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Conoauoa lf.JI., llfapKoB .D:.B. EZ-99-244 
AHaJIHTtt'IeCKHH 11onxon B KBaHTOBOH xpoMOllHHaMHKe 

lf3JlaraeTCJI HOBaJI «peHopMHHBapttaHTHaJI aHaJIHTH'IeCKaJI cpopMynttpOBKa» Bbl'IHCJle­
HHH B KBaHTOBOH xpoMOllHHaMHKe, B paMKax KOTOpofi peHopMrpyTI110BOe CYMMHpOBaHHe 
KOppenupyeTCJI C aHaJIHTH'IHOCTbIO 110 QZ, KBanpary 11epenaHHOfO HMl1YJ1bCa. Ilpu 3TOM Bbl­
pruKeHHJI llJlll HHBapuauTHoro 3apllna H MaTpH'IHblX 3J1eMeHTOB MOllH(pHUHpyIOTCJI TaKHM 
o6pa30M, 'ITO HecpH3H'IeCKHe oco6eHHOCTH THl1a 11pH3paquoro 110J1IOCa ue 110JIBJ1JIIOTCJI B006-
IUe, 6ynyqtt 110 110CTpoeHHIO CKOMl1eHCHp0BaHbl ll0110J1HHTenbHblMH He11epTyp6aTHBHblMH 
BKJlaIIaMH. JJ:eMOHCTpHpyeTCJI ycTOH'IHBOCTb pe3yJ1bTaTOB pac'IeTOB llJlll Plllla cpH3H'IeCKHX 
11pouecc0B B paMKax HOBOH cxeMhl 110 OTHOllleHHIO K BbICllIHM 11eTJ1eBbIM 3cpcpeKTaM H Bb160-
PY peuopMaJIH3aUHOHHOfO 11pen11ucaHHJI. 

B BHllaX 11pHMeHeHHll HOBOH cpopMynupOBKH K xapaKTepHCTHKaM 11pouecc0B HeyTipyroro 
nemoH-HYKJlOHHOfO pacceJIHHJI, CTPYKTYPHbie cpyuKUHH 11ocnenHero aHaJIH3HpyIOTCJI Ha 
OCHOBe o6mttx 11pHHUH110B TeopHH, CKOHUeHTpHpOBaHHblX B HHTerpanbHOM 11pencTaBJ1eHHH 
HocTa - JleMaHa - JJ:aiicoua. lfc110J1h3yeTCll HeCTaHnapTHaJI CKeHJJHHfOBaJI 11epeMeHHaJI, 
KOTOpal! 11pHBOllHT K MOllH(pHUHpOBaHHbIM MOMeHTaM CTPYKTypHblX cpyHKUHH, 06nana10IUHX 
aHaJIHTH'IeCKHMH CBOHCTBaMH llenneHa - JleMaHa 110 11epeMeHHOH Q2

• YcTaHOBJJeHa CBJl3b 
3THX «MOllHcpHUHpoBaHHblX aHaJIHTH'IeCKHX MOMeHTOB» C 011epaTOpHbIM pa3llO)KeHHeM. 

Pa6orn BhmonHeHa B Jla6oparnpuu TeopemqecKofi cptt3HKH HM.H.H.Eoron106oaa 
OIDIH. 

TTpenpHHT 06-be/lHHeHHOro HHCTHTyra llJlepHblX HCCJlC)lOBaHHH. )ly6Ha, 1999 

Solovtsov LL., Shirkov D.V. EZ-99-244 
Analytic Approach in Quantum Chromodynamics 

We investigate a new «renormalization invariant analytic formulation» of calculations 
in quantum chromodynamics, where the renormalization group summation is correlated with 
the analyticity with respect to the square of the transferred momentum Q2

• The expressions 
for the invariant charge and matrix elements are then modified such that the unphysical sin­
gularities of the ghost pole type do not appear at all, being by construction compensated by 
additional nonperturbative contributions. Using the new scheme, we show that the results of 
calculations for a number of physical processes are stable with respect to higher-loop effects 
and the choice of the renormalization prescription. 

Having in mind applications of the new formulation to inelastic lepton-nucleon scattering 
processes, we analyze the corresponding structure functions starting from the general princi­
ples of the theory expressed by the Jost - Lehmann - Dyson integral representation. We 
use a nonstandard scaling variable that leads to modified moments of the structure functions 
possessing Kallen - Lehmann analytic properties with respect to Q2

• We find the relation 
between these «modified analytic moments» and the operator product expansion. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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Take care of the Principles, ana the . 
Principles shall take care of you. 

Sdentific achievements of Nikolai Nikolaevich ,Bogoliubov are character­
ized by a unique combinatfon of determination .in solving concrete scientific 
problems and.a high level of mathematical culture. He could find the.short­
est path to a physical result using most general principles of the the.ory . . 

The renormalization-invariant analytic, approach to quantum .chromo­
dynamics exposed here and its most recent applications are based on the 
works {1, 2, 3, 4) by Bogoliubov with his closest collaborators .. A char­
acteristic feature of these investigations is their strong relation. with the 
fundamental quantum physics principles. 
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1 Introduction 

An intrinsic ingredient of modern quantum field theory (QFT) is the renor­
malization group (RG) method proposed in the mid-fifties [1, 2]. The role 
of this method is particularly important in the cases where the interaction 
is not weak, for example, in quantum chromodynamics (QCD). Hardly any 
hadronic process investigated in the QCD framework can be analyzed with­
out using the renormalization group. It is well known that directly solving 
the RG equation for the invariant charge leads to unphysical singularities, 
for example, to the ghost pole in the one-loop approximation. Taking next 
loop corrections into account does not alter the essence, and leads only to 
additional branch cuts. The existence of such singularities contradicts the 
general principles of local QFT. 

As early as in the late-fifties, N. N. Bogoliubov and collaborators [3] pro­
posed a resolution of this problem in the context of quantum electrodynam­
ics (QED) by unifying the RG method with the requirement of analyticity 
with respect to Q2 , which in turn followed from the known Kallen-Lehmann 
representation expressing the basic principles of local QFT [5] [see Eq. (2.1) 
below]. 

The invariant QED charge a( Q2
) ( also referred to as the "invariant, or 

running coupling constant" 1) is proportional to the transverse amplitude 
of the fuU photon propagator, which satisfies the spectral Kallen-Lehmann 
representation corresponding to the analyticity in the complex Q2 plane 
cut along the negative part2 of the real axis. According to [3], the analytic 
invariant charge can be reconstructed via the Kallen-Lehmann represen­
tation, in which the relevant spectral density is defined as the imaginary 
part of the invariant charge determined by the RG method in the Euclidean 
region and analytically continued to the domain where Re Q2 < 0. The 
explicit one-loop (and implicit two-loop) expression obtained in [3] for the 
analytic coupling in QED has the following important properties: 

- the ghost pole is absent; 
- as a function of a, this expression has an essential singularity in the 

neighborhood of a= 0 of the form exp(-3rr /a); 
- for real positive a,.it admits an expansion in powers of a that coincides 

with the perturbative expansion; 

1 In view of semantical absurdity of the last term, we use the expression invariant 
coupling function or invariant coupling. 

2We use the notation Q2 = -q2
, hence the Euclidean region corresponds to 

positive Q2 . 
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- it has a finite ultraviolet (UV) limit equal to 3rr, which is independent 
of the experimental value a ~ 1/137. 

In (6, 7], the idea to combine the renormalization invariance and the 
Q2-analyticity in QCD led to uncovering new important properties of the 
analytic coupling. These properties include the existence of an infrared 
fixed point of Oan ( Q2 ), which proves to be universal in the sense that its 
value a = 4rr / f3o is already determined by the one-loop contribution (i.e., 
remains unchanged by the multiloop corrections and is therefore scheme­
invariant). It is also independent of the experimentally determined QCD 
parameter A, and the set of curves Oan ( Q2 / A 2) corresponding to different 
values of A is a bundle with the common point Oan(O) = 4rr / /Jo. Thus, 
the analytic approach leads .to essential modifications of the infrared (IR) 
behavior of the perturbative invariant coupling. We give the approximate 
formulas that are useful in the two-loop approximation and also discuss 
some phenomenological applications of the analytic approach.3 

This work can be con~entionally divided into three parts. In the first 
one (Sec. 2), which is a review of our publications over the last two years, 
the analytic invariant approach is formulated in general and is explained in 
detail in application to the analytic coupling "constant." In the second part, 
which is also a review (Sec. 3), we formulate the "analytic perturbation" 
theory for physical quantities expressed through the two-point objects of 
the type of the Adler D(Q2

) function, whose properties can be related to 
the Kallen-Lehmann representation; we also discuss there the problems of 
scheme and loop dependence. 

