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DneKTpOMarHUTHBIE TONS IEKTPHYECKHX, MATHUTHBIX
U TOPOMIATBHBIX AUINONEH, ABMXYILUMXCS B Cpefe
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POCTH CBETa B BELUECTBE, 3JIEKTPOMarHHTHOE IOJIE OTJIMYHO OT HYJIA BO BCEM IPO-
CTpaHCcTBe (Oaxe A TOPOHRANLHOrO coneHomna). Ilpu ckopocty, Gonbueii cxo-
pOCTH CBeTa B BellECTBE, 3EKTPOMArHWUTHOE IOJIE OTJIMYHO OT HY/Id TOJIBKO
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1 Introduction

To our best knowledge, the electromagnetic field (EMF) arising from the motion of elec-
tric and magnetic dipoles in medium was first considered by Frank in 1942 [1]. He solved
Maxwell's equations in the laboratory frame (LF) with electric and magnetic polarizations
obtained from the corresponding polarizations in the rest frame of a moving dipole by
the Lorentz transformations. It was, therefore, suggested there that transformations laws
between electric and ma.gnetic moments moving in medium are the same as in vacuum
(see, e.g., [2] where the nice exposition of transformation properties of the polarizabil-
ities in two reference frames is given). The magnetic dipole considered in (1] was an
elementary (i.e., infinetisimally small) current loop. Formulae describing the intensity
radiation for a moving magnetic dipole did not satisfy Frank, as the intensity radiation
did not disappear for the case when the dipole velocity coincided with the phase velocity
in medium (the vanishing of the above radiation 1s intuitively expected and is satisfied,
e.g., for a moving electric dipole).

10 years later, in 1952, another Frank’s publication {3] on the same subject appeared.
In it, he treated the magnetic dipole as consisting of two magnetic poles and obtained a
correct expression (in the sense mentioned above) for the intensity radiation of a mag-
netic dipole moving in medium. To reconcile the results of [1] and [3] Frank suggested
that transformation laws between the electric and magnetic moment moving in medium
should differ from that in vacuum.

This Frank guess has been confirmed by Ginzburg [4] who, starting with the Maxwell
equations in a moving medium and writing the corresponding constitutive relations be-
tween the EMF strengths and inductions, obtamed the correct vector of magnetic polar-
ization.

In 1984, two further publications by Frank {5] and szburg [6] appeared. The difference
between [1] and (3] was attributed to different definitions of magnetic dipoles used there:
the electric current magnetic dipole and magnetic dipole composed of magnetic poles was
used in [1] and [3], resp. These two models of magnetic dipole possess different proper-
ties as to their interactions with magnetic medium ([7]). At present, both experiment
and theory definitely support that magnetic moments of elementary parhcles are of the
electric-current type {8,9].

In Ref. [10], the radiation of toroidal moments (i.e., the elementary (mﬁneslmally small)
toroidal solenoids (TS)) was considered. It was shown that the EMF of the TS moving in
medium extends beyond its boundaries. This seemed to be surprising since the EMF of
TS resting either in medium (or vacuum) or moving in vacuum is confined to its interior.
In one of the latest life-time publications [11], Frank returned to the initial premise ([1])
that the transformation laws between the dipole electric and magnetic moments moving
in medium should be the same a8 in vacuum.

The goal of this consideration is to obtain exact EMF potenhals and strengths for the
point-like electric and magnetic dipoles and elementary TS moving in & non-dispersive
medium with an arbitrary velocity v which may be greater or smaller than the light
velocity in medium c,,.’ The method is in a straghtforward solution of the wave equations
for the EMF potentials with charge-current densities in their r.h.s. and in a subsequent
evaluation of the EMF strengths.

The question arises why not to use Frank's idea for the evaluation of EMF of the moving
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dipole. In our translation from Russian, it may be formulated as follows ([3], p. 190):

It is suggested that a moving electric dipole p] is equivalent to some dipoles at
rest, namely, to the electric p, and magnetic m; placed at the point coinciding
with the instantaneous position of a moving dipole. The same is suggested
for a magnetic dipole. -

The reason for not using the transformation formulae for the electric and magnetic
dipole moments moving in media is that there are different formulations of the moving
media electrodynamics leading to different transformation laws for electric and magnetic
polarizabilities and, therefore, for the electric and magnetic moments (which are the space
integrals of polarizebilities). The nice brief exposition of the moving media electrody-
namics may be found in [12,13]. . ; , ,

Even more confusing is the situation with toroidal moments (see Refs. [14-17] for their
definition) for which the transformations formnlae are not known. . .

The idea of this treatment is exactly opposite to Frank’s idea. Evaluating the EMF
produced by moving dipoles and elementary toroidal solenoids in the 7, ¢ representation,
we try to identify their electromagnetic moments and obtain their transformation laws.
Earlier, the EMF of electric and magnetic dipoles moving in medium was found in Refs.
[1-6, 10, 18- 20] yet in the w representation. The sole exception is Ref. [10] where the
scalar electric potential for elementary TS with its symmetry axis directed along the
motion axis was obtained in configuration 7, ¢ space. o :
The plan of this exposition is as follows. In section 2, which is essentially a quintessence of
Refs. [21], we give the necessary mathematical details which will be used in a subsequent
exposition. In section 3, we find the EMF of the magnetic moment moving in a non-
dispersive medium with an arbitrary velocity (which may be greater or smaller the light
velocity in medium) and with different orientations relative to the motion axis. The exact
EMFs of elementary TS and the electric dipole are presented in Sects. 4 and 5, resp. The
EMFs of moving dipoles evaluated according to Frank’s prescription are compared with
the exact ones in Sect. 6. Short discussion of the results obtained is given in Sect. 7.

Where the obtained exact expressions for EMF’s can be applied to? First, any particle
having either electric or magnetic dipole moments should radiate when its velocity exceeds
the light velocity in medium. Then, exact results obtained here show how the arising
EMF’s are distributed in space-time. Second, EMF's obtained in Sect. 4 can be observed
in neutrino experiments. As far as we know, the neutrino possesses both dipole and
toroidal magnetic moments ([22-25]). In the massless limit only the toroidal moment
survives. This is valid, in particular, for Majorana neutrino.

