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1 Introduction

Evolution kernels are main ingredients of the well-known evolution equations for the
parton distribution of DIS processes [1] and for parton wave functions [2] in hard exclusive
reactions. These equations describe the dependence of parton distribution functions and
parton wave functions on the renormalization parameter u?. The calculations performed
beyond the one-loop approximation for the forward DGLAP evolution kernel P(z) (3, 4],
and what is more, for the nonforward Efremov-Radyushkin-Brodsky-Lepage (ER-BL)
kernel V(z,y) [5, 6] were challenged and complicated technical tasks. 15 years later,
the 3-loop results for these kernels are not known yet, except for the first few elements
of anomalous dimension in DIS, obtained numerically in [7]. In this situation, it seems
useful to try other ways to gain knowledge about high-order corrections to these kernels
and to the solutions to the corresponding equations.

Here I discuss the results of the diagrammatic analysis and multiloop calculations of
the DGLAP kernel P(z) and ER-BL kernel V(z,y) in a certain class of the “all-order”
approximation of perturbative QCD (pQCD). The corresponding diagrams include the
chains of one-loop self-energy parts (renormalon chains) into the one-loop diagrams (see
Fig. 1). The regular method of calculation and resummation of the indicated classes of
diagrams for these kernels based upon their simple forest structure has been suggested
in [8]. There was established that the resulting series possesses a nonzero convergent
radius, therefore the infrared renormalons are absent in the kernels. The results of that
summation for both the kinds of kernels (DGLAP and ER-BL) obtained earlier in the

N¢
framework of a scalar model in six dimensions with the Lagrangian Line = gy (1/):1/):'90)(5)

with Ny of the scalar “quark” flavours (¢;) and “gluon” (i) are analyzed here for non-
singlet QCD kernels. For the readers convenience some important results of the paper [§]
would be recalled.

The insertion of the chain into the “gluon” line (“chain-1” in [8]) of the diagram in
Fig.1 a,b and resummation over all bubbles transforms the one-loop kernel aPy(z) = aZ =
a(l - z) into the “improved” kernel P()(z; A)

2
aPy(z) = az "= PO (z; A) = az [ (2)~4(1 - )7“’((2)) =aNs7,(0), a = ﬁ 1)
Here, 7yy(,)(€) are one-loop coefficients of the anomalous dimensions of quark (gluon
at Ny = 1) fields in D-dimension (D = 6 — 2¢) discussed in [8]; for the scalar model
Yp(€) = 7p(€) = B(2 — ¢€,2 — €)C(¢), and C(e) is a scheme-dependent factor (C(0) = 1)
corresponding to a certain choice of an MS -like scheme. The argument A of the function
¥o(A) in (1) is a standard anomalous dimension (AD) of a “gluon” field. On the other
hand, the result (1) corresponds to resummation of a class of series like a (A In[1/z])"-series
(see Table 1 in [8]) into the kernel which dominate at large Ny.

The resummation of this “chain-1” subseries into an analytic function in A should
not be taken by surprise. Really, the considered problem can be connected with the
calculation of large N; asymptotics of ADs’ in order of 1/Ny. An approach was sug-
gested by A. Vasil’ev and colleagues at the beginning of the 80%es [10] to calculate the
renormalization-group functions in this limit, they used the conformal properties of the
theory at the critical point g = g. corresponding to the non-trivial zero g. of the D-
dimensional g-function. This approach was extended by J. Gracey for the calculation of
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ADs’ of composite operators of DIS in QCD in any order n of PT, [11]. T used another
approach which is close to [12]; contrary to the large N '+ asymptotic method, it does not
appeal to the value of parameters NyTq, C4/2 or Cp, associated with different kinds of
loops in QCD. To illustrate this feature, let us consider the insertions of chains of one-loop
self-energy parts into the “quark” line of diagram Fig.1a (“chain-2” in [8]). Contributions
of these diagrams calculated in the framework of the above scalar model do not contain
the parameter Ny, nevertheless, they can be summarized into the kernel P3(z; B) [8]

o schein=? n2) oy - AN (-8 WwO@] 5 _ 5=1—
aPy(z) = az "5 PO (z; B) = az (1 +BdB) [(z) ’Y\z:(B)} iB=av,(0),2=1-2, (2)
according to the same approach. This corresponds to summation of various series like
a (BIn[1/z])"-series into the kernel. The operator (1+ B d/dB) appearing in front of
formula (2) expresses an inherent combinatoric factor to these diagrams. Following that
line, the “improved” QCD kernel P()(z; A) was obtained in [13] for the general case of a
mixed chain (quark and gluon bubble chain) in £~ gauge.