In the third part (Sec. 4), we finally consider the structure functions 
(formfactors) parametrizing the inelastic lepton-hadron scattering cross­
section. To relate them to analytic functions of Q2 , we start with the Jost­
Lehmann-Dyson integral representation. Using the results of Bogoliubov, 
Vladimirov, and Tavkhelidze [4], we adduce the arguments in favor of the 
introduction of a special scaling variable such that the moments of the 
structure functions with respect to this variable admit a Kallen-Lehmann 
representation. This allows us to apply the analyticization procedure to 
these moments. We also consider the relation of the analytic moments with 
the operator product expansion. 

3The works [8-16] are devoted to the development and applications of the ana­
lytic approach. 
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2 Invariant analytic formulation of QCD 

In this section, we formulate the method of constructing the analytic invari­
ant charge and consider its main properties. 

2.1 The renormalization group and analyticity 

We start with two remarks. It is known that the invariant QCD charge 
o

5
(Q2) is defined via the product of propagators and the special vertex 

functions, which gives rise to the problem of whether the spectral repre­
sentation can be used for this product. This problem was studied in [17], 
where it was shown that the invariant coupling can be written in the form 
of a spectral integral. In the general case, in addition, the evolution of 
o

5
(Q2) is related to the "running" gauge parameter. For simplicity, we 

use the standard MS-scheme, where the gauge does not affect the invariant 
charge.4 

We write the spectral representation for the invariant coupling a(Q2) = 

0 3 ( Q2) / ( 411") as 
- 2 1100 p(a,a) 
llan(Q ) = - da Q2 • • (2.1) 

11" 0 O' + - tf 

In the perturbation theory summed up in accordance with the renormaliza­
tion group, the spectral density p(a, a) decreases as 1/ log2 a, which allows 
us to write the spectral representation without subtractions. 

In the leading logarithmic approximation, the invariant coupling has the 

form 
-(1) 2 - a - 1 
a (Q )- l+a,B0 log(Q2/µ 2) - ,Bolog(Q2/A2)' 

(2.2) 

where ,80 = 11 - 2J /3 is the one-loop ,B-function coefficient with f active 
quarks and the QCD scaling parameter is A= µexp[-1/2aµ,Bo]. The cor­
responding spectral density reads as 

a
2

,Bo1r = _.!_ 1r = p<1)(a, a). (2.3) 
[1 + a,Bo log( a/ µ2)]2 + [a,Bo1r]2 ,Bo log2 ( a2 / A2) + 7r2 

Inserting this into spectral integral (2.1) gives the one-loop analytic coupling 
function 

-(1) 2 2 _ _!_ [ 1 A
2 

] 
aan (Q /A) - ,Bo log(Q2/A2) + A2 -Q2 . (2.4) 

4A similar situation occurs in the MOM-scheme in the transverse gauge or in 
the MOM-scheme when applying a special renormalization [18]. 
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Figure 1: The behavior of the one-loop analytic couplingiian(Q2
): a for 

A = 200 Me V, b for A = 400 Me V. The curves c and d correspond to 
perturbation theory for the same value of A. 

The first term on the right-hand side preserves the standard UV-behavior 
of the invariant coupling. The second term, which comes from the spectral 
representation and enforces the proper analytic properties, compensates the 
ghost pole at Q2 = A2 and is essentially nonperturbative (see the general 
discussion of this point in [19]). This term gives no contribution to the 
Taylor series expansion. Thus, the causality and spectrality principles ex­
pressed in the form of Q2-analyticity, send us the message that perturbation 
theory is not the whole story. The requirement of proper analytic proper­
ties leads to the appearance· of contributions given by powers of Q2 that 
cannot be seen in the original perturbative expansion. We note also that 
unlike in electrodynamics, the asymptotic freedom property in QCD has 
the effect that such nonperturbative contributions show up in the effective 
coupling function already in the domain of low energies and momentum 
transfers reachable in realistic experiments, rather than at unrealistically 
high energies. 

Thus, synthesis of the renormalization-group invariance and analyticity 
leads to the analytic invariant charge without the logarithmic pole and with 

5 



0,10 

o.oJ -~(a) 

0,06 

0,04 

0,02 

0,00 
0,0 0,2 0,4 0,6 0,8 1,0 

Figure 2: The graph of the one-loop {3-function. 

a finite IR value 5 Oan (0) = 41r / flo '.::: 1.396. This limiting value is inde­
pendent of the experimental information related to the normalization point 
a = a(µ 2 ) or to the parameter A; it is instead determined only by the fl­
function coefficient related to the general group structure of the Lagrangian. 
Figure 1 shows a bundle of curves Oan(Q2) corresponding to different values 
of A and also the standard solutions corresponding to the same A. 

The graph of the one-loop fl-function illustrating the existence of an in­
frared fixed point in the analytic approach is shown in Fig. 2. The horizontal 
axis is the parameter floa and the vertical axis is the function -fl(a). We 
note that in the one-loop case, one has the symmetry with respect to the 
point fl0a = 1/2, which is broken when taking higher orders into account. 

We now proceed to the two-loop case. The corresponding fl-function 
reads as 

fl(a) = -floa2 (1 + b1a), b1 = fl1 
flo' 

fl1 = 102 -
3
8! 3 . (2.5) 

Integrating the renormalization group equation, we obtain the transcenden­
tal relation 

fl0 logx = a(~) - b1log (1 + b}(x)) (2.6) 

that can be solved in terms of the Lambert function [20, 21]. 

5For numerical estimates at small Q2 , we use the number of active quarks f = 3. 
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Figure 3: The spectral densities: the exact one-loop (a.); the exact 
two-loop (b ); the approxi~ate two-loop expression ( the iterative solu­
tion) (c); the exact three-loop function (d). 

The spectral density obtained from this expression is shown in Fig. 3 
(curve b). It proves to be very close to the spectral density corresponding 
to the explicit iterative solution of Eq. (2.6), 

1 
a(

2

l(Q
2

) = flo£ + b1 log(l + flo£/bi)' 

which is useful in the subsequent analysis. 

Q2 
£=log A2, 

Solution (2.7) corresponds to the spectral function 

R(L) 

l(L) 

J(L) 
f3o/2l(a) = R2(L) + J2(L)' 

(7 

L = In A2; 

(J 

L+Biln,/(1+ :J2 

+ (;J 2 

B1 +L 
1r + B1 arccos ✓ , 

(B1 + L) 2 + 1r2 

fl1 
B1 = J3J · 

(2.7) 

(2.8) 

(2.9) 

Its graph is given in Fig. 3 (curve c), where we also show the one-loop 
(curve a) and the three-loop (curve d) results. The three-loop p<3) shown 
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in Fig. 3 is obtained in the MS-scheme from the exact integral of the RG­
eq uation with the three-loop coefficient 

/32 = 2857 _ 5033 f + 325 12 /~3 3863 '.::: 643.83. 
2 18 54 6 

As can be seen from Fig. 3, the behavior of spectral densities is stabilized 
starting with the two-loop level; as shown iri what follows, moreover, the 
areas below each of these curves are the same, which corresponds to the 
universality of iian(0). 

1,Sr----'------------~ 

Analytic running coupling 

I,OP..,~ / 1-loop 

0,5 
\ 

_J 
··························•·•==,...,..,.,..___~ -. 

2-loop 

Q (GeV) 
• 0,0.....___.___.._____.__..__~-~~-........___._~ 

0,0 0,2 0,4 0,6 0,8 1,0 

Figure 4: Stability of the analytic invariant charge with respect to 
higher-loop corrections. We use the normalization at the r-lepton mass 
O'.an(M;) = 0.34 for J = 3; 1 is the one-loop approximation, 2 is the 
two- and three-loop approximations. 