2 Mathematical preliminairies: equivalent sources
of electromagnetic field

As we have mentioned, this section is essentially an extract of Refs. [21]. It is needed for
the understanding of subsequent exposition.

2.1 A pedagogical example: circular current

According to the Ampere hypothesis, the distribution of magnetic dipoles M (P is equi.va«-
lent to the current distribution J(7) = cur{M(F). For example, a circular current flowing
in the z = 0 plane '

F=Iaso- 98 (2.)
is equivalent to the magnetization (see Fig. 1)
M=Iw8d-p)(z) =~ ? (2.2)

different from zero in the same plane and directed along its normal 7i ( ©(z) is a step
function). When the radius d of the circumference along which the currevnt‘ﬂ:ov_vs tends
to zero, the current J becomes ill-defined ( it is not clear what does the vector 7"1'¢ mean
at the origin). - On the other hand, the vector M is still- well-defined, 'In this .hmxt,
the elementary current (2.1) turns out to be equivalent to the magnetic dipole oriented
normally to the plane of this current:

i = a7, () = 8p)6(z)/ 2rp) | O (23)

EIE

and

T =Indeurl(7P(F) (2.4)
Equations (2.3) and (2.4) define the magnetization a.n'd current dgnsjityﬁ(vzorres‘pond‘in_g to
the elementary magnetic dipole.

2.2 The elementary toroidal solenoid
The case next in complexity is the poloidal current flowing in the winding of TS (Fig.2):

- gel. §R-R)

7=y e, (2.5).
J‘ = 47rn¢d7*' Rcosyp.. .. .+ «. w7 )

The coordinates B,y and ¢ are related to the Cartesian ones as follows: )
z=(d+ Reosy)cosd, y=(d+ Reoay)sin'g, z=Rsiny. (2.6)

The condition R = R defines the surface of a particular torus (Fig. 3). For R fixed nn:l
¥, ¢ varying, the points =, y, z given by (2.6) fill the surface of torus (p—dP+ zn.= R2.
The choice 7 in the form (2.5) is convenient, because in the static. case a magnetic field
H equals g/p inside the torus and vanishes outside it. In the static cese, g may be also
expressed either through the magnetic flux @ ‘penetrating the torus or through the total
number N of turns in toroidal winding and the current I in a particular turn;

e % I
I=m@d-VE-R) ¢

.’We. write out dfﬂ'erentiai op‘é'ratoﬁ div and curl in &, ¥, and ¢ coordinates:
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> ‘ 1 9 - d =
(curlA)§ = m[%(RA¢) et %(d‘i' Rcos ¢)A¢],

a

(curl A = gl = ~=(RAy),
(curld)y = E—‘Rl—-—gb{all(d-,. Rcosx/u)A,, - ——E] N (2.7)
As div] = 0, the current ; can be presented as cur! of a certain vector Af:
i= curlll?. _ (2.8)
Or, in almanifest form: B
_gc 6(R~ ﬁ) S T M—

“Ard+ Reosy  d+ Roos ¢an S T

Due to the axial symmetry of the pmblem, the term mvolvmg ¢ differentiation drops
out, and one gets

_g S(R-R - 1
47fd+Rcoe¢ d+ Rcosyp d

R\d+ Rcostﬁ)M¢
Contracting by the factor d + Rcos ¢ one hh.s
gc = 0 = '
——6 -_— = —=
13 =R = 5(d+ Reoa )My,

It follows from this that

_gc ©(R-R)
T and+ Rcosy’ (29)
i.e., My is confined to the interior of the torus (Fig. 4).
We rewrite M in cylindrical coordinates:
c
M,:-g—e[ﬂ- (p—d)’+z’].,.,,,' (2.10)

Since divM = 0, the magnetization vector M can in its turn be presented as a curl of a
certain vector T It turns out that only the z component of T dlﬂ'em from zero:

‘ — VR -2
T, ——— — 23—
[G(d vR? p)ln \/'Tzi

+O(d+ VI =T 0)B(p — d+ VIE ")

, ,
d+VR? - zﬂl'

Thus, 7, differs from zero in two space regions:

a) Inside the torus hole defined as 0 < p £d— VR~ 22, where T does not depend on

(2.11)

p
T —_9 —+R* =22
LY (212)
4

b) Inside the torus itsell (d — VR? — 22 < p < d + VR = 2?) where |

- gc i -
T, = ln 2.13
‘ d+ v R’ — 27 (2.13)

In other space regions, T, =0.
Now let the minor radius R of a torus tend to zero (thm corresponds to an mﬁmtely

thin torus). Then, the second term in (2.11) drops out, while the first one reduces to

- %e(dT pWRI—z2. ' (2.14)
For inﬁnitesima.l R 1
C ‘ R -z -2-7rR’6(z).
Therefore, in this limit,

curlcurlT T= fl, gCR

—3(2)6(d - p) - (2.15)

ie., the vector T is confined to the equatonal plane of a {orus and perpendlcular to it.
Let now d — 0 (m addmon to R = 0). In this limit, : :

~0(d - fadl
de( p) — 2p5(p)
and the current of an elementary ( i.e., infinitely small) TS is
= curleurlT, T= %wcng’Js(r’)r'f;. (2.16)
Then, the elementary current flowing in the winding of the elementary TS is given by

J1 = feurl@ (S (7)) (2.17)

where curl® = curlcurl, 7 means the unit vector normal to the equatorial plane of
TS and f = mcgdR? /4.

Physically, Eqs. (2.5), (2.8) and (2.15)-(2. 17) mean that the poloidal current 7 given
by Eq.(2.5) is equivalent ‘(i.e., produces the same magnetic field) to the toroidal tube
with the magnetization M defined by (2.9) and to the toroidization T' given by (2.11).
This illustrates Fig. 4.

Another remarkable property of these conﬁgurauons is that they interact in the same
way with the time-dependent magnetic or electric field ([21]). For example, the usual
current loop interacts with an external magnetic field in the same way as the magnetic
dipole orthogona] toit. The poloidal current shown in the upper part of Fig. 4, the mag-
netized ring corresponding to the magnetization M in its ' middle part and the toroidal
distribution T in its lower part, all of them interact in the same way with the exter-
nal electmmagnehc field. Obviously, the equivalence between current distributions and
magnetizations (toroldrzatlons) is a straightforward generalmauon of the original Ampere
hypothesis.