Here, we present the QCD results similar to Eq.(1), in the covariant £~ gauge for the
DGLAP non-singlet kernel P(z; A). Analytic properties of the function P(z; A) in variable
A are analyzed. The assumption of the “Naive Nonabelianization” (NNA) approximation
(14] for the kernel calculation [15] is discussed and its generalization based on £ = —3 gauge
is suggested. The numerical importance of the resummation in this case is demonstrated.
The ER-BL evolution kernel V(z,y) is obtained in the same mult'i_loo'p approximation as
the DGLAP kernel, by using exact relations between the P and V kernels [6, 8] for a
class of “triangular diagrams”. The considered class of diagrams represents the leading
bo-contributions to both the kinds of kernels. Partial solutions for the ER-BL equation,
®n(z, A), are derived. The multiloop “improved” kernels P(z; A), V(z,y; A) and solutions
®n(z, A) are compared with the exact results in 3(2)-loop approximation.

2 Triangular diagrams for the DGLAP evolution
kernel ' S

Here, the results of the bubble chain resummation for QCD diagrams in Fig.1 for the
DGLAP kernel are discussed. These classes of diagrams generate, in particularly, contri-
butions ~ a, (Aln[1/z])" in any order n of pQCD. Based on the resummation method
of Ref. (8] in the QCD version, one can derive the kernels P(1:5:) (corresponding to the
diagrams in Fig.1 a,b,c) in the covariant &—gauge!, whose explicit expressions are pre-
sented in [13]. They contribute to the total kernel PM(2; A,€) that has the expected
“plus form” . '

O A = a0s A0 ap s 21 10,8
PO A 6) = a,Cp2 [zz A0 - AP+ l—zL 7:(/1,5)’ (3)
asPo(z) = asCF2'[2 + 12—Zz]+’ (4)

'The gauge parameter ¢ is defined via the gluon propagator in the lowest order iDy (kY =

—i0b ) ~

- kuk,
Pai (y;w+(E“ D"

Figure 1: The diagrams in figs. 1a — 1c are “triangular” diagrams for the QCD DGLAP
kernel; dashed lines for gluons, solid lines for quarks; black circles denote the sum of all
kinds of the one-loop insertions (dashed circles), both quark and gluon (ghost) or mixed
chains; the slash on the line denotes the delta function §(z — kn) ( k is the momentum‘
on the line) which is traced to the representation of the composite operator ®, see (6]
for details; MC:denotes the mirror—conjugate diagram; 1d is an example of a diagram for
the nonforward ER-BL kernel. " :- ; S :

where a, = &, Crp= (N*-1)/2N,,Cy=N,, Tr= 5 are the Casimirs of SU(N,)

group, and-A = —a,74(0,£). For comparison with-(3), the one-loop result a,Py(z) is
written also down, the latter can be obtained as the limit PM(z; A — 0,£). The 7,4(0, &)
is the one-loop coeflicient of the standard. AD of the gluon field, while the function v,(g, §)
is the coefficient of the anomalous dimension in D-dimension, here D = 4 — 2¢. In other
words, . it is the coefficient Zy(e). of. a simple.pole in the expansion of the gluon field
renormalization constant Z that includes both its finite part and all the powers of the &-
expansion. So, one can conclude that the “all-order” result in (3) is completely determ.ined
by the single quark (or/and gluon) bubble diagram. The function (&) thl'.lS def.ined is an
analytic function in the variable ¢ by construction, see [8]. Equation (3) is valid for any
kind of insertions, i.e., v, = 'yg") for the quark loop, 74 = 'yy) for t‘he:glpon (ghost) loop,
or for theit sum "~ "=~ - . - S A e