To obtain at;}(Q2), we have to insert spectral density (2.8) in Eq. (2.1). 
The resulting integral ~annot be evaluated explicitly.6 The proper analytic 
properties are reconstructed by not only eliminating the pole, but also by 
subtracting the unphysical branch cut O < Q2 < A 2 exp(-Bi) caused by 
the double-logarithm dependence in (2.7). 

61n what follows, we explicitly give the corresponding approximate formulas. 
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The numerical calculation results for f = 3 and for the normalization 
at the point Gan(M;) = 0.34 are shown in Fig.4, where we also give t·he 
one-loop curve (the corresponding values of A are given in Table 1). The 
three-loop MS-curve is practically identical with the -two-loop one, with 
the accuracy of the order 1 %. Thus, in contrast with perturbation theory, 
analyticity leads to an essential stabilization of the invariant charge behavior 
in the IR region. Recalling the asymptotic freedom property, we obtain 
stability in all the Euclidean domain O < Q2 < oo. 

We note here that the universal behavior of the analytic coupling func­
tion is not a consequence of the par'ticular two-loop formula (2. 7). The same 
conclusion remains valid when using the exact solution (2.6). Thus, the IR 
stability of the analytic charge is an internal property of the method and is 
ensured by contributions that are not analytic in a 8 • This approach does 
not introduce any additional parameters into the theory; it operates only 
with the scaling parameter A or with a certain normalization point. 

2.2 Subtraction of unphysical singularities 

The analytic expression for the invariant coupling was obtained using spec­
tral representation (2.1) that guarantees the proper analytic properties in 
the complex Q2 plane and effectively amounts to subtracting the unphysical 
singularities (the pole and the cuts). It it useful to explicitly separate these 
terms. 

We consider the complex plane of z = Q2 / A 2 • The method of subtract­
ing the singularities allows us to obtain an explicit expression for the analytic 
coupling in the one-loop case. Indeed, the expression ,B0a(1)(z) = 1/logz has 
an unphysical pole at z = 1 with the residue res [/30a(1)(z), z = 1) = 1, whose 
elimination amounts to adding the term 1/(1- z), such that the expression 
satisfying the proper analytic properties has the form given in (2.4). 

In the two-loop case, we first consider (2.7), which in addition to having 
the ghost pole at z = 1 with the residue res [/3oa(2)(z), z = 1) = 1/2, has an 
unphysical cut along the positive part of the real axis O < z < exp(-B1) 
(see Fig. 5). The subtraction is effected by the pole term 

and by the integral 

/3oAa~~t(z) 

-(2) _ 1 1 
/3oAapole(z) - --- (2.10) 

21- z 

~ rxp(-Bi) ...±!_ 
1r lo a- z 

9 

(2.11) 



z-plane 

Physical cut 

0 /1 
Ghost pole 

Figure 5: Two-loop singularities in the complex plane (z = Q2 / A2 ). 

X 
rrB1 

[log(a) + B1 log(-1- log(a)/Bt))2 + 1r2B; 

that eliminates the unphysical branch cut. As the result, the analytic in­
variant charge can be written as 

J3oat~(z) = J3oa( 2>(z) + J3o~a~~ie(z) + J3o~a~~t(z). (2.12) 

This form is convenient because the analytic coupling is represented as a sum 
of the standard expression and of the additional terms of a nonperturbative 
nature. Their contribution can be represented as an expansion in powers 
of A2 /Q2 [see Eq. (2.22) below). 

2.3 Universality of <Lan(O) 

The universal value at Q2 = 0 is formed by the contribution of the pole 
term ~a~~ie(z = 0) = l/(2/30) and the contribution of (2.11) that can be 
represented as 

~a z-0 -- --(2) 1 100 dx 1 
cut( - )- J30 0 (x+l-logx)2+1r2 - 2/30 · 

The total contribution leads to the universal expression lian (0) = 1/ /3o. 
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In the above approach to approximating the original two-loop coupling, 
the residue at the pole (which is the leading unphysical singularity) is inde­
pendent of the two-loop /3-function coefficient, and it may thus seem that 
precisely this fact makes llan(0) independent of higher-loop corrections. As 
we have noted, however, there is a different reason behind the universality 
of llan(0), which does not reduce to the choice of a particular approximation 
of the original invariant coupling. We now explain this in more detail. The 
standard asymptotic two-loop expression can be obtained by expanding the 
function 

1 
J3oa(2l(z) = logz + B1 log(l + log(z/C)), (2.13) 

where C is a constant. Expression (2.13) correctly reproduces the standard 
UV limit 

_ 41r [ 1 /31 loglog(Q2/A2)] 
O's= J3o log(Q2/A2) - /35 log2(Q2/A2) 

(2.14) 

that is independent of the constant C. At the same time, the residue at the 
pole now depends on the two-loop /3-function coefficient through B1, 

1 
res [J3oa(

1
>(z), z = l) = 1 + Bi/C' (2.15) 

and therefore, the same dependence is involved in the corresponding com­
pensating term 

-(2) z _ 1 _1_ 
/3o~apole( ) - 1 + Bi/C 1 - z 

whose contribution to llan(0) is equal to 

1 1 
~a~~ie(O) = J3o 1 + Bi/C" 

(2.16) 

(2.17) 

The contribution to llan(0) of the term compensating the unphysical 
branch cut is now given by the integral 

~a~~~(z = 0) = 
1 C [ 00 dx 

J3o Bi lo [(x + l)C/B1 - logx) 2 + 1r2 

1 B1 
/3o (Bi+ C)' 

(2.18) 

which together with the pole contribution (2.17) gives the universal value 
llan (0) = 1/ /3o that is independent of either C or B1. 
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When taking the higher-loop contribution into account for proving the 
universality of the IR limit in the analytic approach, it is convenient to use 
the complex quantity ( = 1/a. We now give simpler arguments based on 
the expansion of the perturbative charge into a double series in powers of 
logm(£)/£k. For iian(0), we can write 

1100 1 oo k 
llan(0) = - ' ·dL e(L) = -(3 +LL O:k,m tiak,m(0)' 

7r -oo . O k=l m=O 

(2.19) 

where the higher-loop contribution is given by 

_ 1 100 logm(L - i1r) 
tiak,m (0) = - Im dL (L . )k+l • 

7r -oo · - 111" 
(2.20) 

Since the integrand in (2.20) has no singularities in the lower half-plane, 
we immediately obtain tiak,m (0) = 0, which proves the universality of the 
infrared fixed point value of the analytic charge. 

Thus, the analyticity requirement for the running charge leads to essen­
tial modifications of perturbation theory in the IR region. The most rele­
vant factor here is the universality of the IR limiting value of the analytic 
coupling function (the invariance with respect to higher-loop corrections), 
which results in that the family of the invariant charge curves correspond­
ing to different loop approximations looks as a bundle with the common 
point at Q2 = 0. In addition, these curves obviously come closer to each 
other in the UV region in view ,of the asymptotic freedom property. In 
our approach, unlike in the standard perturbation theory, there emerges a 
remarkably stable picture of the invariant charge behavior with respect to 
higher corrections. This stability is important for phenomenological appli­
cations, where the relevant energy interval is of the order of or less than 
several Ge V. 

2.4 Approximate formulas 

The explicit one-loop formula (2.4) is very simple, and its use does not lead 
to any complications. In the two-loop case, the analytic coupling is written 
in the form of an integral representation, and it is interesting to find explicit 
approximate expressions that are convenient in applications. 

