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Take care:of the Principles, and the |
Principles shall take care of you.

Scientific achievements of Nikolai Nikolaevich Bogoliubov are character-
ized by a unique combination of determination .in solving concrete scientific
problems and a high level of mathematxcal culture. He could find the short-
est path to a physical result using most general prmc:ples of the theory.

. The renormalization-invariant analytic approach to quantum chromo-
dynamics exposed here and its most recent applications are based on the
works [1, 2, 3, 4] by Bogoliubov with his closest collaborators. A char-
acteristic feature of these investigations is their strong relation with the
fundamental quantum physics principles.
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1 Introduction

An intrinsic ingredient of modern quantum field theory (QFT) is the renor-
malization group (RG) method proposed in the mid-fifties [1, 2. The role
of this method is particularly important in the cases where the interaction
is not weak, for example, in quantum chromodynamics (QCD). Hardly any
hadronic process investigated in the QCD framework can be analyzed with-
out using the renormalization group. It is well known that directly solving
the RG equation for the invariant charge leads to unphysical singularities,
for example, to the ghost pole in the one-loop approximation. Taking next
loop corrections into account does not alter the essence, and leads only to
additional branch cuts. The existence of such singularities contradicts the
general principles- of local QFT.

As early as in the late-fifties, N. N. Bogohubov and collaborators 3] pro-
posed a resolution of this problem in the context of quantum electrodynam-
ics (QED) by unifying the RG method with the requirement of analyticity
with respect to Q2, which in turn followed from the known Killén-Lehmann
representation expressing the basic principles of local QFT [5] [see Eq. (2.1)
below].

The invariant QED charge &(Q?) (also referred to as the “invariant, or
running coupling constant”!) is proportional to the transverse amplitude
of the fult photon propagator, which satisfies the spectral Killén-Lehmann
representation corresponding to the analyticity in the complex Q? plane
cut along the negative part? of the real axis. According to [3], the analytic
invariant charge can be reconstructed via the Killén-Lehmann represen-
tation, in which the relevant spectral density is defined as the imaginary
part of the invariant charge determined by the RG method in the Euclidean
region and analytically continued to the domain where ReQ? < 0. The
explicit one-loop (and implicit two-loop) expression obtained in [3] for the
analytic coupling in QED has the following important properties:

— the ghost pole is absent; :

- as a function of ¢, this expression has an essent:a] singularity in the
neighborhood of oo = 0 of the form exp(—3n/a);

— for real positive o, .it admits an expansion in powers of o that coincides
with the perturbative expansion;

In view of semantical absurdity of the last term, we use the expression invariant
coupling function or invariant coupling.

2We use the notation Q% = —g¢?, hence the Euclidean region corresponds to
positive Q2.

— it has a finite ultraviolet (UV) limit equal to 3w, which is independent
of the experimental value o >~ 1/137.

In [6, 7], the idea to combine the renormalization invariance and the
Q?-analyticity in QCD led to uncovering new important properties of the
analytic coupling. These properties include the existence of an infrared
fixed point of &a,(Q?), which. proves to be universal in the sense that its
value @ = 47/f, is already determined by the one-loop contribution (i.e.,
remains unchanged by the multiloop corrections and is therefore scheme-
mvarlant) It is also mdependent of the experimentally determined QCD
parameter A, and the set of curves @.n(Q?/A?) corresponding to different
values of A is a bundle with the common point @.,(0) = 47/Bo. Thus,
the analytic approach leads to essential modifications of the infrared (IR)
behavior of the perturbative invariant coupling. We give the approximate
formulas that are useful in the two-loop approximation and also discuss
some phenomenological applications of the analytic approach. 3