75(A,€) = 10 (A) + 49 (4,8); )

when both the kinds of insertions are taken into account.. Note that in (3) the §(1 — 2) -
terms appearing in the partial contributions (see [13]) are exactly accumulated in the .form
of the [...]4 prescription, and the € - terms successfully cancel, This is due to the evident
current conservation for the case of quark bubble insertions; including.the gluon bubbles
into consideration ,méie]y_qui_ﬁes the effective AD 'yé")(A)‘ — 7,(A, £), conserving the
structure of résuli: (3),.see [8, 13].,Substit‘_utling_the well-known-expressions of y,() from
the quark dr}glugr}, (ghost) loops (see, e.g., [17]) ... - -~ :

1) = —»sN,TRB(D/2yD/2)C(€‘)s; 3 o . o )
AN e €)= _243(1)/2- 1,D/2-1) (( 51 ) +

3,
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into formula (3) one can obtain P()(z; 4, £) for both the quark and gluon loop insertions
simultaneously. Here, the coefficient C(¢) = I'(1—£)T'(1+¢) implies a certain choice of the
MS scheme where every loop integral is multiplied by the scheme factor F(D /2-1)(p?/4rn)*
(MS, scheme). The renormalization scheme dependence of P1)(z; A) is accumulated by
the factor C(€). For another popular definition of a minimal scheme, when a scheme factor
is chosen as exp(c-€), ¢ = —yg +... instead of I'(D/2 — 1) (MS, scheme), the coefficient
C(g) does not contain any scheme “traces” in final expressions for the renormalization-
group functions.

Of course, the final result (3) will be gauge-dependent in virtue of the evident gauge
dependence of the gluon loop contribution 4{¥)(¢, £). A new expansion parameter A(£) in
this case,

A(©) = ~0,75(0,8) = —a, (49(0,8) + 10(0)) = ~a, [(3 590, - ~N,TR] , )

is the contribution to the one-loop renormalization of the gluon.field. The positions of
zeros of the function 7,(A4,£) in A, which represent the poles of P(z; A, £), also depend
on €. The kernel PM(z; A,£) becomes gauge-invariant if we restrict themselfves only

to the quark-loop insertions, i.e., 7, — 'y(q) Ao AW = 4 'y(")( ) = a,-—TRN,,
and PW(z; A, €) is reduced to P(l)(z AW), as it is presented in [8]. It is lnstructlve to
outline analytic properties of P(l)(z A@)Y in A® based on Eq. (3)-and on the explicit
form for 7(:1) in (6): (i) the range of convergence of the PT series corresponds to the
left zero of the function 7{¥(A) and is equal to' Ay = 5/2, which corresponds to a?

157 /Ny, so, this range looks very broad 2, @, < 57 at N; =:3; (ii) the resummation.

into P(l)(z A) is'substantial, two zeros of the function P(l)(z A)'in" A appear within the
range of convergence (in MS, scheme). Of couse, the moments of this reduced kernel
PM(z ; A9).agree with the generating function for the anomalous dimensions, obtained
earlier in [11]. :

3 A modified NNA version for kernel calculations

The expansion of P{))(z; A) in A provides the leading a, (a,N; In[1/2])" dependence of
the kernels with a large number Ny in any order n of PT [8]. But these contributions
do not numerically dominate for real numbers of flavours N; = 4, 5, 6. That can be
verified by comparing the total numerical results for 2--and 3-loop ADs’ of composite
operators (ADCO) presented in [7] with their Ny-leading terms, see Table 1. There the
contributions to coefficients of different Casimirs in the ADCO are presented. To obtain a
satisfactory agreement at least with the two-loop results, one should take into account the
contribution from subleading N;-terms. As a first step, let us consider the contribution

‘2Here we consider the evolution kernel P(z, A) itself. We do not consider that the factorization scale
42 of hard processes would be chosen large enough, 2 > m , where the p-meson mass m, represents the
characteristic hadronic scale. For this reason, the used couplmg a,(1?) could not be too large.