We consider two such formulas. The first expression follows directly 
from the picture of subtracting the unphysical singularities as explained in 
Sec. 3. Thus, the analytic coupling can be represented as 

G'an(Q2) = G'PT(Q2) + AG'sing(Q2), (2.21) 

12 

whe're iipT(Q2) is a perturbative contribution and the term Aiising(Q2 ) has 
the effect of subtracting the unphysical singularities. For the perturbatiye 
term taken as in (2.7), the term eliminating the unphysical singularities can 
be represented as two terms whose respective effects are to subtract the 
unphysical pole and the branch cut. The term compensating the pole has 
a simple form. For the term compensating the cut, we use the fact that the 
expansion coefficients Ck, 

AG'cut(Q2) 
47r 00 .(A2)k 

- f3o E Q2 ck, (2.22) 

Ck = {00 
dt exp[-B1k(t + 1)) 

lo (t+l-logt)2+1r2' 

are numerically small and decrease rapidly (C1 = 0.0354, C2 = 0.0079, 
C3 = 0.0023, ... ). Keeping only the first term in the expansion, we obtain 
a simple interpolation formula 

-(2) 2 - 47r { 1 
O:approJ Q ) - (30 log( Q2 / A 2) + B1 log[l + log( Q2 / A 2) / B1) 

1 A
2 

A
2 

} 
- 2Q2 -A2 - Q2C1 ' (2.23) 

which provides good approximation 7 to the two-loop analytic coupling for 
moderately large Q2. In the interval 1 < Q < 1.5 Ge V, the accuracy of 
the approximation is not worse than 0.4 %, and for large values of Q, the 
difference between the formulas becomes negligible. Thus, expression (2.23) 
is quite acceptable in the domain of moderately large Q ~ 1 GeV. 

In a number of cases, however, it is necessary to deal with smaller values 
of Q, down to Q :: 0. Formula (2.23) is no longer applicable to such prob­
lems because the term compensating the branch cut is poorly approximated 
by power-series expansion (2.22). The approximate formula 

-(2) 2 - _ --- + ---;--;:--;-::::-;m , 41r [ 1 1 ] 0 approx(Q ) - f3o f 2(Q2) 1 - exp[f2(Q2)) 

f2(Q2) 
Q2 

ln A2 + B1 In ln2 Q2 + 41r2 
A2 

(2.24) 

7The approximate formula for the two-loop correction [a2]an to the physical 
quantities of the D-function type can also be found in this way. 
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Table 1: The perturbative and analytic one- and two-loop values of 
the scaling parameter (Me V) for f = 3 versus the normalization point 
as(M;). 

as(M;) 0.30 0.32 0.34 0.36 0.38 

AP> PT 173 201 228 256 283 
A(l} an 197 235 275 319 366 
A(21 

PT 333 377 419 460 500 
Al2J an 434 516 607 706 814 

A}.~or 423 500 582 671 777 

for the two-loop analytic charge can be used also for Q:: 0. Equation (2.24) 
reproduces the UV two-loop asymptotic behavior (2.14) and the universal 
limiting value at Q2 = 0. This expression approximates the exact one for 
Q ~ 1 Ge V with the accuracy within 1 % and can be used for all Q2 • 

For sufficiently large Q 2
, the analytic coupling function is dominated by 

its perturbative component. Already for Q = Mr, however, the nonpertur­
bative contribution becomes essential. In Table 1, we compare the A pa­
rameter values corresponding to the perturbative and analytic approaches. 
The result obtained according to Eq. (2.23) reproduces the exact two-loop 
calculation with high accuracy and is not given given here. For the two-loop 
perturbative formula, we used expression (2.7), which is most appropriate 
for our analysis.8 The bottom row corresponds to approximate expres­
sion (2.24). 

3 Analytic perturbation theory 
In this section, we briefly review applications of the analytic approach to the 
analysis of several processes. For the physical quantities considered here, 
we use the analyticization procedure of the entire perturbative expression 
involving higher powers of the invariant charge [9). This strategy leads to 
the so-called analytic perturbation theory (APT). 

8 We note that using formula (2.7) as a perturbative one, leads to somewhat 
greater values of A than when working it out from Eq. (2.14). 
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We consider the integral characteristics of the invariant charge in the IR 
region by extracting the relevant information from the physics of jets, and 
also from the e+e- -annihilation processes into hadrons and the inclusive 
r-lepton decay. We use this set of data to study the dependence of theo­
retical results on the choice of the renormalization scheme. We show that 
applying the APT allows us to considerably reduce the scheme dependence. 
This in turn means that the three-loop level attained for many processes is 
practically independent of the choice of the scheme. 

3.1 The integral characteristics of 5's in the IR re-
gion 

A distinctive feature of the analytic charge is that it is finite in the IR region. 
This property, which is sqmetimes referred to as the coupling "freezing," is 
often used for phenomenological purposes (see, for example, the discussion 
in [22)). Experimental evidence for the regular IR behavior of the QCD 
charge was ingeniously extracted from physics of jets using the integral 

characteristics 
l {Q - 2 

A(Q) = Q lo dko:s(k ). (3.1) 

It has been empirically found (23] that A(2 GeV) = 0.52 ± 0.10. 

Table 2: The infrared integral characteristics of a8 (k 2
) evaluated in the 

one- and two-loop approximations for normalization at the r-lepton 

mass. 

Oan(M;) 0.34 0.36 0.38 

A1-Ioop(2) 0.50 0.52 0.55 

A2-Ioop(2) 0.48 0.50 0.52 

We normalize o-
3 

at the r-lepton mass. Calculations of A(2GeV) are 
given in Table 2. It can be seen that the APT approach allows us to uni­
formly and consistently describe the almost-perturbative region of the order 
of the r-lepton mass and the nonperturbative characteristics (3.1) without 
introducing any additional parameters. 
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3.2 The e+ e--annihilation process into hadrons 

We now apply the analytic approach to the analysis of thee+ e- -annihilation 
process into hadrons. To compare the results with the experimental data, we 
use the method of so called "smearing" of resonances proposed in (24]. The 
analysis of the e+ e--annihilation into hadrons carried out in [22] relied on a 
certain "optimum" renormalization scheme constructed on the base of the 
principle of minimal sensitivity (PMS) [26] with the third-order perturbation 
theory used for optimization. Our analysis is not based on any optimization 
of the scheme arbitrariness. Moreover, we show that the scheme dependence 
in the APT is. considerably less than in the standard approach, and its 
predictions have practically no scheme arbitrariness in the entire energy 
range. 

The analyticization procedure can be also applied to observable quanti­
ties for .which the appropriate analytic properties are known. The APT can 
be applied to an object that has numerous applications, namely the Adler 
D-function 

D(Q2) = -Q2 dIT~;~2) = 3 L Q][l + d(Q2)], 
f 

· (3.2) 

where IT(s) is the correlation function and d(Q 2 ) is the QCD correction that 
is expanded in the RG perturbation theory as 

d(Q2) = a(Q2)[I + d1a(Q 2) + d2a2(Q2) + · · ·], (3.3) 

where 9 a= as/11". 
The D-function is related to the function R(s) defined as the ratio of 

the hadron and lepton cross-sections for the e+ e- -annihilation by 

[oo ds R(s). 
D(Q2) = Q2 lo (s + Q2)2 (3.4) 

This also implies the properties of D(Q2) as an analytic function in the 
Q2-plane cut along the negative semi-axis. We define the spectral density 
peff(CT) through the discontinuity of (3.3) on this cut, 

peff(CT) = p(l)(CT) + d1µ{2l(CT) + d2p<3)(CT) + · · ·. (3.5) 

9
In this formula, we allowed ourselves to change the normalization of the cou~ 

piing constant so as to simplify comparing with the previous works on the subject, 
where, as a rule, the quantity a = a,/ 1r is used as the invariant charge. 
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The expression p(1)(CT) is the spectral function of the invariant charge and 
p(k)(CT) in (3.5) corresponds to the kth power of the effective coupling. Thus, 
the analytic expression for the QCD correction to the D-function is written 
as 

dAPT(Q2) = &i
1
JT(Q2) + d18rJT(Q2) + d2&i3JT(Q2) + · · ·, (3.6) 

where the first term &rtT ( Q2) coincides with the analytic inv~riant charge. 
The subsequent terms do not reduce .to powers of the analytic coupling; 
thus, the APT method leads to non-power-series expansions. Prope·rties of 
such expansions were analyzed in [12]. · 

We define the QCD correction r(s) to the function R(s) in the same 
manner as for the D-function in (3.2), and we use the relations 

100 ds ( ) 2 2 2rs, d(Q)=Q o (s+q2). 
1 is+if dz 

r(s)'= --. -d( ...'..z), 
21ri s-if Z 

(3.7) 

where the integration contour in the last expression is in the analyticity 
domain of the integrand and bypasses the cut along the real semi-axis. 