This work can be conventlonally divided into three parts. In the first
one (Sec. 2), which is a review of our publications over the last two years,
the analytic invariant approach is formulated in general and is explained in
detail in application to the analytic coupling “constant.” In the second part,
which is also a review (Sec. 3), we formulate the “analytic perturbation”
theory for physical quantities expressed through the two-point objects of
the type of the Adler D(Q?) function, whose properties can be related to
the Killén-Lehmann representation; we also discuss there the problems of
scheme and loop dependence. :

In the third part (Sec. 4), we finally consider the structure functions
(formfactors) parametrizing the inelastic lepton-hadron scattering cross-
section. To relate them to analytic functions of Q?, we start with the Jost—
Lehmann-Dyson integral representation. Using the results of Bogoliubov,
Vladimirov, and Tavkhelidze [4], we adduce the arguments in favor of the
introduction of a special scaling variable such that the moments of the
structure functions with respect to this variable admit a Killén-Lehmann
representation. This allows us to apply the analyticization procedure to
these moments. We also consider the relation of the ana]ytlc moments w1th
the operator product expansion. :

3The works [8-16] are devoted to the development and applications of the ana-
lytic approach.



2  Invariant analytic formulation of QCD

In this section, we formulate the method of constructing the analytic invari-
ant charge and consider its main properties.

2.1 The renormalization group and analyticity

We start with two remarks. It is known that the invariant QCD charge
&,(Q?) is defined via the product of propagators and the special vertex
functions, which gives rise to the problem of whether the spectral repre-
sentation can be used for this product. This problem was studied in [17],
where it was shown that the invariant coupling can be written in the form
of a spectral integral. In the general case, in addition, the evolution of
&,(Q?) is related to the “running” gauge parameter. For simplicity, we
use the standard MS-scheme, where the gauge does not affect the invariant
charge.*

We write the spectral representation for the invariant coupling a(Q?) =

0,(Q?)/ (4r) a5 e s
' an(Q%) = ;/0 dU;:_)—Q’{_—ie‘- (2.1)
In the perturbation theory summed up in accordance with the renormaliza-
tion group, the spectral density p(a,a) decreases as 1/ log? @, which allows
us to write the spectral representation without subtractions.
In the leading logarithmic approximation, the invariant coupling has the
form

2= k ! (2.2)

—{1 —

@) = 1+ afiolog(Q%/p2) ~ Polog(Q?/A?)’
where Bp = 11 — 2f/3 is the one-loop f-function coefficient with f active
quarks and the QCD scaling parameter is A = pexp[—1/2a,f]. The cor-
responding spectral density reads as _

a®Bom _1 ™
[1+ afolog(o/u2)]* + [aBon]?  Polog?(o?/A?) + 2
Inserting this into spectral integral (2.1) gives the one-loop analytic coupling
function

= p(l)(a’ a)' (2'3)

1 1 : A?
Bo |log(@?/A8) T AT= @2

4A similar situation occurs in the MOM-scheme in the transverse gauge or in
the MOM-scheme when applying 2 special renormalization [18].

all)(Q*/A%) = (2.4)

4
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Figure 1: The behavior of the one-loop analytic coupling Ga,(Q?): a for
A = 200 MeV, b for A = 400 MeV. The curves ¢ and d correspond to
perturbation theory for the same value of A.

The first term on the right-hand side preserves the standard UV-behavior
of the invariant coupling. The second term, which comes from the spectral
representation and enforces the proper analytic properties, compensates the
ghost pole at Q% = A? and is essentially nonperturbative (see the general
discussion of this point in [19]). This term gives no contribution to the
Taylor series expansion. Thus, the causality and spectrality principles ex-
pressed in the form of Q?-analyticity, send us the message that perturbation
theory is not the whole story. The requirement of proper analytic proper-
ties leads to the appearance of contributions given by powers of Q% that
cannot be seen in the original perturbative expansion. We note also that
unlike in electrodynamics, the asymptotic freedom property in QCD has
the effect that such nonperturbative contributions show up in the effective
coupling function already in the domain of low energies and momentum
transfers reachable in realistic experiments, rather than at unrealistically
high energies.