4

from the completed renormalization of the gluon line, which should generate a part of
subleading terms. Below, we examine an exceptional choice of the gauge parameter
£ = —3. For this gauge the coefficient of. one‘loop gluon AD 7,(0, —3) coincides with by,
the one-loop coefficient of the ﬂ-functlon .and A(—3) = —a,by. Therefore this gauge can
be used.for reformulating the so-called [14] NNA proposition to kernel calculations. Note,
just this value of £ has been used in [19] to estimate the total gluon contribution only
from the gluon bubble in order a? to the process of e* ¢~ annihilation.. Other interesting
appllcatlons of this gauge to approximate the exact. loop results have been con51dered in
20, 21].. . ‘
[ To obtain the NNA result ina usual way, one should substitute the coeﬂic1ent bo for
'y(")( ) in the expression for A by hand (see, e.g., [15]). Note, the use of such an NNA
procedure does not improve P(l)(z A) and leads to poor results even for the two-loop level,

i.e., for the a? Py(z) term of the expansion, see- [22]. The NNA trick expresses common
hope that the main logarithmic contribution can follow from the renormalization of the
coupling constant g,. This renormalization appears as a sum of contributions from all the
sources of renormalization of g, at the vertexes of triangular diagrams. Let us con51der
the gluonic, vertex, and quark line renormalizations successively in the case of the § =-3
gauge. The one-loop gluon renormalization in this gauge imitates the contributions from
all other sources and the coefficient by appears naturally via of 7,(0, ~3). At the same
time, in the one-loop vertex renormalization constant Zyr,

“1—Zyr ~ aq CF§+CA

(3+9),
the nonabelian part vanishes at £ = —3, while the corresponding abelian part, a,Cré, is
compensated by the renormalization of the quark line of a triangular diagram, —a,Cp€,
due to the Ward identity?. So, due to the cancellations, only the gluon contribution
survives in g, renormalization and provides the expected by-term, a,bp In[z]. These prop-
erties of cancellation can be illustrated by the well-known diagram by diagram results for
two-loop P;(2) presented in Feynman gauge in [4, 6] (for Vi(z,y) in {6, 9]). Indeed, the
terms, connected with the quark field/vertex renormalization are proportional to In[1 — 2|
in these diagrams and really cancel in the gauge invariant sum of all contributions. In
contrast to that, the In[z]-terms collect the coefficient a,bp. Though we should not take
into account the self-energy chain (“chain-2” in the Intr.) and “rainbow” graph insertions-
into the quark line unless the vertex of the triangular diagram, dressed in the same man-
ner, is included into consideration, we see that their contributions should be cancelled
in the first log-parts for the discussed gauge. For these reasons we can guess the gauge
§ = —3 “exceptional” for the one—loop chain dressmg

To analyze the resulting effect of “all-loop” resummation for the case £ = —3 in (3), let
us choose the common factor 7, (0, —3)/7,(A(=3), —3) in formula (9) (below the notation
a=aby= —A(=3) is introduced),

p_(l)(,;; —~a,—3) = a,Cp2- |22°(1 + a)® +

2z1+"]‘ 7,(0, —3)
1-2z ’Yg(— 73),;,

3Here, for the B(a,)-function we adopt f(a,) = ~boa? +..., by = CA - N,TR i
4This reason was noted also in [21]

©




75(0,—3) _ T(2+2a)(3 + 2a) b
7o(=a,=3) ~ (T(1+ a))’C(=a) (402 + a(3bo + 2) + 3by)’

for a crude measure of the modification of the kernel in comparison with the one-loop
result a,Fy(2). The factor (as well as the whole kernel P(z; —a, —3)) has no singularity
in a fora > 0. Consrdermg the curve of this factor i 1n the a.rgument a in Fig.2, one can
conclude:

(i) the factor v4(0, ~3)/7,(—a, —3) significantly grows with argument a in the range
of the standard PT validity. Really, this factor reaches 1.42 for the MS, scheme ( 1.26 for

the MS, scheme), if we take the naive boundary of validity of the standard PT, aq = 0.5,
27

(10)

a, =

0
resummation.is numerically important in this range, see Fig.2.
(ii) scheme dependence looks not too strong for acceptable values of parameter a.