In what follows, we need the Lorentz transformation formulae for the charge-current
densities and for electromagnetic strengths. They may be found in any textbook on



electrodynamics (see, e.g., [26,27]). Let o’ and 7’ be chéfge and current densities in the
rest frame S’ which moves with a constant velocity 7' relative to the laboratory frame

(LF) S. Then,

p=('+F7/c), = +75) (2.18).
Here v = (1~ £%)~"2,  f = &/c. H there is no charge density in ', then
| p=671e, 7=47- ' (2.19)

If there is no current density in S’, then

p=x0, J=ip.  (2.20)
Let E, D, H, B and E, IV, H’, B’ be electromagnetic strengths and inductions in the LF
and in S, resp. Then,

B~ Fx B)~ LABE), B=oiB+fxB)- 2 A0H)

7+1
We need also constituitive relations ([13]) in the reference frame which moves with the

velocity ' relative to the laboratory frame (in the latier the surrounding matter is at
rest)

D=olB~Fx i)~ SA@D), H=of'+Fx D)= TLAGH). (221

B = = B0~ )+ BPEY = )+ Fx 1= ),

B= #{p[ﬂ'(l -+ ABAY1-n)-Fx B1-nY),  (222)

where fn = v/ca, cn = c¢/n is the light velocity in medium, n = /e is its refractive
index, e and y are electric permittivity and magnetic permeability, resp. :

For the sake of completeness, we write out Maxwell equations and wave equations for
the electromagnetic potentials corresponding to charge p(7, t) and current (7, ¢) densities
imbedded into a nondispersive medium with constant ¢ and u: :

divD = 4mp, ﬁ =¢E, divB =0, B= yﬁ,

105 100 | 4r.
curlB=—2om el = 2o e 25,
= curlA B = 10A . - epdd _
B=curld, E=-grad® - e divA + — %= 0,
10°  4r 18, - 7L ’
(a- 2o o= ———PChs (&- gngt';)A =-—7 (2.23)

In what follows, by the term ’magnetic moment’ we mean the magnetic moment
carried by an infinitesimal circular loop. The alternative to this is the magnetic moment
composed of two magnetic poles. We have mentioned, these two different realizations of
magnetic moments differently interact with magnetic media. .

We also use the fields of electric 5 and magnetic 7 dipoles which rest at the origin
([27) il o

B=-E 37F B’:-lf-+3r“’—’;‘. : (2.24)
r r

r

3 Electromagnetic field of moving point-like current
loop :
3.1 The velocity is along the loop axis

Consider a conducting loop £ moving uniformly in a nondispersive medium with the
velocity v directed along the loop axis. Let in this loop a constant current [ flows. In
the reference frame attached to the moving loop, the current density is equal to

7= I748(6 — d)é(), ' = fz" +y*

In accordance with (2.19), one gets in the LF
] ;
j = IR48(p — d)8(v(z — vt)) = ;r'id,(f(p — d)§(z — vt).

Here fiy = i, co8 ¢ — fizsing, v= 1/+/T= B2. Since the current direction is perpendic-
ular to the velocity, no charge density arises in the LF. o
The solution of Eq.(2.23) for electromagnetic potentials is given by

1 1 =1 ' E_ ?
2=- [ Zpor(F L) — ¢+ Ve,

I=£ -l—"”’t’(st’—t+£ dV'dt!, R=|F-r"| 3.1)
A=b [ 508 e+ ) l
Like for a charge at rest, the current 7 may be expressed through the magnetization
7= curlM. , (3.2)
The magnetization M is perpendicular to the plane of a current loop:
M, = %e(d — p)b(z - vt). | (3.3)
Substituting this into (3.1) and integrating by parts, one finds
- B 1., R.w= C
== —§(t' - t+ —)MdV'dt. 3.4)
A ccurl[ 7 ( + c,.) (

The electric scalar potential is zero.
Now let the loop radius d tend to zero. Then f21],

Od— p) » dS(e)o) and M. ’”fazw(y)a(z )

Substitutiné this into (3.4) and integrating over the space variables one gets

= _plord O 3.5)
A¢ = o ap ’ (
.



where
1
o= /—J(t' —t+Rfc)dt, R=\/p?+ (z — vt')2. (3.6)

- This integral can be taken in a closed form (see, e.g. [28]):

1 2 o, K
a=— for v<c, and a=;—6(vt—z—p/7,,,) for v>ec,. (3.7)

m

Here rp = [(z — vt)? + p%(1 - BN, v = 1= g217 2, B, = v/cn. The equality
ut —z- P/ % = 0 defines the surface of the so-called Cherenkov cone attached to the
moving magnetic dipole. Therefore, for §, < 1, o differs from zero everywhere, while
for A, > 1it differs from zero only inside the Cherenkov cone where vt — z — p/'; >0
Performing differentiation in (3.5), one gets T

1- 2
A¢=M for f<fB, and

o
_ 2pm(1 - F2)p 2um
Ay = T Ot -z —pfv)+ o St = 2 = o/ ). (3.8)

for ﬁ,. -> 1.. Here m = Iynd?fc. Therefore, for Bn < 1, Ay differs from zero everywhere
vanishing in the § = #/2 plane (p = rsin6) and decreasing like r~2 at large distances.
FOI: Bn > 1, As vanishes outside the Cherenkov cone, being infinite on its surface and
i;ﬂhng as r~2 inside it. Electromagnetic field strengths are obtained by differentiating
. ¢: !