Thus, synthesis of the renormalization-group invariance and analyticity
leads to the analytic invariant charge without the logarithmic pole and with
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Figure 2: The graph of the one-loop (-function.

a finite IR value 5 @,,(0) = 47/Bp ~ 1.396. This limiting value is inde-
pendent of the experimental information related to the normalization point
a = a(p?) or to the parameter A; it is instead determined only by the -
function coefficient related to the general group structure of the Lagrangian.
Figure 1 shows a bundle of curves &,,(Q?) corresponding to different values
of A and also the standard solutions corresponding to the same A.

The graph of the one-loop g-function illustrating the existence of an in-
frared fixed point in the analytic approach is shown in Fig. 2. The horizontal
axis is the parameter fpa and the vertical axis is the function —f3(a). We
note that in the one-loop case, one has the symmetry with respect to the
point Spa = 1/2, which is broken when taking higher orders into account.

We now proceed to the two-loop case. The corresponding g-function
reads as

- 38
Bla) = —Poa’(1+ bia), by = Z—‘ Br =102 — —3’: (2.5)
o .
Integrating the renormalization group equation, we obtain the transcenden-
tal relation

Bologz = % — b log (1 + ﬁ) (2.6)

that can be solved in terms of the Lambert function [20, 21].

5For numerical estimates at small @2, we use the number of active quarks f = 3.
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Figure 3: The spectral déﬁsities: the exact one-loop (a); the exact
two-loop (b); the approximate two-loop expression (the iterative solu-
tion) (c); the exact three-loop function (d).

The spectral density obtained from this expression is shown in Fig.3
(curve b). It proves to be very close to the spectral density corresponding
to the explicit iterative solution of Eq. (2.6),

1 Q?

a?(Q% = ¢ =log = 2.7
am@) Bot + b1 log(1 + Bot/by)’ %Az (27)
which is useful in the subsequent analysis.
Solution (2.7) corresponds to the spectral function
| - I(L) o
(2) = —_— = —_
o
R L 2 T 2
Ly = L — — .
(L) + By ln (1+Bl> +(‘Bl> ) (2.9)
I(L) = m+ Bjarccos Bit+l , B, = —’6—;—
(By + L) + n2 0

Its graph is given in Fig.3 (curve c), where we also show the one-loop
(curve a) and the three-loop (curve d) results. The three-loop p{3) shown



in Fig.3 is obtained in the MS-scheme from the exact integral of the RG-
equation with the three-loop coefficient

2857 5033 , 325 2 /=3 3863

ﬂ2=T——f f

~ 643 83.

As can be seen from Fig. 3, the behavior of spectral densities is stabilized
starting with the two-loop level; as shown inn what follows, moreover, the
areas below each of these curves are the same, which corresponds to the
universality of @,n(0).

1,5
Analytic running coupling

/ 1-loop
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0S5
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Q (GeV)
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Figure 4: Stability of the analytic invariant charge with respect to
higher-loop corrections. We use the normalization at the T-lepton mass
&un(M?) = 0.34 for f = 3; 1 is the one-loop approximation, 2 is the
two- and three-loop approximations.

To obtain a4 (Qz) we have to insert spectral density (2.8) in Eq. (2.1).
The resulting integral cannot be evaluated explicitly.® The proper analytic
properties are reconstructed by not only eliminating the pole, but also by

subtracting the unphysical branch cut 0 < Q% < AZexp(— Bl) caused by -

the double—loga.rlthm dependence in (2.7).

In what follows, we explicitly give the corresponding approximate formulas.

The numerical calculation results for f = 3 and for the normalization
at the point @an(M?) = 0.34 are shown in Fig.4, where we also give the
one-loop curve (the corresponding values of A are given in Table 1). The
three-loop MS-curve is practically identical with the two-loop one, with
the accuracy of the order 1%. Thus, in contrast with perturbation theory,
analyticity leads to an essential stabilization of the invariant charge behavior
in the IR region. Recalling the asymptotic freedom property, we obtain
stability in all the Euclidean domain 0 < Q? < oo.