= 0.7 that corresponds to the value of a, on the hadronic scale; thus, the

Y9(0, —3)/74(~a, =3)

Figure 2: The curves of the factor v,(0, —3)/7,(—a, —3) in a; the solid line corresponds
to MS; scheme, the dashed line corresponds to MS; scheme

Note that Egs.(3, 9) could not provide the valid asymptotic behavior of the kernels for
z — 0. A similar z-behavior is determined by the double-logarithmic corrections which
are most singular at zero, like a, (a, ln2[z]) [18]. These contributions appear due to
renormalization of the composite operator in the diagrams by ladder graphs, etc. , rather
than by the triangular ones. But, Eq.(9) can provide a main’ z-behavior for not too small
z due to simple-logarithmic corrections. To obtain the low boundary of this z—region, let
us-compare effects from simple and double logarithmic contributions taking into account
the main singular terms up to 3 loops;

Isz(Z) = a_,2Cp

+  a?2Cr[-..+byln[e] +(2C4 — 3Cr) In?[2]]

L

el

| - B c - 6[C
+  a¥2Ck [+ (bgllb(;3 2ln[z] + Eolnz[z]) + £ [ ;

+ ., : ; (11)
The first terms in the squar brackets in (11) follow directly from the expansion of Eq.(9) in
a; the second term in the second line is the double-log from the exact two-loop calculations;

and the last term in the third line was predicted by J.Blumlein&A.Vogt in [18]. From (11)
rough estimate follows to the boundary of validity of Eq.(9), z = 0.1 — 0.05 at moderate

= Cal2 s [;«]]

a, ~ 0.3 — 0.1. The most singular In*[z]-term in-(11) becomes important for z < 1073

Table 1. The results-of I'(y 2)(n) calculations ( I'(n)

= f3 dzz"P(z)) perfo’rmed in dif-

ferent ways, exact numerical results from [7] and approximation obtained from P(z, 4, §)
with £ = —3; both numerical and analytic exact results are marked by the bold print:

l"(l)(n) F(z)(n)
CrCya | Nj-Cr - CiCr N;-CpCy N}-Cr
n=2
Exact 13.9 86.1 + 21.3 ¢(3) | —12.9 — 21.3 ¢(3)
—2.3704 : —0.9218
¢=-3 11.3 —42.0 12.9
n=4
Exact 23.9 140.0 4 19.2 ¢(3) | —18.1 — 41.9 {(3)
—4.9152 —1.5814
£=-3 23.5 —76.0 23.
n=
Exact 29.7 173 4+ 19.01 ¢(3) | —20.4 — 54.0 {(3)
—6.4719 || —1.9279
£=-3 31.1 —-95.6 28.5 '
n= }
Exact 33.9 196.9 + 18.98 ¢(3) | —21.9 — 62.7 ¢(3)
—7.6094 —2.1619
£=-3 36.3 . —109.0 32.3
n=10 .
Exact 37.27 216.0 + 18.96 ¢(3) | —23.2 — 69.6 {(3)
—8.5095 : ‘ —2.3366
£=-3 41.00 —119.28 35.24
n=12
Exact 40.02 ? ?
—9.2555 —2.4753
£=-3 44.64 —-127.61 37.58 :
7



It seems naturally to combine the improved by the simple-logs kernel P{!)(z; —a, —3)
with the first double-logs contribution from the exact two-loop calculations into a mod-
ernized kernel ° P(z)

P(z) = P<‘><z,-a,—3>+ach [(PO(Z)CA“(1+Z)CF)1“2[Z] A(Cr - CA/2>Po<—z)F<z>]

which works up to z ~ 10 -3, . ’ ‘ ’

At the end let us consider. the integral.characteristics of the kernel. P(‘)(z -a, —-3) to
compare with the exact results. The expansion of this kernel in a generates partial kernels
a2Pyy(2), adPz(z); ... which in turn produce ADCO a2 T3)(n), a2 Iz)(n), ... according
to the relation T'(n)-= f; dzz"P(z). Let us compare these elements of ADCO and a few
numerical exact results from [7] collected in Table 1: :

(i) evidently, the leading Ny-contributions are reproduced exactly for any T (j)(n);

(ii) we consider there the subleading contributions to the coefficient F(l)(n) generated
by gluon loops and associated with the Casimirs CrC,/2, the C%-term is missed, but its
¢ “contribution is numerlcally insignificant. It is seen that in this order the CrC4-terms are

rather close to exact values (the accuracy is about 10% for n > 2) and our approximation '

- works rather well;

