3, = s(¥Usp/¥21). The rotation R is
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Fig. 3. Succession of boosts connecting the particle ¢ rest systems Srr and Sj.
Y-axes of all Lorentz frames are perpendicular to the plane of Fig. The axes zs
and zp; of Sy are drawn by the solid lines; the dashed lines show the St axes zy and
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also determined as a function of 73, and @;; R is called here the Thomas-Wigner
rotation, see Introduction.

Being the boost, B must transform from the Lorentz frame S, into the frame Sl,,l
whose triad is parallel to T} (SL,I velocity relative to S; being equal to #3,). The triad
has been denoted earlier as Tgl,'. So the space-space part of R must be tlie rotation
which turns T3” into T3 thereby determining the latter

T, =RT! or T3=RT,. (13)

We see that the Thomas-Wigner rotation specifies the Tj orientation relative to Tl‘

provided that T || T, and T5 || Ts. ‘
R allows as to express (—713);,7 = 1,2,3 (—013 projections on T3) in terms of
(v31):,% = 1,2,3 (projections on T})

(=U13); = Si(R™)5(Un)i or U3y = R(—h3). (14)

Vice versa, if (¥731); and #13); are given, then one can find the simplest notation Ryim
which satisfies eq.(14): the Ry, axis 7 is parallel to the vector product ¥3; X 73
(which is parallel to 73, x ¥) and the Ry, angle o is such that

sina = ¥ X ¥i3/|Va1 || Tus} .

See eq. (2).

Moller in his ch. (2.8) identifies R with Rg;,. However, their equality is not
evident because R might differ from Ry by additional rotations around the vectors
U31 or U3 (the rotation around #3, does not change #3;). Nevertheless, actually the
rotation R determined by eq. (10) does coincide with Rg;n.

One can obtain from eq. (12) its following modification

Balel = B(S(Uzl/ﬂaz))R = B(—1713)R, (15)

see eq. (14a) in [9).

5 EXAMPLES OF PHYSICAL APPLICATIONS

5.1 Kinematic origin of the Thomas precession

Consider an electron which moves with acceleration in the laboratory system (e.g., in
the Coulomb field of a nucleus). Let us introduce the non inertial frame of reference
A (Accelerated frame) which moves together with the electron so that the electron
at each moment of time is at rest in A. Assume that the A triad T'(7) at the moment
T is parallel to the A triad T(r + d7) at the infinitesimal close moment 7 + dr (A
can be called accompanying frame of reference).

Remember that we deal with inertial systems when considering the Thomas-
Wigner rotation. To apply this consideration to the case of an accelerated electron,
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let us introduce a set of inertial frames S(r),—0co < T < oo such that at each
moment T one frame of the set coincides with A(7). In the case of classical electron,
one may assume that its own instantaneous inertial Lorentz frame is introduced at
each point of the electron trajectory.

Let us consider two inertial frames S; = S(73) and Sz = S(m3), 3 = ™2 + dr.
According to the A and S(r) definitions, the triads of S; and S; are parallel. 1
may refer to Fig. 2 where S) denotes the laboratory frame whose axes are parallel
to those of S;. The evident reservation is that the electron velocity increment
#i3y = #(73) ~— ¥(72) is now infinitesimally.sinall and need not be perpendicular to
¥(tz)-

Suppose that the force acting on the electron is torqueless so that the electron
spin direction is the same relative to the triads 75 and T3 (m the non inertial system
A, the spin does not rotatc). In the quantum case, the ” spin direction” is defined
as a mean value of the spin vector operator (the polarization vector). Under the
described conditions tlie Thomas-Wiguer rotation means that the triads Ty and T3
orientatious are different. The electron polarization vector is the same relative to Tp
and T3 but it has different projections with respect to the laboratory triad T} at the
times 7 and 73. This is the origin of the Thomas precession. For its quantitative
description and physical significance see, e.g., [12] and [2] and references therein.

5.2 The Thomas-Wigner rotation and phase analysis

Let us consider a reaction a 4+ b — ¢ + d (reaction I) involving particles with spius.
Its phase analysis requires not only differential cross section measurement but also
information on particle polarizations. In particular, one needs to measure the par-

“ticle c polarization. Let its spin be equal to 1 /2. The polarization vector may be

determined by measuring angular asymmetries in another reaction II which may be

- scattering: the particle c scatters on a target e: c+e = c+e. I am going to show

that ¢ polarization measured in IT cannot be used immediately for the phase analysis
of the first reaction I: the polarization vector must be transforined beforehand in a

- specific manuer.

The phase analy51s is simplified if one uses the following way of describing the
state of the spin particle. One specifies its lincar momentun p along with the spin
wave function xm in the particle rest system (and not in the Lorentz system where
particle momentum is p), m being elgonva.lue% of the projection of the spin vector
operator § along § (helicity). The operator 5 is defined as the particle total angular
momentum in the particle rest systemn. The orbital part of the inomentum is then
equal to zero, the total angular momentum being reduced to its spin part. For
details see, e.g. [13]-[15]. Particle ¢ polarization vector is defined as the mean value
of §in the state x. Just this vector can be determined using the reaction II. The
corresponding particle rest systein is denoted by Sy;. There may be distinct particle
rest systems which differ by orientations of their triads. I shall now show that there
is one more particle rest system S; when considering reactions I and IL
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The system Sy is linked with the laboratory system S; with the help of the
boost with velocity ﬂc, parallel to the particle ¢ linear momentum 7, in S;. One can

obtain another particle rest system starting from S;. To this end let us perform first

the Lorentz transformation from S; to the center-of-mass system S’ of the reaction
I (the corresponding velocity G, being parallel to the linecar momentum , of the
reaction I incident particle a). Further, one transforms from S’ to the particle ¢ rest
system S; using the velocity 4’ parallel to the momentum Pl of the particle cin S'.
In order to show that the S; triad differs from the S, triad let us write out the
succession of boosts “hlch allows one to pass from S;; to S;: .