We note here that the universal behavior of the analytic coupling func-
tion is not a consequence of the particular two-loop formula (2.7). The same
conclusion remains valid when using the exact solution (2.6). Thus, the IR
stability of the analytic charge is an internal property of the method and is
ensured by contributions that are not analytic in «,. This approach does
not introduce any additional parameters into the theory; it operates only
with the scaling parameter A or with a certain normalization point.

2.2 Subtraction of unphysical singularities

The analytic expression for the invariant coupling was obtained using spec-
tral representation (2.1) that guarantees the proper analytic properties in
the complex Q2 plane and effectively amounts to subtracting the unphysical
singularities (the pole and the cuts). It it useful to explicitly separate these
terms.

We consider the complex plane of z = Q?/A2. The method of subtract-
ing the singularities allows us to obtain an explicit expression for the analytic
coupling in the one-loop case. Indeed, the expression ﬂod(l)(z) = 1/log z has
an unphysical pole at z = 1 with the residue res [Boal!)(z), z = 1] = 1, whose
elimination amounts to adding the term 1/(1 — z), such that the expression
satisfying the proper analytic properties has the form given in (2.4).

In the two-loop case, we first consider (2.7), which in addition to having
the ghost pole at z = 1 with the residue res [Gpa(?(2), 2= 1] = 1/2, has an
unphysical cut along the positive part of the real axis 0 < z < exp(—B)
(see Fig.5). The subtraction is effected by the pole term

Bora® () = = — @210

pole 21-2

and by the integral

BoraD(z) =

cut

1 [exp(=B1) do
- /0 (2.11)

g—z

9
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Figure 5: Two-loop singularities in the complex plane (z = Q*/A2).

3

ﬂ'Bl
(log(0) + By log(~1 — log(a)/B\)}* + =2 B

that eliminates the unphysical branch cut. As the result, the analytic in-
variant charge can be written as

Boil2)(2) = Boa® (2) + foAal), (2) + foArall)(2). (2.12)

This form is convenient because the analytic coupling is represented as a sum
of the standard expression and of the additional terms of a nonperturbative
nature. Their contribution can be represented as an expansion in powers

of A%2/Q? [see Eq. (2.22) below].

2.3 Universality of (‘zan(O)

The unlversa.l value at Q2 = 0 is formed by the contrlbutlon of the pole

term Aapole(z = 0) = 1/(2B,) and the contribution of (2.11) that can be
represented as

Aa)(z=0) = _./°° dz - L
feut BoJo (z+1—logz)>+n2 2Bp"

The total contribution leads to the universal expression @,,(0) = 1/8,.

10

In the above approach to approximating the original two-loop coupling,
the residue at the pole (which is the leading unphysical singularity) is inde-
pendent of the two-loop B-function coefficient, and it may thus seem that
precisely this fact makes @,,(0) independent of higher-loop corrections. As
we have noted, however, there is a different reason behind the universality
of @an(0), which does not reduce to the choice of a particular approximation
of the original invariant coupling. We now explain this in more detail. The
standard asymptotic two-loop expression can be obtained by expanding the

function
1

log z + By log[1 + log(z/C)]’

where C is a constant. Expression (2.13) correctly reproduces the standard
UV limit

ﬂoﬁ(z)(z) =

(2.13)

_an [ 1 Biloglog(@/AY -

G = —
Po [log(Q?/A%) 5 log*(Q?/A%)

that is independent of the constant C. At the same time, the residue at the

pole now depends on the two-loop 3-function coefficient through By,

1

res[foaV(2), 2= 1] = 1+B,/C’

(2.15)

and therefore, the same dependence is involved in the corresponding com-
pensating term

_(2) 1 __1_
ﬂOA pole( ) 1+ BI/C 1—2 (2.16)
whose contribution to @,,(0) is equal to
2 oy L 1
Aa,(0) = 5% 1t B./C (2.17)

The contribution to @,n(0) of the term compensating the unphysical
branch cut is now given by the integral

AaD(z=0) = iﬁ/w do
Bo Br Jo [(z+1)C/B) — logz]® + =2

1 By
= 2.18
Bo (B +0) (219
which together with the pole contribution (2.17) gives the universal value
@an(0) = 1/0, that is independent of either C or Bj.