We take the quark thresholds into account by using the approximate 
formula proposed in (24], 

R(s) = 3 L Q} 0(s - 4m}) T(v1) [1 + g(v1) r1(s)], 
f 

where VJ and the functions T(v) and g(v) are given by 

VJ = ✓l _ 4m} 
s ' ' 

g(v) = 471" [~ _ 3 + V (~ _ ~)] • 

3 2v 4 2 41r 

(3.8) 

(3.9) 

In the APT, the correction r f ( s) is expressed through the effective spec­
tral density as 

1 loo dCT eff r1(s) = - -p1 (u), 
11" s CT 

(3.10) 

where Pt (CT) is defined in terms of the discontinuity of d f ( Q2) on the phys­
ical branch cut. The corresponding three-loop contribution is written as 

d1(Q2) = a1(Q2)[I + d?>a1(Q2) + d)2)a7(Q2)], 
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(3.11) 



where th~ MS-scheme coefficients are equal to [26] 

·il) 
f 

l.986 ~ 0.115f, 

i2) 
f - 18.244 - 4.216 f + 0.086 j 2 + d/glet, 

' 1.2395 cr:r Q f' ) 2 

- ,-,-3- I}~, Q}, : 
dsinglet = f 

"'.' ) • • • ' > , 

, I tis hardly_ possible ,to use perturbative expressions for a direct descrip-
tion of the experimentally observed q~antity R(s), brc~use ofth~ thresh~ld 
singularities of the form (o:8 /vt .. We.use th~ "smearing" method proposed 
in [24], which does n~yertheless allow us to. compare the results with the 
experiment. The idea of this approach consists in replacing the quantity 
R(s) defined through the correlation function TI as 

R(s) = 
2
1
. [TI(s + iE) - TI(s - if)], -

' i 
(3.12) 

with the qtianti.ty 

RA(s) = ;i [TI(s + iA) - TI(s...., iA)] (3.13} 

for some finite A. For the values of s· near the threshold, quantity (3.12) 
is very sensitive to the threshold singularities, in the vicinity of which the 
perturbative expansion looses its applicability. Stepping away from the real 
axis into the q2 complex plane by a finite distance A, as in (3.13), we can 
expect that it would be possible to describe (3.13) using an appropriate 
perturbative approximation. 

The "experimental" curve corresponding to (3.13) can be found if we 
use the dispersion relation for the correlator TI(q2

) to write Eq. (3.13) as 

A {oo , R(s') 
RA(s) =-;- Jo ds (s - s')2 + A2· 

(3.14) 

The corresponding "experimental" curves were found in [22] for some values 
of A, whose estimates were made in [24]. We use these curves for comparing 
with our results. 

We note that a direct use of perturbation theory for describing RA(s) 
is again impossible. Indeed, the R-ratio in (3.14) parametrized using the 
invariant charge with unphysical singularities leads to a divergence of the in­
tegral in (3.14). Thus, even though the use of the "smeared" quantity {3.14) 
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allows us to bypass the complication with the threshold singularities, there 
arises a problem related to the behavior of the running charge in the IR 
region. We can avoid this complication using the APT. 

4.------------------------, 

3 

2 

0 

Ra(s=q2) 

.1=3 GeV2 

, •. ,.~ ,.~ 
,/'~ ," 

_.,,..,·"':,,,;"' 

.,,,-a-_·:·::';-;·;:t 

2 

, , 

q (GeV) 

3 

--- ...... 

... ~------·-·:. -.: - ---·-·_-

--AA 
- - - - - - Experiment 
-·-·-·-·- PMS 

4 5 6 

Figure 6: The quantity RA(q2 ) corresponding to the parameter value 
~ = 3 GeV2

. The figure shows the experimental curve, the result of the 
PMS-optimization of the third-order perturbative expansion obtained 
in {22}, and the result of the analytic approach through the third order. 

For , A = 3 Ge V2 , Fig. 6 shows the corresponding experimental curve 
and the curve found in [22] from the PMS-optimization of the third-order 
perturbative expansion. The same figure gives also the result of our calcu­
lation through the third order.10 For the scaling parameter in the analytic 
approach, we took the value Aan = 870MeV (J = 3) obtained from the 
analysis of the semileptonic r~decay in the APT framework. For the quark 
masses, we took the values that are close to the constituent ones {cf. [27]), 

10 As shown in [8], the calculation of Rl!i. in the analytic approach leads to good 
fit of the experimental curve already in the first order. 
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mu = ffid ;:::;= 250 MeV,, 'ms ·=-400MeV, ,me:~ ,l.35GeV:,, fib = 4.75 Gey 
and mt= 174 GeV,, ,· .· . ., , , 

4 
2 

D(Q)· 

3 

2 

1 

1 2 

-----:-------

-- AA (3-loop) 
~------ AA (1-loop) 
.. : ......... Experiment 

Q (GeV) 

· .. ·•·. 3 4 5 ,6 
"'. 

Figure 7: D-function. 

New ~'experimental". data for the D-function were obtained recently [28). 
We give in Fig. 7 th_e correspopding curves af\d ·also;the result_ of our calcula.: 
tio11. Figure 7 sho_';VS .that good fit of the experimental data can be achieved 
already in the first order of APT. The same conclusion, as we have noted, 
is valid for Rt:. ill the entire energy range [8). We note here that loop stabil­
ity is _not o_bserved in the standard approa~h using the PMS-optimi~ation. 
Moreover, the whole "trick" is based hem on higher approximations. Thus, 
the situation regarding the absence or the presence of the infr~red fixed 
point. that. can emerge in scheme optimization of the perturbative exp_an­
sion depends in an essential way on the quantity under consideration (i.e., 
is defined by the coefficients of t_he perturbative expansion) [29). 
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3.3 . The .dep~ndence., qn the: ,renqrmaljzation 
scheme ··· 

Inevitable termination of the PT se~f~~. i.e., the ~pproximation of a phy~ 
ical quantity by one of its partial' sums, leads to; the known problem of 
the dependence of the results on the renormalizati_qn prescription. Thus, 
the partial sum of the PT se_ries _used in approximating a physical quan­
tity bears a dependence ~n the' choice of,the ren~-rmalization scheme, which 
is -the source of theoretical ambiguity in describing, experimental data. In 
QCD, such ambiguity is the greater the smaller are the energy parameters 
characteristic of the process. '.fo solve the_ stabiUty problem of the results· 
obtained, it is by far not enough to investigate only loop stability within a 
certain renormalizatic;m scheme; one should also ,q:>ns~de.,r _t,~.e scheme stabil-
ity of the results. , . _ 

We discuss.the_sche~e arbitrarin~s arising in the APT in .the example 
of the R-ratio for the e+ e--annihilation process into hadrons. We consider 
a class of MS-like schemes and compare our results with those obtained in 
the perturbative analysis (see, for example, [?OJ). . . . . .. . 

In passing from one renormalization scheme to another, the coupling 
constant transforms as 

a'= a(l + V1~ + v2a2 .+ · ·:). (3.15) 

We limit ourselves here to the three-loop level bf the D.:function achieved 
at present, with the QCD corrections taken in the approximation where 

d = a(l + d1a + d2a2), (3.16) 

with the running charge determined as a solution of the renormalization 
group equation with the three-loop f-function 

where 

/3(a) = µ 2 ::2 = -ba2 (1 + b1a + b2a2), 

b 

bMS 
2 

33- 2f 

6 
b _153-19! 

1 
- 66 - 4f ' 

77139 - 15099!' + 325!2 
288(33 - 2J) 
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The three-loop ,8-function coefficient b2 and the expansion coefficients di 
and d2 in (3.16) depend on the choice ·of the renormalization scheme. Under 
scheme transformation (3.15), they change as 

b; = b2 - vf - bi vi + v2 , 

d' . 1 = di - V1' (3.19) 

d; = d2-:-- 2(d1 - v1)v1 - v2. 

Thus, every term in representation (3.16) undergoes a transformation, 
and we thus obtain the new function 

d; = a'(l + d;a' + d;a'2
), (3.20) 

where the coupling a' is evaluated with the new ,B-function, with the three­
loop coefficient b2 replaced by the primed one b;. 