1) B(S; « S”, ﬂc) ,Bc is the S, velocity relative to Sy, 8. [l pe pc

2) B(Sl — SI, ,Ba) ,Ba ” pa

3) B(S; «+ S5 08')..

The correspondmg veloc1ty g’ | % is determined by the velocities 3, and [Ja
Indeed, ﬂ' = s(ﬂc/ ﬂa) B, being the particle ¢ velocity with respect to S; and —f,
being the velocity of S with respect to S', see subsect. 4.1. Let us note that it is
the velocities ,Bc and ﬂa (or momenta §, and Pa) which are measured directly; the
velocity ﬂ’ is to be computed using the former ones. The product

B(EI)B(Ea)B(_ﬁc) (16)
of the boosts 1), 2), 3)isa rotation. Indeed, let us rewrite eq. (15) as
B™Y(S(#n |vs2) B(vsg) Bu) = R (17)
and compare the Lh.s. of eq. (17) with the product (16) where
B' = 5(Be ~ Ba) = ~s(~c/ Bu) . (18)

Equation (18) can be verified using eq. (2.55) from [1] for the "sum of velocities” s.
Being a boost, B(') satisfies the equation

8"y =B(-f") or B(f')=B(-F").

Inserting into eq. (16) the equalities 7 = —56;1732 = ﬁa, we can rewrite the Lh.s.

of eq. (17) as the product

~M(s(~e/ Ba))B(B.) B(~F2) = B(B")B(G.) B(-4.), (19)

We see that the product (16) is equal to the Thomas-Wigner rotation R which turns 4

the Sy, triad into the Sy triad. Fig. 3 illustrated the foregoing succession of boosts
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The polarization vector projections, which can be determined using reaction II,
are referred to the Sy triad. Using R, one can calculate the vector projections with
respect to the S; triad. Just these projections are needed for the reaction I phase
analysis.

The rotation R is complementary to the obvious rotation caused by the change
of the quantization axes when helicitics are used: One must obtain the polarization
vector projections on the vector j’, starting with the polarization vector projections
with respect to the direction §, (and other two axes orthogonal to 7).

6 CONCLUSION

The coustruction of parallel moving triads (or verification of their parallelisin) meets
difficulties which are exeinplified by the Remark 2 in subsect. 2.2 and at the begin-
ning of subsect. 2.1.

The measuring and structural methods of the operational definitions of the par-
allelism are proposed and discussed.

It is shown that the parallelisin does not possess the transitivity property when
the invariant (limiting) velocity is finite (Lorentz case). This nontransitivity is di-
rectly related to the Thomas-Wigner rotation which can be cousidered as its quanti-
tative measure. Taking the nontransitivity into account is essential when discussing
physical applications of the Thomas-Wigner rotation.

Acknowledgement

I amn grateful to E.Tagirov and B.Barbashov for interest and discussions.

References
[1] C.Méller. The Theory of Relativity (Clarendon Press, Oxford 1972) ch. 2.

[2] J.Aharoni. The Special Theory of Relativity (Clarendon Press, Oxford 1959)
ch. 1

[3] A.A.Ungar. Found.Phys.Lett.1, 57-69 (1988), sect. 4.
[4] A.A.Ungar. Amer.Journ.Phys. 59, 824-834 (1991), scct. VL.

[5] A.LStudenikin. Sov.Journ.Part.Nucl. 21 (3), 259-284 (1990) ch. 2
F.Combley et al. Phys.Rev.Lett. 42, 1383 (1979).

[6] G.P.Fisher. Amer.Journ.Phys. 40, (12), 1772-1781 (1972).

13



(7] Ari Ben-Menahem. Amer.Journ.Phys. 53, (1), 62-66 (1985).

[8] M.Rivas et al. Eur.Journ.Phys. 7, 1-5 (1986).

[9] A.A.Ungar. Found.Phys. 19, 1385-1396 (1989).
[10] A.A.Ungar. Found.Phys. 21, 560-589 (1991).
[11] A.A.Ungar. Amer.Journ.Phys. 60, (9), 815-828 (1992) sect. VIIL.

(12] J.D.Jackson Classical’ Electrodynamics (Wiley, New York 1975) ch. 11.5.
(13] M.LShirokov. Zhur.Exp. i Teoret.Fiz. _39; 633-638 (1960).

(14] G.C.Wick. Ann. of Phys. 18, 65-80 (1962).

* [15] S.Gasiorowicz. Elementary particle physics (Wiley, New York 1967), ch. 4.

Received by Publishing Department
on November 15, 1999,

14