E = HBm ¥ = _HBm o E.=0
vy 828y' Y ¥y 828z T
_ Bm a _ pm o
T oy 8z’ VT Ty 828y’
__p#m o B 2 &P &
B, 7 [a-Q1 Pzl A= amtaat 1-4 FwE (3.9)

The action of A and 8%’,- on « gives for f, < 1:

Ba=—andEiI ), (- )T = IZBy gl dng,

Here §(7) = d(z)d(y)é(z —~ vt). These relations result from the identity (see, e.g.,[29])
o 1 -

Oz;0z; ro

1 x5 4
~r5(6; = 3750 - T"ﬁ.;&’(r*). (3.10)

Higher derivatives of 1/r are obtained by diﬂ'erentiating (3.10). "~
For 8, < 1, the E‘MF stmngths of a moving point-like current loop are given by -

PR y !

.E’ = 3mp.ﬂ7: M E, — —Elmﬂu.ﬁ y(z - Vt)

S

B, = 3m“§z(z - ut) B, =3 v y(z — vt)

< my.—-‘y s
‘ my 87 o Tn 2 (z — vt)?
= — {8 - S -3y — .
B: ~ { 3 (F) r3 [] 377» r3 ]}’ (3 ]])

where m = Ipnd?fc, r? =z + 2+ (2 — vt)’y2, 8 (F) = é(z)8(y)8(z — vt). In what
follows, in order not to overload exposition, we drop the é-functions terms corresponding
to the current position of a moving dipole. They are easily restored from Eq.(3.10).

1t is seen that B in (3.11) strongly resembles. the field of magnetic dipole. On the other
hand, the electric field E having only two Cartesian components, cannot be reduced to
the field of electnic dipole.

We conclude: for 8, < 1, the EMF strengths differ. from zero everywhere, falling
like »~* at large distances. For f, > 1, they equal zero outside the Cherenkov cone
(vt — z — p/¥a < 0), infinite on its surface, and fall like = inside the Cherenkov cone
(vt — z — p/4. > 0). As a result, only the moving EMF singularity coinciding with the
Cherenkov cone will be observed in the wave zone.

In the rest frame of the magnetic dipole, the EMF is given by
muy: o'z

a0 2,0
mu~y, ¥z ’_ In ‘722
n?”  Bl= (1-32-)

EF=0 B.=13 — B;=3 = : —mpu—-=(1 R
¥ r v or r
.’ 7’7 2 2
r T T2 r_ Y2z r_ Tn T 2
H, = 3m7?-, Hy = 3”1?—3, H‘ = —frl.“r’.,3 1- 3-7—2;3),
r.; 7.7
D, = 3m(n? — 1):’%;3%, D, = —3m(n® - 1)%’2%‘:—, (3.12)

where #? = (z” + y*)+ ¥2?*/¥ and 2’ =z, ¥ =y, 2 = 4(z — vt). Since in
this reference frame the medium has the velocity —, the famihiar constituitive relations
B’ = pH', D’ =cE' are not longer valid. Iustead, Eqs.(2.22) should be used.

In vacuum, Eqs.(3.11) and (3.12) reduce to

E, = 3m73y_(z_r-%v_t)’ E, = —3m72££z_r__5_1_)21
2¥(z -; vt) H, = _2[1 _ 3M], (3.13)

] 2

z(z — vt)
=3 ik St 4 H, =3
He=3my ===, Hy=3my" = 7 7

: z'7 LYy oom P
EI = 0, H; = 3771—7_5‘, H; —-7,3771—1_—,3-, H: = —-1‘73(1 - 3;—5), (3.14)

where r2 = ¥*(z — vt)? + 22 + y* and ? = 27 + y? + . Equations (3.13) and (3.14)
are connected by the Lorentz transformation.

3.2 The velocity is in the plane of loop

Let a circular loop move in the direction perpendicular to the symmetry axis (say, along

the z axis, see Fig.5,b ). Then, in LF, one. gets

. — vt ’
e = ~18(2) 3 8(01 — d), Jy::oa(z)‘:—.d—”ﬁﬁ(p,—d), pon = —lod(x) 5 8(o1 — d).



Here p1 = [(z - vt)*4* + ¥?]'/%. The charge density arises because on a part of the loop,
the current has a non-zero projection on the direction of motion. It is easy to check that

] -Io‘yé(z)-— o —Io—é(z) M,, pc;.—Io 6(2)

where M, = ©(d — p1). In the limit of an infinitesimal loop,

M, = 0(d - p1) = §(z — vt)d(y)nd? /. (3.15)
For the electromagnetic potentials, one easily finds
mﬂ 30!1 _ day mu 30:1 .
p By A_, = m,u.-w, Ay =— 72 az (3.16)
Here
1
o= / A8 =t Bufen), Ru=[(e = off 47 4+ )0
Again, this integral can be taken in a closed form:
1
QI=W for ﬂ<ﬂn and
Tm
2 1
ay = :ﬁe(vt -z :y—\/yz +2z%) for B> B.. (3.17)
Here r(} = {(z —'vt)2 + (4 + 22)(1 - B3)]/2. Therefore, |
Yy 2 - muT — ut
6 (15)3 (1 )1 A = ml‘—r( (l) (1 Ba ), A " ——(rg))a
for £, < 1 and
mp_y
P =-2— 1-89)0(vt —z— —) — —z—-—
- (!))3( B)0(vt — z ) s ,.(1)\/3/1‘_,__76(% T \/yﬂ + 23),
A, = ~2m Y 1- 26 t— _l_Zﬂ.—_y— - _..l 2 ]
#m( Pa)O(vt — = ) poy (IJWJ(W TV 2,
_2muz—ut 2m,u 1
A= S - e ) .18)
Electromagnetic field strengths are given by
_T(l_nz)gz%_, = mﬂ 32a1+n 8’0:1) '=_mﬁ3’m
. acdy’ ¥ dz? € 0208y’
mu 8oy 3%y 1 3’0:1 8%y

B, = (3.19)

T 0m0s VT Mgy D= mmulG g+ 5a)

For f < 1, the EMF falls like r~° at large distances. For f, > 1, the EMF strengths
vanish outside the Cherenkov cone (vt —z — ,,‘—'\/y5 + 23 < 0), they decrease like r— at
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large distances inside the Cherenkov cone (vt —z— --\/ v? + 22 > 0), and they are infinite
on the Cherenkov cone. Thus, in .the wave zone the electomagnetlc field is confined to

the Cherenkov cone (vt — z — /4% + 2% = 0) where it is infinite.
We write out EMF in the manifest form for Ba<l:

E, = 3mﬂ ’)-f(” WY g = 3mﬂ "

_ mPm ¥ R 2(z — vt)?
By = —m-3)+n 3l - 3 —= b
¥ (z — vt)z yz
B, = 3m#'7';'(—7)—,' By = 3mumm =5
2 .
N N S e o
B,=—~(1-33)+ :r;[l =31 (3.20)
where r2 = y? + 2% 4 (z — vt)>42. For the motion in vacuum, this reduces to
mﬁ‘y vz mpBy L
B.=0, E.= c ' VT erd 1- 371'1-)’
z(z — vt) yz ,
H,= 3m'y——r5—-, H, = 3m‘y-r—5, H, = —-my—3 (1 ) (3.21)
i 1

Here r? = 4 + 2> + (z — vt)*y®. Again, these expressions may be obta.med by applying
a suitable Lorentz transformation to EMF strengths in the dipole rest frame.

4 Electromagnetic field of a moving pomt -like
toroidal solenoid.

Consider the poloidal current (Fig.2) flowing on the surface of a torus
(p— ' + 5 = B3

(R, and d are the minor and large radii of torus). It is convenient to introduce coordinates
p=d+Rcosy, z= Rsiny (Fig. 3). In these coordinates, the poloidal current flowing
on the torus surface is given by

+_ . §(Ro—R)
]_J°d+Rocos|/) )

Here 7iy = A, co8tp — fi,sin ¢ is the vector lying on the torus surface and deﬁnmg the
current direction, R = \f(p d)® + z%. The cylmdncal components of 7 are

. .J(Ro Ry . . _ §R—PR) .
=i Rrosy Y T Tt Rocony 2 ¥
11
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4.1 The velocity is along the torus axis

Let this current distribution move ﬁmformly along the z axis (dirécted along the torus
symmetry axis) with the velocity v (Fxg 5a).. In the LF the nonvamshmg charge and
current components are

pch = Jo‘Yﬂ J(Ro Ry, 4= “‘jo’sz;z:tJ(Ro"' R3),

.o p—d _ o
= §(Ro — Ry). » (4.1)

Here R; = \/(p - d)2 + (z — vt)2y2. These components may be represented in the form

. C10M, g a
2 M ’ =TT TAaT = e e . .
J pc')p(p 4)s o 7 9z pch o 3p (oMy) (4.2)

Here

.1
My = —Jo‘Y;e(Ro - R).
The Cartesian components of M are
Mz = J.D‘Y%G(RD - R‘)) My = _jo‘Y'Eie(Ro - R‘)' (4'3)

Let the minor radius Ry tend to zero. Then,

Ol — /(o — 7 + Gz — o0 25— 3(z - w1)

and
Jo 20 Jo_p2 0
M.=- Ro G(d p)s(z —ut), M, = EWROEZG(({_ p)8(z — ut). (4.4)
Therefore,
- 1 8Mv _ jo‘ll'Rg 32
Jz = 7 oz = 7 Q;Bze(d- p)5(z — vt),
. laM,__J'oﬂ'R% &
W= e T TTd Bagy 0 T P v,
. _OM, oM,  jomR; &
je = -E:l - = _d (5—2- 3 2)G(d p)J(z — ut),
_ é oM, _ oM. BjomR:, &
pon =BG - Oy - BB T et it ). (45)

Let the major torus radius also tend to zero. Tben,
O(d - p) = 75(2)6(1)

and

. o d §° jo R .
o= =2 T Sao()oCe — vt), 5y =~ T s(a)i(4)6Cz - v,

12

o= jor® Bal( s + "’—Z)é(z)a(ymz ~ ),

ﬂjovrzRod( &
c Oz o

From this one easxly obtains.the electromagnetlc potentials

pch = )5(=-')5(y)5(z - vt). ’ (4.6)

ﬁm, 2 . ___mgp 0
¢ = [A (l_ﬁn)r_) 2] A= ,',2 323$a

mey 0 — - - iz_ 7
I Dy A=l = (1= )k (47)

y =

where o is the same as in Eqs. (3.6) and (3.7) and my; = wzjodgg/c. Being written in a
manifest form, the electromagnetic potentials are

2 ' — vt)?
&= ér_n_z“ _ ﬂ )___[1 __;_ﬂ_], A, =pmy(1— ﬂ:)r—i"[l - 39,.2—1”)]’

z(z — vt)

hom AT I g oy )

m

for f,. < 1 and

q>='~’ﬂ""{‘;ﬂ3[1-a - 10t~ = p/)

€

m

+2(1- ﬂ’) —8(ut — z — p/m) + ——[—5(vt -z p/‘v,.) - 1——5(% —z=p/w)}

'lm

1- 82
3

m

A, = 2pmg{ ~1—3(1 - ﬂi)(z ]G(vt z—p/Y)

+2(1- 4= 3(,,t_,_,,/%Hr_[;al_s(vt-,,_p/%)'_;‘_g(m_,'_,,/%m,

A= —2”;;“" [a(1 - A2 L o(ut = z — pf )
BR)I(ut — = = pl W) + i —z=p/m) (a8

for B, > 1 (the dot above delta funcuon Mmeans a denvatlve over its argument) Earlier,
the scalar electric potential @ for §, < 1 was found in Ref. []0]
The electromagnetic field strengths are equal to

ﬂmt 82 Oa

m 2
E, =-§——‘[A+( 1);’2]2‘: E, = -—[A+(n® - )ﬁ]ﬁg’
E. = _ﬂﬂ(n2 -1+ (6 - :2130‘

8% .0« 0001

B — m‘p[A-i-ﬂ)(n — l) ]3y B = -—m‘p[A-Fﬁ) n —- l)azg 32

13




a?