Recalling the transformation law of the scaling parameter [31] 

A'= Aexp(vifb) • 

and Eqs. (3.19), we find two scheme invariants [25] 

b Q2 
Pi= 2log A2 -di, P2 = b2 + d2 - b1d1 - di- (3.21) 

We normalize the momentum scale at AMs· In arbitrary scheme, the 
invariant charge is then determined from the equation 

~ log ( ~
2 

) = dt1s _di+ <I>(a, b2), 
2 AMS 

(3.22) 

where 

1 1 + b1a fa dx 
<I>(a, b2) = ~ - bi log f3

0
a + b2 lo (1 + b1x)(l+ b1x + b2x2) · (3.23) 

Although there are no general arguments to prefer a certain renormaliza­
tion scheme from the start, we nevertheless can define a class of "natural" 
schemes, which look reasonable at the three-loop level that we consider. 
The relevant criterion was proposed in [32]. One should restrict oneself to 
the schemes where the cancellations between different terms in the second 
scheme invariant (3.21) are not too large. Quantitatively, this criterion can 
be related to the cancellation index 

1 2 
C = IP2I (lb2I + ld2I + d1 + ldilb1) · (3.24) 
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One should of course keep in 'mind· th~ conventions· involved in these·con­
sidefations, in particular as regards 'the minimal value of the 'cancellation 
iridex; 

.. Given a'certain maximum·value of the cancellation index Cma:x, we can 
investigate stability of the results obtained by taking different schemes with 
the index C s; Cmax-' As Oma'x, we take the index corresponding to the 
optimal PMS-scheme. We then have a relativeJy·small class of \'admissible" . 
schemes bounded by the maximal index CPMS• 

For R(s), the cancellation index C;Ji is evaluated using the known co­
efficients :r1 and T2 of the• perturbative expansion of the correction· r = 
a(l + r1a + r2a2). For.the PMS~scheme,'it is CPMS ·~ 2. To demonstrate the 
scheme arbitrariness arising here, we choose two schemes from this class. 
The first one is the H scheme with the parc,1,meters dH) = -3.2 and. b~H) = 0. 
(the 't Hooft scheme), and the second is the MS-scheme corresponding to 

the paramete~s riMS) ~ L64 :~~d b~MS) ~'4.47: These schemes are close to 
each other and to the bou~dary cancellatioid~dex CH '.:::::'. CMS '.:::::'. CPMS ~ 2. 
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0.15 

t\ 

/ \ --AA(MS) 
I \ 
I \ ......... M(H) 

I \. -·-·-·-·- PT (MS) 
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·,.,. ------ PT (H) 
'·,. 

----------------------------------
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Figure 8: The graph of r( s) calculated in perturbation theory ( PT) 
and in the analytic approach (AA) for two ;enormalization schemes.H 
and MS with the same cancellation index CR '.:::::'. 2. 
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Figure 8, shows the QCD correction r(s) as a function of vs/ AMs eval­
uated in perturbation theory and in the analytic approach for two renor­
malization schemes H and MS with approximately the same cancellation 
indices Cn ~ 2. As can be seen from the figure, the analytic approach 
allows us to drastically reduce the scheme arbitrariness. 

Essential reduction of the scheme dependence in the APT also takes 
place for other processes, for example the inclusive r-decay [11), and in 
the Bjorken and Gross-Llewellyn Smith sum rules for the inelastic lepton­
hadron scattering [13, 14). In the analytic approach, therefore, the three­
loop level reached presently for a number of physical processes is practically 
invariant with respect to the choice of the renormalization prescription. 

3.4 Inclusive ,-lepton decay 
The inclusive r-decay (see Fig. 9 for the corresponding diagram) allows one 
to perform a low-energy test of QCD. The r-lepton mass MT = 177T~g:~! Me V 
[33), on the one hand, is sufficiently large to allow the hadroni~ d~cay modes, 
but on the other hand, is small in the chromodynamics scale, where it is 
in the low-energy domain. Theoretical description of the inclusive r-decay 
is in principle possible without any model assumptions, which is important 
for reliably determining the low-energy value of ~s(M;) from experimental 
data. The main quantity to be studied is the RT-ratio 

RT= r[r- ➔ VT+ hadrons('y)] 
1 r[r- ➔ vTe-vA,)] 

(3.25) 

which in the modern experiments can be measures with the accuracy of 

several per cent. 
The starting point of the theoretical analysis is the expression 

[M~ ds ( s )
2 

( 2s) -
RT= 2 lo M; 1 - M; 1 + M; R(s), (3.26) 

where R(s) is defined by the imaginary part of the hadron correlator 

Il(s) = L IVuql 2 [ITuq,V(s) + Iluq,A(s)]. (3.27) 
q=d,s 

Here Vuq are the Kobayashi-Maskawa matrix elements. In the massless case 
considered here, the vector and axial-vector hadron correlators, Iluq,V and 
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w 

HADRONS 

Figure 9: The inclusive r-lepton decay diagram. 

Iluq,A respectively, coincide, and the function R(s) is equal to the ratio R(s) 
for the e+e--annihilation process into hadrons. 

The standard analysis of the r-decay immediately faces a difficulty in 
applying the original formula (3.26), because the parametrization of the 
function R(s) by perturbative <is with the unphysical singularities leads to 
singularities in the integrand. The way out proposed in [34) consists in 
the following. Integral (3.26) is represented as a combination of integrals 
along the sides of the cuts in the s complex plane (see Fig. 10). By the 
Cauchy theorem, this integral is then "transformed" into the integral along 
the contour Isl = M;. After the integration by parts, we are left with the 
contour representation of RT involving the D-function, 

1 i . dz 3 2 RT.=-. -(1- z) (1 + z)D(MTz). 
2,n lzl=l z 

(3.28) 

The transition from the original expression (3.26) to contour represen­
tation (3.28) is based ori certain analytic properties of the correlator, which 
are violated in the standard analysis. Thus, the proper analytic proper­
ties ensuring the analytic approach are important for the consistency of the 
inclusive r-decay description. 

We describe this process in the APT [9). We single out the strong­
interaction contribution ~ 7 to the RT-ratio 

RT =Rt0>(1 + ~T), (3.29) 

where R}
0

) is a known factor including electroweak corrections. 
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Figure 10: Transition to the contour representation for R,,. 

We express ~,, through the effective spectral function as 

di 100 
da eff di 1M;. da ( a )

3 
( a ) eff ~,, = - -p (a)- - - 1 - - 1 + - p (a). (3.30) 

1r o a 1r o a M; M; 
Because of the universality property, the integral in the first term can be 
expressed through aan(0). The spectral function in the two-loop approxi­
mation has the form 

1 d2 2R(L)I(L) 
peff(a) = e(a) + JJ5 di [R2(L) + /2(£)]2' {3.31) 

where the spectral density of the invariant charge e( a) is defined in {2.8) and 
the functions R(L) and I(L) are given by (2.9). Inserting {3.31) in (3.30) 
allows us to evaluate the strong-interaction contribution ~,, in terms of the 
scale parameter A. 
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Using the experimental value R,, = 3.633±0.031 [33), we obtain o:(M;) = 

0.400 ± 0.026 and the corresponding value of the scaling parameter A~~ = 
935 ± 159 MeV. These values are larger than those obtained in PT using 
the contour representation [35). The reason lies in the fact that the nonper­
turbative corrections characteristic of the analytic approach give a negative 
contribution to ~,, [9, 10]. Thus, to obtain the same value ~,, in PT and 
in the analytic approach, the "perturbative component" contr_ibution of the 
latter should be increased by increasing A. The inclusive r-decay was an­
alyzed at the three-loop APT level in -[36). The corresponding value of A 

turned out to be smaller, Ai~ = 871 ± 155 MeV. The scheme stability of 
this analysis was also shown in [36). It should be noted that the quan­
tity Aan is very sensitive to the experimental value of R,,. Thus, using 

R,, = 3.559 ± 0.035 [37], we obtain Ai~ = 640 ± 127 MeV, which cor­
responds to a considerably .smaller invariant charge at the mass M,, (see 
Table 1). 