(111) in-the next order, the contribitions to I‘(g)(n) assocrated with the coefficients
N, CrC,4 and CACr arise, while the terms with the Casimirs CF, Ny -CE, C%C, are
missed. In the third order, contrary to the previous item, all the generated terms are
. ‘opposite in sign to the exact values and the “¢ = —3 approximation” doesn’t work at all.
So, we need the next step to improve the agreement with 3-loop results — to obtain the
subleadmg Ny-terms by an exact calculation. -~~~ Pero

4 The nonforward ER-BL evolution equation and its

solution

Here we present the results of the bubble resummation for the ER-BL kernel V(z, y) The
latter can be derived in the same manner as it was done for the DGLAP kernel P(z),
see Appendix A in [8]. On the other hand, V' (z,y) can be obtained as a’ “by-product” of
the previous results for P(z), i.e., we use again [8, 13] the exact relations between the V
and P kernels established in any order of PT [6] for triangular diagrams. These relations
were obtained by comparing counterparts for the shme triangular diagrains considered in
-“forward”, Fig.1a, and “nonforward”, Fig.1d, kinematics:

Collecting the contributions from triangular diagranis, see [13], one arrives at the final
expression for V() in the “main bubbles” approximation :

- ) fg\1A ) .
V(z,y; A,€) = a,Cr2 [G(y > 1) (5) (1 —A+. o 1 x)] :Z((z’?)
, . ’

+HzoEy—o 9 (12)

that has a “plus form” again due to the.vector current conservation. The contribu-
tion V® in (12) should dominate for N; 3> 1 in the kernel V. Besides, the function

SHere the double-log’s part is rewritten from [4]; F(2) = 4 In®[z] — 2In{z] In[1 + 2] — 2Liz(—z) ~ Lix(1)

8

V) (z,y; A, €) possesses an important symmetry of its arguments z and y. Indeed, the

function V(z,y;4,€) = VW(z,y; A,€) - (§iy)'~4 is symmetric under the change z + v,
V(z,y) = V(y,z). This symmetry allows us to obtain the eigenfunctions Yn(z) of the
“reduced” evolution equation [9]

1
/ VO (z,y; A)a(y; A)dy = T(n; A)¢u(z; 4), . - 13)
0 .

(do(),
(w5 ) = ()7 S U, ) = (D4 - 1172 Dy = 4= 2500)

N(n, A) = 21‘4“\0(’4)71'[‘(11, +2dy(A)/ (! (n+ dy(4)) (T(dy(4))?)),

and dy(A) is the effective dimension of the quark field when the AD A(£) is taken into
account; C("’)(z) are the Gegenbauer polynomials of an order of a; N(n, A) is the norm of
C{(y — ), [25]. The partial solutions ®(z; a,, 1) of the original ER-BL-equation ( where
L=1In(s?/ug)) 4

uQEE‘I’(x;_a,,l_) = /0 VO(z,y; 4) @(y;a,, )dy . - (5)

are proportional to these eigenfunctions v, (z; A) for a special case of the stopped evolution
a; = a3, fB(a;) =0, see, e.g., [23, 8]. The result (14) for the eigenfunctions at & = —3,
has been confirmed in [16] by “a partlal resummation of conformal anomalies” and in a
suggestion of a large value of by. Let us examine t,(z; —a) in (14) as an approximation
to the exact two-loop solution derived in a closed form in [23]. Expanding, e.g., Yo(y; —a)
in parameter a we can express 95" (z) versus the exact solution yg=ect (z)

6z {l + a,bp (ln(a:i‘) + 5)} , - (16)

625 {1 + b (ln(zi) + §)

+a,Cr (ln"( )+2—1'2_2)}. an

The term 95™" (z) coincides with the “conformal symmetry-predicted” (CSP) part in (17),
( proportional to bg), this part dominates in $§¥*(z) in the mid-region of the parameter
z, 03 < £ < 0.7. The other part in (17) is generated by the “additional conformal
symmetry breaking term” {23]; it contributes in the opposite phase to the first one and it
is large and enhanced near the end points. For the latter reason, 12 (z) become useless
at n > 2 even for the mid-region z description, see [23].