. . ) 2
B, =0, A=ﬁ+—;+(l—ﬁ:—q—.r (4.9) -

az? Oy

For 8, < 1, the EMF falls like r—* at large distances. For §, > 1, the EMF field strengths

equal zero outside the Cherenkov cone; inside this cone, they fall like r=* for r — co and
they are infinite on the Cherenkov cone.
We write out the EMF in the manifest form for §, < l

-1)1-5

1) 3[1 57?;(2 vt) ], Ey = ﬁ:nt 31/( 7?;(2;; vt)zL

By = By 22y S’ﬁ("’ )

7’(2 vt)

B, = mtl"“"?”ﬁz(" ni- ],

B, = —-m,p-ﬁﬁzﬁ(nz -1t - 7'1'(2 vt) 21, B,=0. (410)

It is seen that the electric field of an elementary toronda.l solenoid moving in the non-
dispersive medium strongly resembles the field of an electric quadrupole. As the magnetic
field in (4.10) has only the ¢ component, it cannot be reduced to the field of a magnetic
quadrupole. Conditionally, it may be called the field of the moving toroidal moment.
The electromagnetic strengths and inductions in the reference frame, where the toroidal
dipole is at rest and the medium moves with the velocity —4, are equal to

mey 3y z
B = g - 17 1 - 5T

m,
B =- ‘7;9’ 3(n? ~ ),5(1 f;rn) Bz=0, H' =0,

E:="—“§£u-n2m—,’—5(l-5§in>» E:="—“5£(1—n2),. Ya-s 7”"’)
'yzz Ta 3z

D;:—an(nz—l)'yn ,5(1- ), D;=—ﬁmt(n=-1)-$-r,—5(3-s—"‘:—n) (@.11).

e
Here r = (2" + y?) + 242 /+*. It is seen that H’ differs from zero only at the toroidal
dipole position (the term with & function is omitted), while B, D’ and E’ differ from
zero everywhere. In this reference frame there is no relations 5’ = uff’, D’ = ¢E' which
are valid only in the reference frame where medium is at rest. Instead, Eq. (2.22) should
be used. : ‘
From the inspection of Eqs. (4.9)-(4.11) we conclude:

i) For a TS being at rest either in vacuum or medium, the EMF differs from zero only
inside the TS,

ii) For a TS moving in vacuum with a constant velocity, EMF differs from zero only inside
the TS. Withot any calculations this can be proved by applying the Lorentz transforma-
tion to the EMF strengths of a TS at rest. Since this transformation is linear and since
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EMF strengths vanish for a TS at rest, they vanish for a moving TS as well.

iii) Eqs. (4.9)-(4.11) tell us that EMF of 2 TS moving in'medium differs from zero both
inside and ontside the TS. At first glance this seems to be incorrect. In fact, let TS
initially be at rest in medium. Let’s pass to the Lorentz reference frame (LRF) in which
TS’ velocity is v. In this frame the EMF strengths vanish outside the TS. Both the TS
and medium move with the velocity V relative this frame. However, Eqs. (4.9)-(4.11)
are valid in the frame relative to which the medium is at rest while a TS moves with
the velocity v. Therefore, these reference frames are not equivalent. There is no Lorentz
transformation relating them. These 1mporta.nt facts were established earlier in the w
representation in Ref. [10]. .

4.2 The velocity is perpendicular to the torus axis

Let a toroidal solenoid move in medium with the velocity perpendicular to the torus
symmetry axis, For definiteness, let the TS move a.long the z axis. Then, in the LF

pCh=_J'ov'rJz(z—vt)6(R - Ro), h__jo’)'ll(l‘ vt)J(R - Ro)s

ARy 4} Ry
. _ o2y 8B = Bo "j_].pl-da(}zﬂ-}za)
Jy Jo pl - RO ) z 4] o1 120 .
Here
(z—vt)y +4%, Ri=\f(p1—d)*+ 7%
It i8 easy to check that
oM, . _OM, . _10M, oM, B oM, (12)

T T T 'r"a:: ay "’ Poh == "8z

where

M—-—Jo'f L o(R, - Ry), M,=jo;y;e(zzo—nl), M, =o0.
1

Let the minor radius R; of a torus tend to zero. Then,

- O(Ro — Ry) = mRg5(pr — d)é(2)

and
__tRBe. _ TR o
M. =-j—; BZG(d-—pl)S(z), My = 50— 5,0d p1)8(z).
Therefore,
__ﬁjdng i _ . _ _jomR3 &°
Poh =~ e O T P}, Je = =T s O(d - 1)),
) &
o= -2 T 0(d— ps(a),

15



je= J‘;"’f" aazze(d p1)6(z) + °"R° 02 3 O = p)é(2)

Now we let the major radius d go to zero. Then,

Od— 1) = e ~450), por= B d T (e — )i,

Y
| 2R &
o= 2T T us(u)i(e), iy =2 7“" (2 - )3 0)5C2),
v
Jom’dRg wngo 3? Jom*dR} 8 _
o= = oz =—0(z — vt)s(v)é(2) + " 5(3 vt)é(y)5(z).
As a result, we arrive at the following electromagnetic potentla.ls:
ﬁmt L _Tup 2
~e B:r:az ET 920z

__mus &P s 8 s @ 4.13
A”——TEEQ;, z 73 a 3 oy + — ~ a,zah ( )

where o is given by (3.17). In the manifest form, EMF potentials are given by

Y= ot)s e u):

Qz AJ::_

YYa  Th ik
. 3umy yz _ mup 1 _ 22_ ) 1 vy
O AR - R e
Electromagnetic field strengths are
,Bm, ey _Bmy Faoy
B. = (] B )8.7:732’ By = e (1-n )Bzayaz'
ﬂm! 2 32 A]aal B “ml[A+‘B2(n _ 1) a ]aal
E, = *’-Y_E__[(n - 1)(5:-2' ;)+ Sz a2 ay
7] R S
i | A —1)3 T B=0, A=(-fyg+iataa UM

It is, seen tha.t electromagnetic ﬁeld strengths equal zero outside the Cherenkov cone, fall
like ¥—* at large distances inside this cone, and are infinite on the Cherenkov cone.
Since for B, < 1, Aa; = —4n8(z — vt)6(y)é(z), one may drop A operators in (4.14). This
confirms the previous result that EMF goes beyond a TS moving in medium.