4 The analytic approach in inelastic lep­
ton-hadron scattering 

In this section, we give a theoretical foundation of a possible application 
of our analytic description to inelastic lepton-hadron scattering processes. 
The key point of our construction-the analytic properties of the structure 
function moments with respect to Q2-requires a certain modification of 
the standard formalism, in particular, the change of the standard Bjorken 
moments Mn(Q2

) with the modified moments Mn(Q 2 ) with respect to a 
new scaling variable that takes kinematic mass dependence into account. 
We start with the Jost-Lehmann integral representation (see, for example, 
§ 55 of [5]) for the Fourier image of the corresponding matrix element. 

4.1 The Jost-Lehmann representation 

The structure functions of the inelastic lepton-hadron scattering depend on 
two arguments, and the corresponding representations that accumulate the 
fundamental properties of the theory (such as relativistic invariance, spec­
trality, and causality) have a more complicated form in our analysis than 
in representations for functions of one variable. Two such representations 
are known in the literature. We use the 4-dimensional integral representa-
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tion proposed by Jost and Lehmann [38) for the so-called symmetric case.11 
Application~ of this representation to automodel asymptotic structure func­
tions were considered by Bogoliubov, Vladimirov, and Tavkhelidze [4), some 
of whose results and notation we use in what follows. The proof of the Jost­
Lehmann representation is based on the most general properties of the the­
ory, such as covariance, Hermiticity, spectrality, and causality (see [5); some 
mathematical problems related to the Jost-Lehmann-Dyson representation 
are also considered in [40, 41)). 

For definiteness, we speak about the inelastic scattering of charged lep­
tons (electrons, muons) on nucleons, i.e., we consider the process£+ N -t 
£ + hadrons. In the lowest order in the electromagnetic coupling constant 
(one-photon exchange), this process is shown in Fig.11, which also explains 
our notation. In the unpolarized case, the cross-section of the process is 
defined by the hadronic tensor 

Wµv(q,P) = 
4

1
7r ~ j dx exp(iq · x) (P,a I [Jµ (i) .Jv (-i)] I P,a) 

(4.1) 
constructed of the commutators of the currents, with the sum taken over 
the nucleon polarizations. 

q 

p 

Figure 11: The deep inelastic lepton-hadron scattering diagram in the 
one-photon exchange approximation. 

Relativistic invariance and the electromagnetic current conservation lead 
to the parametrization of tensor (4.1) in terms of two structure functions w1 

and w2, 

11 A more general case was considered by Dyson [39], and similar representations 
are therefore often called the Jost-Lehmann-Dyson representations. 
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Wµv(q, P) (-9µv + q;;v) W1 (q, P) (4.2) 

1 ( P·q ) ( P·q ) + M2 Pµ - 7qµ Pv - 7qv w2(q,P), 

where M = .Jin is the nucleori mass. • 
We now list the main properties of the functions w following from the 

general principles of local QFT: 
- covariance property means that the functions w depend on two scalar 

arguments, which we choose as v = P • q and Q2 = -q2 , 

w(q,P) = W(v,Q2); 

- spectrality property is written as 

W(v,Q2) = O for Q2 = X > 1, 
2v 

where we used the dimensionless Bjorken variable, which in the physical 
domain of the process for ( q + P) 2 > M 2 is kinematically restricted by the 
interval O < x < l; 

- the structure function parametrizes the scattering cross-section and is 
real ( the reality property), 

W(v, Q2
) = W*(v, Q2

); 

- Hermiticity of the current operator leads to the (anti-)symmetry prop­
erty 

W(-v,Q2) = -W(v,Q2); 

- the vanishing of the commutator of currents at space-like intervals 
because of the local commutativity of currents gives the causality condition 

j (
2
d:) 4 exp(-iqz)W(q, P) = 0 for z2 < 0. 

For the function W(v, Q2) satisfying all these conditions, there exists a 
real moderately growing distribution 7P(u, >.2) such that the Jost-Lehmann 
integral representation holds; in the nucleon restframe, this can be written 
as [4) 

W(v, Q2
) = c:(qo) j du d>. 2 o[q5 - (Mu-· q)2 

- >.2]7P(u, >.2), 
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with the function 'lj,(u, A2) supported on the set 

p=lul~l, A2 ~M
2(1-R/-

For the process under consideration, the physical values of v and Q
2 

are positive. We, thus, can neglect the factor c(qo) = c(v) and keep the 
same notation for W(v, Q2). Taking into account that the weight function 
'lj,(u, A2) = 'lj,(p, A2) is radial-symmetric, as follows from covariance [4], we 
write the Jost-Lehmann representation for W in the covariant form, 

W(v,Q2) = fo1 
dpp21~. dA

2 j_1 
dz (4.4) 

,\mm l 

where 

x o(Q2 + M 2p2 + A2 - 2zpjv2 + M 2Q2 )'lj,(p, A2
), 

A~in = M 2{1-R)2
• (4.5) 

4.2 Analytic moments of the structure functions 

As follows from representation (4.4), a natural scaling variable is given by 

s = !JQ2(Q2 + 4M2) = x· / Q2 + 4M2 
2 v2+M2Q2 yQ2+4M2x2' 

(4.6) 

which accumulates the root structure determined by the a-function argu­
ment. At the same time, in the physical region of the process, the s variable 
changes in the same way as the Bjorken variable x, i.e., from zero to one. 
The variable s bears a dependence on the mass of the target (the nucleon) 
and is different from both the Bjorken variable and the Nachtmann vari-

able (42] 
2x 

e = 1 + Jl + x 24M2/Q 2 

that is sometimes used in the kinematical account of mass effects of inelastic 
scattering processes. However, only the s variable leads to the moments that 
have the analytic properties in Q2 that we need. 

To establish these properties, we integrate over z in (4.4) as 

WV 2 - S d d>-.2 !al 1= 
( ,Q) - Q2J1+4M2/Q2 o PP ,x~in 

(4.7) 

X 0 [Q2p2 _· s (Q2 + M2p2 +Xi)] 
Jl+4M2/Q2 '1j,(p,A

2
). 
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We now define the modified s-moments of the structure functions ( cf. (43]) 

1 

Mn(Q2) = 1 ( 1)/2 / dssn-2W(v, Q2). (4.8) 
(1 + 4M2/Q2) n-

o 

Inserting W(v,Q2) as given by (4.7), we obtain 

Mn(Q2) = (Q2)n-1 fl dp pn+l f(X) da 0(a - amin) 'lj,(p, a - M2 p2), 
n lo lo (Q2 +a)n 

where a= >-.2 + M 2p2 and amin = 2M2(1 - Jl - p2 ). 

Introducing the weight function 

mn(a) = .!_ f
1 

dp pn+10(a - amin) 'lj,(p, a - M 2p2), 
n lo 

we obtain the representation· for the s-moments 

M (Q2) = (Q2)n-1 f= da mn(a) 
n lo (a+Q2)n' 

(4.9) 

(4.10) 

which implies the analyticity of Mn(Q2) in the complex Q2 plane cut along 
the negative semi-axis, i.e., the Kallen-Lehmann type analyticity. 

In [44], the Deser-Gilbert-Sudarshan integral representation [45] was 
used to arrive at a similar statement regarding the analyticity of the Kallen­
Lehmann type for the x-moments. However the status of this representation 
in QFT is less clear, since it cannot be obtained starting with only the basic 
principles of the theory. 

The relation between moments (4.8) and the standard Bjorken moments 

Mn(Q2) = fo1 
dx xn-2W(v, Q2) (4.11) 

can be expressed by 

M (Q2) = 1 ~ f(k + (n + 1)/2] (- 4M
2

) k M (Q2) 
n r[(n + 1)/2] 6 k! Q2 n+2k , 

M (Q2) = 1 ~ r(k + (n + 1)/2] (4M
2

) k M (Q2) 
n f[(n + 1)/2] 6 k! Q2 n+2k . 

In the asymptotic domain corresponding to large values of the trans­
ferred momentum Q2, where power corrections of the form 1/(Q2)n can be 
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neglected, the x-, s-, and ~-moments are identical. Outside the asymptotic 
domain, on the other hand, where it comes to studying the contribution of 
higher twists, the difference between these definitions of moments must be 
taken into account. 