In the general case B(a,) # 0 let us start with an ansatz for the partial solution of
Eq.(15), ®n(z;as,1) ~ Xn(as,!) - ¥n(z; A), with the boundary condition x,(a,,0) = 1I;
@,(z; a5, 0) ~ Y (z; A). For this ansatz, Eq.(15) reduces to

(18,3 + B(a,)00, ) In (@4 (z; 04, 1)) = D(m; A). (18)
In the case n = 0, the AD of the vector current I'(0; A) = 0, and the solution of the

Yo(z; —a) = %™ (z)
U6~ (z)

i

.homogeneous equation in (18) provides the “asymptotic wave function”

Bo(z; as, 1) = Yo(z; A) = (1-z)n)-d (19)

N{, A)(



where A = —a,(1?)7(0,&), @,(1?) is the running coupling corresponding to a S-function
B(a,). Similar solutions have been discussed in [15] in the framework of the standard
NNA: approximation. -Solving simultaneously Eq. (18) .and.the renormalization-group
equation for the coupling constant &,, we arrive at the partial solution P, (z;ds, 1) in the
form

.(#5) ﬁ(a)

An adequate choice of S-function in (20) must correspond to the same modified NNA
approximation that was applied for I'(n, A) calculation, but it is absent jet. The f§-
function in a large /Ny expansion, that is equivalent to quark bubbles resummation, has
been computed in [26).

®a(2,8,) ~ Xn(1?) - ¥a(z; A); where xa(p?) = exp {'— / e F(H—’A)da} - (0

5 . Conclusion
Here, I present closed expressions in the “all order” approximation for the DGLAP kernel

P(z) and ER-BL kernel V(z,y) resulting from resummation of-a certain class of QCD
diagrams with the renormalon chain insertions. The contributions from these diagrams,

PM)(z; A) and V) (2; A), give the leading Ny dependence of the kernels for a large number.

of flavours Ny > 1. These multiloop “improved” kernels are generating functions to
obtain contributions to partial kernels like a{®*" P,y (z) in any order n of the perturbation
expansion. Here A ~ a, is the new expansion parameter that coincides (in magnitude)
with the anomalous dimensiqn’ of the gluon. field.. On the other hand, the method of
calculation suggested in [8] does not depend on the nature of self-energy insertions and
does not appeal to the value of parameters NyTg, C4/2 or Cp associated with different
loops. This allows us to obtain contributions from chains with different kinds of self-energy
insertions, both quark and gluon (ghost) loops, see [13]. The price for this generalization
is the gauge dependence of final results for PV(z; A(¢),€) and VI (z; A(€),£€) on the
gauge parameter &. e

The result for the DGLAP nonsinglet kernel PM(z; A(€),£) is presented in (3) in the
covariant £-gauge, it looks similar.in form to the simple one-loop kernel. . The analytic
properties of this kernel in the variable a,are discussed for an exceptional gauge parameter
& = —3. This choice of the gauge allows one to generalize the naive nonabelianization

suggestion and provides the leading bo-behavior of the kernel for large by 3> 1. For, this-

gauge P()(z; A(—3), —3) in (9) works up to z ~ 0.1 — 0.05 at moderate a; = 0.3 — 0.1,
and reproduces two-loop anomalous dimensions afl"(l)(n) with a good accuracy, while the
standard “naive nonabelianization” proposition fails at this level. But on the next; three
loop level the “¢:= —3 approximation” is insufficient, see quantities I'()(n) in . Table 1.

‘The contribution V1V (z, y; A(€),£) to the nonforward ER-BL kernel (12) is obtained
for the same classes of diagrams as a “byproduct” of the previous technique [13, 6]. The
partia] solutions (13), (20) to the multiloop improved ER-BL equation are derived, that
are similar in form to the one-loop solutions. The form of these solutions appearing at
£ ="-3 was confirmed independently ‘in [16]. The lowest harmonic ¥o(z; A(—3)) roughly
imitates the z-behavior in the mid-region of the exact two-loop solution ( [23]).

_The obtained results are certainly useful for an independent check of complicated
computer calculations in higher orders of perturbation theory, similar to [7]; they are

10"

useful for the analysis of evolution “at small z”; they may be a starting point for fur‘ther
multiloop approximation procedures.
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