5 Electromagnetic field of a movmg point-like elec-
tric dipole

Consider an electric dipole consisting of point electric charges:
pd= e[&s(F+ aft) — 8*(F — aft)].
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- Here 7 defines the dipole center~of-ma.ss 2a is the distance between charges and vector

“7i defines the dipole orientation. Let the dipole move uniformly along the z axis. Then,
pd= e'y{J(z +an,)5(y+ an,)J[(z —ut)y +an,] Sz~ an:)(f(y ~ang )§[(z — vt)y — an,]},

Jz = vpg.
Let the distance between charges tend to zero. Then,

pa = 26a(7V)S(2)5(9)5(z — vt),  js = vpu.

Here : ) : 1 5 -
| - (AV) = AV, +/,V, + ;ﬁ,v., V= Fre
The electromagnetic potentials are equal to
$= -Z-fg(rﬁ)a, A, = 2eauf(7V)a, (5.1)

where « is the same as in (3.7). ln the manifest form, the electromagnetic potentials are

2eau

d=- fir), Ay =.-—- ';fﬁ"‘,
,/l—ﬁge (-) i l—ﬁcr3'7
p- Y
() = onc 4oy 4 ma(s =) VB gy G2 = 6
for f < 1 and
&= 4ea(m"') A, = 4eap.f.i(nr'")R (5.3)
er} v r3
for fn > 1. Here
; , .
R= [\/E:__le(vt —z-pfBE-1)— %J(vt —z—pfFE-1)], and
_(z—uwt)r
iy e i)
The nonvanishing electromagnetic field sirengths are
B= -Z—e‘ii(nv)a, E, = -§3(W)A, B=-2- ﬁ’)——(ﬁV)a,
€ ; az
B.= 2eauﬁ—(ﬁ§)a B, = —2eap.ﬁ—3—(fi'e)a (5.4)
= Oy v oz* ) )

“It is seen that electromagnetic field strengths vanish:outside the Cherenkov cone,
inside this cone they fall like r—2 at large distances, and they are infinite on the Cherenkov
cone.

We limit ourselves to the £, < 1 case. The EMF is equal to

Bo= 22000 326, B, =222, - 3L (]
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-~ vt 1 Y=
=28 322G, B, = ~2eanfraein, — 35,
ey r3 rs r
1 T,
B, = 2eap.ﬂ'7,.r—3[n, - 3r—2(m"')]. B,=10 (5.5).

In the reference frame where the electric dipole is at rest

1-n? 1 r 2ea(1 — n?)Byvn 1 z ..,
B = 2ea( eﬂ )BYYn ﬁ[ny—:i%;(ﬂ" o B’I’ = _ ; "ﬁ[n,—li;z(nr ),
E, v 1 3—2—,-(""')] E, = 2eal—l—[n - 3y—’(ﬁf-”)]
.= 2ea;‘—€-ﬁm, -3z nr. , y = popper L o ,

7 2eay, 1 z ..
E'=2ea-‘£rln[n,—3z—(ﬁi'")], A=0, D=2 i 3G,

: rn2 ¥e
! n 2 oy,
D, = ?_e_“ehin[ - 3%‘(5; N, D= 2ea;7[n, = 3 (A7) (5.6)
ye 1

We see that £ resembles the field of electric dipole, while H, having only two Cartesian
components, cannot be interpreted as a field of magnetic dipole.
For the vector fi oriented along the motion axis, one gets

2
z(z — vt) y(z — vt) _2ea Y. Ya(z—vi)
E.= —660‘7:—7"5—,; E, = -,-66073?5‘—‘ E = —[501-3"—)
- ot z(z - vt) )
B. = Gﬂﬁea‘v;s.y—(‘z,—yr,;—)1 B, = —6uf Aea‘Yi(—,y;g—“» (5.7

where r? = £2 4 ¢? 4 (z — ut)’+2 is the same as in (3.7). . o
For the vector f perpendicular to the motion axis (say, 71 is in the = direction), the field
strengths are

| z(z - vt)

2ea v, z? . Ty _
Ez = '—E—r—:[] - 3;], Ey = —66(17,.6—7‘5'| E; = "66(1‘}’,,_——63——,
. . 2
- Ty Tn z
B, = beap'y,.ﬁr—s, By = 2eapﬂ;—[l - 35 . (58)

6 Electromagnetic ﬂﬂeld_,‘of induced dipole moments

Now we applir the formalism developed by Frank to evaluate the EMF of moving magnetic
and electric dipoles.

6.1 Electromagnetic field of moving magnetic dipole )
Amorﬂiﬁg to Refs. [1—3, 5-11], the mdvihg magnetic dipole 77’ creates the following
magnetic 7 and electric § dipole moments in the LF: e i

M= — (1 —\/1 - BP)IER)A, B=(Bx ), F=dle (6.1)
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For the 17/ directed along the motion axis, (6.1) passes into

my=m, =0, m;=m=m'fy, F=0. (6.2)
The EMF of induced dipoles (6.2) being at rest in the instantaneous position of the
moving magnetic dipole (this is essentially Frank’s prescription) is given by

¥

— — —_ 2
E‘d =0, B: = 3mlz(—zé—l-)‘t—), B: = 3mﬂ—(-z—sLt) Bf = —rn(lS — 3ﬂ£—5ﬂ)
r r r

. (63)
Here r = [2% 4+ ? 4+ 3(z — vt)?]'/2. By comparing (6.3) with (3.11), we conclude that the
magnetic field of a moving point-like current loop resembles (but not coincides with) that
of a magnetic dipole. The nontrivial +, dependence in (3.11) tells us that the magnetic
field of a moving magnetic dipole cannot be obtained by the simple Frank’s prescription
(6.1).
Further, Frank’s receipt (6.2) gives a zero electric field, while the exact electric field (3.11)
differs from zero. Another way to see this is to write out the electric field created by
the electric dipole § which is at rest in the instantaneous position of a moving magnetic
dipole:
=Pz + ypy + 7(z — vt)ps

. 1
(Ed), = —;;Ps + 3z

5 1
rs
1 zps + ypy + (2 — v)p
(Ed)v:'—ﬁpv""ay z ¥ r5( :,
-1 TP + ypy + v(z — vt
(Ea)s = —=ps + 37z b T 0Py r57( 2 -, (6.4)

where r? = 2% + 32 + (z — vt)*y®. The exact electric field of a moving point-like current
loop has only the ¢ component (see (3.11)). It is easy to check that it is impossible to
choose p;, py, p, in (6.4) in such a way as to vanish simultaneously E, and F,. This means
that the electric field (3.11) produced by a moving magnetic dipole cannot be associated
with the field of the induced electric dipole.