4.3 Dispersion relation and the operator product . 
expansion 

To establish the relation with the operator product expansion, we start 
with the Jost-Lehmann representation and obtain a dispersion relation for 
the forward Compton scattering amplitude with respect to the new vari­
able (4.6). We write the matrix element of the process corresponding to 
representation (4.4) as 

111 100 11 T(v, Q2
) = - dp p2 d>-.2 dz 

7r O .\~in -1 

(4.12) 

Q2 + Af2p2 + >,.2 _ 2zpJv2 + Af2Q2 _ iE 
X 

1/J(p, >-.2) 

In the complex v2 plane, the function T(v, Q2
) has a branch cut along 

the positive part of the.real axis starting at v!in defined by the condition 

✓ 2_ +M2.Q2 = . IQ2+Af2p2+>-.21 
vmm mm . 

{A,p,z} 2zp 

Recalling (4.5) and the range of the integration variable z in (4.12), we 
can simplify this to 

/v!in + Af2Q2 = min Q2 + 2M2(1- Jf'="p2) 
{p} 2p ' 

(4.13) 

which leads to v!in = (Q2 /2) 2• Thus, the sought dispersion relation has the 
form 

2 1100 
dv; 2 T(v,Q) = - 2 2 . W(vi,Q ). (4.14) 

7r Q4/4 v1 - V - U 

We note that in terms of the Bjorken variable x, relation (4.14) is rep­
resented as 

2 211 
dxi l 2 

T(v,Q) = - ( / )2 W(v1,Q ). 
7r O X1 1 - X1 X 

(4.15) 
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This· expression determines simple properties of the amplitude T(x, Q2) in 
the complex x-plane and is convenient in the operator product expansion. 

In considering consequences of the Jost-Lehmann representation, as 
noted above, the natural scaling variable is given by s. In this case, there 
arises a similar structure of the dispersion integral 12 

2 _ 211 
ds1 1 2 • T(v,Q) - - -

1 
( / )2 W(v1,Q), 

7r O S1 - S1 S .. 
(4.16) 

v2 = Q2 [Q2 + 4M2 2] 
4s2 -M 

The identity between the structures of the dispersion relations with re­
spect to the variables x and s allows us to establish the relation of analytic 
moments ( 4.8) to the operator product expansions of currents used in finding 
the Q2-evolution of the structure functions of the moments. The moments 
in Eq. (4.11) correspond to the case where only the Lorentz structures of 
the form PµI ... Pµn are taken into account in matrix elements of the opera­
tor (Pl0µ 1 ••• µn IP). Then the application of the operator product expansion 
for the Compton amplitude leads to the expansion in powers of (q · P)/Q2, 

i.e., to the expansion in the inverse powers of x. A similar expansion in the 
inverse powers of x can also be done in dispersion integral (4.15). The coef­
ficients are then determined by the x-moments. Comparing the two power 
series gives the sought relation between the x-moments and the operator 
product expansion. 

In the general case, the symmetric matrix element (PI0µ1 ... µn1P) con­
tains the Lorentz structures given by {Pµ 1 ••• Pµn}, M 2gµ;µ;{Pµ 1 •• • Pµn_2 }, 

etc. The moments with respect to the ~ variable correspond to choosing the 
operator basis where the expansion goes over traceless tensors, i.e., such 
that the contraction of 9µ;µ; with (Pl0µ1 ••. µnlP) ,vanishes for any two in­
dices. It is then obvious that the Lorentz structure of the matrix element 
(Pl0µ1 ••. µnlP) is fixed unambiguously. 

Dispersion representation (4.16) allows us to expand the Compton am­
plitude in the inverse powers of s. If the operator basis is chosen such that 
an arbitrary contraction of the tensor (Pl0µ1 ••• µnlP) with the nucleon mo­
mentum Pµi vanishes; then the operator product expansion leads to a power 
series for the forward Compton scattering amplitude with the expansion pa-

12We note that in using other scaling variables, for example, the Nachtmann one, 
this structure can be destroyed. · 
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rameter qµ,q.,(Pµ,Pv - gµ,µ,P 2 )/(iJ.2) 2 , which corresponds to expanding disper­
sion integral ( 4.16) in powers of 1/ s2 • We thus arrive at the relation between 
the analytic s-moments and the operator product expansion. We stress that 
the orthogonality requirement of the symmetric tensor (PIC\, ... µ,n IP) to the 
nucleon momentum Pµ,; determines its· Lorentz structure· unambiguously. 

5 Conclusions· 

We considered the analytic formulation of QCD, where the analyticized RG­
solutions for the invariant' coupling function~, the Green's functions, and the 
matrix elements are free of unphysical singularities. An import<;1,nt property 
of this formulation that we found is the stability of the analytic invariant 
charge with resp~ct to higher~loop correction in all of the Q2 range. The key 
point here is the existence of the. universal limiting value aan(O) = 47r / /3~ 
that is invariant with respect to multiloop corrections. This constant, is 
independent of the Aqcn parameter and is determined only by the general 
symmetry properties of the Lagrangian. Therefore, the family of curves 
ll'an ( Q2 / A 2) for different values of the A parameter is a bundle with the 
common point ll'an{O) = 41r/f3o (this picture is independent of the number 
of loops). · · · · 

The invariant analytic formulation essentially modifies the behavior of 
ll'an(x) in the IR region by making it stable with respect to higher-loop cor­
rections. The two-loop approximation differs from the one-loop one by no 
more than ~ 10 % in the small-Q2 domain, and th_e three-loop approxima­
tion differs from the two-loop one by only ~ 1 %. This is radically different 
from the situation encountered in the standard renormalization-group PT, 
which is characterized by strong instability with respect to the next loop 
corrections in the domain of small Q2 ~ A 2 • We note also that main­
taining the proper analytic properties with respect to Q2 is essential for a 
self-consistent definition of the effective coupling function in the time-iike 
region [15]. In describing the concrete processes, for example the inclusive 
r-lepti:m decay, a consistent analysis is possible [9] only provided the above 
analytic properties hold. · 

There are at least two possibilities to describe physical quantities in the 
new approach framework. The sim plesi one consists in replacing <l's ( x) -t 
ll'an(x) in the explicit expressions for the observables "processed" by the RG 
method, or more precisely, for the related quantities defined in the space-like 
region of the Q2 variable. 
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We take another possibility, however. For the quantities similar to the 
Adler D(Q2)-functio1{-'that are represented by the PT power series, accord­
ing to a special convention, the analyticization procedure is applied to each 
power of a8 (Q 2 ) separately. This leads to a new non-power-series expansion, 
in which the powers of a8 (Q 2 ) are replaced with new nonsingular functions 
of An(Q2

). ·we call this algorithm, which was first proposed in [9], the 
APT. Applying this algorithm to analyze the amplitudes of the processes 
like the e+ e- -annihilation into hadrons. and the inclusive r-decay, and also 
of the sum rules for the inelastic lepton-hadron scattering, we see that in 
addition to possessing loop stability, the APT results are much less sensitive 
to the choice of the renormalization scheme than in the standard approach. 
In other words, the three-loop APT level practically insures both the loop 
saturation and the scheme invariance of the relevant physical quantities in 
the entire energy or momentum range. 

It appears that by accounting for the additional information about the 
proper analytic properties, the first terms of the APT non-power-series ex­
pansion already give sufficiently good approximation to the sum of the whole 
series. We recall here the analogy with summing up the perturbative ex­
pansions with the additional information on the behavior of the remote PT 
series terms taken into account [46]. In that case, it also turned out that the 
expression for the approximated function given by the first several terms of 
the loop expansion was practically unchanged by higher corrections. 

In this work, we considered also the structure functions of the inelastic 
lepton-hadron scattering, which are more complicated objects than the two­
point functions, which are in one way or another related with the Kallen­
Lehmann representation. For these functions, the general quantum field 
theory principles, including covariance, Hermiticity, spectrality, and causal­
ity, are expressed by the Jost-Lehmann-Dyson integral representation. In 
using the analytic approach to define the Q2-evolution, it was convenient 
to introduce the moments Mn(Q2

) of the structure functions correspond­
ing to the special scaling variable (4.6). It is these moments, rather than 
the Bjorken or Nachtmann ones, that exhibits simple analytic properties 
with respect to Q2

• In this work, we found the relation of the new analytic 
moments Mn(Q 2 ) to the operator product expansion, where the tensor 
structure of the matrix elements of operators with respect to the nucleon 
states must be fixed according to the condition that they be orthogonal to 
the nucleon momentum. 
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