11



When taking the higher-loop contribution into account for proving the
universality of the IR limit in the analytic approach, it is convenient to use
the complex quantity ( = 1/a. We now give simpler arguments based on
the expansion of the perturbative charge into a double series in powers-of
log™ (€) /€%. For @an(0), we can write

=1 [Tarowy= 5 + % 5" atm Adan(0) (219)

k=1m=0
where the higher-loop contribution is given by

log™(L
Adpm(0) = —1 / dL—%)-. (2.20)
Since the integrand in (2.20) has no singularities in the lower half-plane,
we immediately obtain A ,(0) = 0, which proves the universality of the
infrared fixed point value of the analytic charge.

Thus, the analyticity requirement for the running charge leads to essen-
tial modifications of perturbation theory in the IR region. The most rele-
vant factor here is the universality of the IR limiting value of the analytic
coupling function (the invariance with respect to higher-loop corrections),
which results in that the family of the invariant charge curves correspond-
ing to different loop approximations looks as a bundle with the common
point at Q% = 0. In addition, these curves obviously come closer to each
other in the UV region in view of the asymptotic freedom property. In
our approach, unlike in the standard perturbation theory, there emerges a
remarkably stable picture of the invariant charge behavior with respect to
higher corrections. This stability is' important for phenomenological appli-
cations, where the relevant energy interval is of the order of or less than
several GeV.

2.4 Approximate formulas

The explicit one-loop formula (2.4) is very simple, and its use does not lead
to any complications. In the two-loop case, the analytic coupling is written
in the form of an integral representation, and it is interesting to find explicit
approximate expressions that are convenient in applications.

We consider two such formulas. The first expression follows directly
from the picture of subtracting the unphysical singularities as explained in
Sec. 3. Thus, the analytic coupling can be represented as

@an(Q?) = ap1(Q%) + Aduing(Q?), ' (2.21)
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where apt(Q?) is a perturbative contribution and the term A&y, (Q?) has
the effect of subtracting the unphysical singularities. For the perturbative
term taken as in (2.7), the term eliminating the unphysical singularities can
be represented as two terms whose respective effects are to subtract the
unphysical pole and the branch cut. The term compensating the pole has
a simple form. For the term compensating the cut, we use the fact that the
expansion coefficients C},

‘Bok=l

oo * k
Aaei(QY) = -oX (i\-z-) Ch, (2.22)

C, = / . -exp[—Bik(t +1)] ’
0 (t+1-logt)? + w2

are numerically small and decrease rapidly (C; = 0.0354, C; = 0.0079,
C3=10.0023, ...). Keeping only the first term in the expansion, we obtain
a simple interpolation formula
i ]
Bo Llog(Q?/A?) + By log[l + log(Q?/A?) / By]
1 A? A?
L PY
202 — A? Az Q2

& Drox(@7)

(2.23)

which provides good approximation 7 to the two-loop analytic coupling for
moderately large Q2. In the interval 1 < Q@ < 1.5GeV, the accuracy of
the approximation is not worse than 0.4 %, and for large values of Q, the
difference between the formulas becomes negligible. Thus, expression (2.23)
is quite acceptable in the domain of moderately large Q > 1 GeV.