For the 1’ perpendicular to the motion axis (for definiteness, let the motion and sym-
metry axes be along the z and z axes, resp.) Then, Eq.(6.1) gives

Mme=my=0m,=m=m, p,=—PFm,
The EMF generated by this dipole moment is
. (o vt .
(B = ~3pm 222, (), =52 _3pn (B, = apmZ,

z(z — vt z 2
(Bd)_., = 37m(Lr5v_)’ (Bd)” = 37my;_?‘-, (Bd), = —%n; + Sm%. (6_5)

These expressions slightly resemble the exact ones (3.20), but not reduce to them (again,
due to the nontrivial +y, dependence in (3.20)).
The situation remains essentially the same if instead of § given by (6.1), the modified
Frank’ formula ([3])

F=n*Bxm), n=eu {6.6)
i8 used.
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6.2 Electromagnetic field of moving electric dipole

According to Frank, a moving electric dipole 7’ creates the following magnetic 1 and
electric 7 dipole moments in the LF:

F=p - (- \1-PE)*, A=-Fx7. (6.7)
For " aligned along the motion axis z this reduces to
P =Py = O: Pe= P’/% m =0 (6-8)

The EMF of induced dipoles (6.8) being at rest in the instant position of the moving
electric dipole is given by .
— -1 — ut)” —~
E, -_:p_”%&_vf_)., By = p?l(_z;gl_t)‘ E. = _% + 3;,1(_27.5_”)_, B=0. (69)
By comparing this with (5.7), we conclude that the electric field (6.9) of an induced
electric dipole resembles (but not reduces o) the exact electric field (5.7) of a moving
electric dipole. On the other hand, the magnetic field .vanishes for the induced magnetic
moment (6.8) contrary to the exact magnetic field (5.7) of the moving electric dipole.
The latter cannot be attributed to the magnetic dipole.
For the electric dipole oriented perpendicularly (say, in the z direction) to the motion
direction 2, one obtains from (6.7) for the non-vanishing components of induced dipole

moments

‘ » p.=p=p, my=-—Pp (6.10)
The corresponding EMF is
2
P z Ty 2 zy(z = vt)
E; = il et E, =3p—5, E, =3p———,
zy P ¥ vy(z —vt)
B, = —3/9}’;5-1 By = i 35}’;;, B.= ”3ﬂPT‘- (6.11)

By comparing this with (5.8) we conclude that the electric field of an induced dipole
moment resembles the exact electric field (5.8) of a moving electric dipole. On the other
hand, there are three components of the magnetic field of the induced moment (6.10) and
only two exact nonvanishing components in (5.8). Therefore, the exact magnetic field
(5.8) Bj',a moving eléétric dipole cannot be attributed to the induced magnetic dipole
(6.10). '

7 Discussion and Conclusion

The exact results presented in sects. 3-5 confirm the nontrivial Frank’s thought that

Radiations of magnetic and electric dipoles should have the same angular .
distributions as they are due to the interference of waves which do not depend
on the particle nature.
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(Our translation from Ref. (3], p.191). In fact, from comparison of Eqs. (3.11) with (5.7)
we conclude that:

i) For f, < 1 the magnetic (electric) field of a moving magnetic dipole is of the same
functional form as the electric (magnetic) field of a moving electric dipole.

i) For f,, > 1, the same Cherenkov singularity is produced by moving electric and mag-
netic dipole moments: the EMFs produced by them vanish outside the Cherenkov cone
and coincide with each other (with the interchange E <= H, similarly to the 8, < 1

. case) inside it.

However, the arising electromagnetic fields cannot be obtained with ihe use of simplified
Frank’s prescriptions (6.1),(6.6) and (6.7).

It should be mentioned that electromagnetic fields originating from an arbitrary mo-
tion of magnetic and electric dipoles were obtained earlier in a number of papers ({30-34]).
The nice review of these attempts may be found in Ref. (35]. Electromagnetic fields ob-
tained there were expressed in terms of the so-called retarded times. However, to express
the retarded time through the measurable laboratory time is not trivial task at all even
for the simplest motion laws. In this paper we succeeded to do this for the point-like mag- -
netic and electric dipoles and toroidal dipole noving uniformly in a nondispersive medium.

We briefly summarize the main results obtained:

1. The exact electromagnetic fields of point-like electric and magnetic dipoles moving
in a non-dispersive medium are obtained. In accordance with Frank’s prediction, they
produce the same electromagnetic fields (with the interchange £ <= H ).

However, the formalism of induced electric and magnetic moments suggested by Frank,
does not describe properly the exact electromagnetic fields mentioned above.

2. The exact electromagnetic field of a point-like toroidal solenoid moving in a nondisper-
sive medium is obtained. For the elementary TS’ velocity smaller than the light velocity
in medium, the electric field of moving TS is similar to the field of an electric quadrupole.
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Fig.3: The coordinates Ry parametrizing the torus.

Fig.1: The mrcular current ] is eqmvalent to the magnehzahon perpendicular to the the

current plane. 5 v : - O

EDri11Q)
T

Fig.4: The poloidal current j 7 flowing on the torus surface is eqmva.lent to the magne-
tization M confined to the interior of the torus and to the toroidization 7' directed along
the torus symmetry axis.

Fig.2: The poloidal current flowing on the torus surface.
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a b

Fig.5: a) There is no induced charge density when the symmetry axis of the current
loop is along the velocity; N S
b) The induced charge density arises when the symmetry axis of the current loop is per-
pendicular to the velocity. - '

+ . S '
- +
T . —_—
+
.+ . -
a b

Fig.6: The induced charge densities for the cases when the symmetry axes of a moving
toroidal solenocid are along the velocity (a) or perpendicular to it (b).
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Fig.7: A moving electric dipole with arbitrary orientation relative to its velocity.
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