In a number of cases, however, it is necessary to deal with smaller values
of Q, down to @ ~ 0. Formula (2.23) is no longer applicable to such prob-
lems because the term compensating the branch cut is poorly approximated
by power-series expansion (2.22). The approximate formula ‘

4

&2 2y _ 47 1 1 '
approx(Q ) - ,BO [ez(Qz) + 1 _ exp[eg(Q2)]] b (2'24)

6L(QYH = ln%+Blln\/ln %-}—4#2

"The approximate formula for the two-loop correction [@%]a, to the physical
quantities of the D-function type can also be found in this way.

13



Table 1: The perturbative and analytic one- and two-loop values of

the scaling parameter (MeV) for f = 3 versus the normalization point
a,(Mz).

G, (M?) 0.30 | 0.32 | 0.34 | 0.36 0.38
A%) 173 201 | 228 256 283
AT 197 235 | 275 | 319 366
A2 333 377 | 419 | 460 500
AT 434 516 | 607 | 706 814
AD) 423 500 | 582 | 671 777

for the two-loop analytic charge can be used also for Q ~ 0. Equation (2.24)
reproduces the UV two-loop asymptotic behavior (2.14) and the universal
limiting value at Q% = 0. This expression approximates the exact one for
Q > 1GeV with the accuracy within 1% and can be used for all Q2.

For sufficiently large Q?, the analytic coupling function is dominated by
its perturbative component. Already for Q = M,, however, the nonpertur-
bative contribution becomes essential. In Table 1, we compare the A pa-
rameter values corresponding to the perturbative and analytic approaches.
The result obtained according to Eq. (2.23) reproduces the exact two-loop
calculation with high accuracy and is not given given here. For the two-loop
perturbative formula, we used expression (2.7), which is most appropriate
for our analysis.® The bottom row corresponds to approximate expres-
sion (2.24). |

3 Analytic perturbation theory

In this section, we briefly review applications of the analytic approach to the
analysis of several processes. For the physical quantities considered here,
we use the analyticization procedure of the entire perturbative expression
involving higher powers of the invariant charge [9]. This strategy leads to
the so-called analytic perturbation theory (APT).

8We note that using formula (2.7) as a perturbative one, leads to somewhat
greater values of A than when working it out from Eq. (2.14).
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We consider the integral characteristics of the invariant c}.\arge i.n the IR
region by extracting the relevant information from the physics of .!ets, a:nd
also from the e*e~-annihilation processes into hadrons and the inclusive
r-lepton decay. We use this set of data to study the dependence of theo-
retical results on the choice of the renormalization scheme. We show that
applying the APT allows us to considerably reduce the scheme dependencc.a.
This in turn means that the three-loop level attained for many processes is
practically independent of the choice of the scheme.

3.1 The integral characteristics of @; in the IR re-
gion '
A distinctive feature of the analytic charge is that it is finite in the IR.regi’f)r.].
This property, which is sometimes referred to as the coupling “fre?zlng,' is
often used for phenomenological purposes (see, for example, the discussion
in [22]). Experimental evidence for the regular IR behavior of th.e QCD
charge was ingeniously extracted from physics of jets using the integral
characteristics

AQ) = ZE’/DQ dk &, (k?). (3.1)

It has been empirically found [23] that A(2GeV) = 0.52+ 0.10.

Table 2: The infrared integral characteristics of &, (k?*) evaluated in the
one- and two-loop approximations for normalization at the 7-lepton

mass.
G (M2) 034 | 0.36 0.38
A oon2) | 050 0.52 0.55
Aooon2) | 0.48 050 | 0.52

We normalize &, at the 7-lepton mass. Calculations of A(2GeV) are
given in Table 2. It can be seen that the APT approach a.l}ows us to uni-
formly and consistently describe the almost-perturbative region of the. order
of the r-lepton mass and the nonperturbative characteristics (3.1) without
introducing any additional parameters.
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3.2 The efe -annihilation process into hadrons

We now apply the analytic approach to the analysis of the et e~-annihilation
process into hadrons. To compare the results with the experimental data, we
use the method of so called “smearing” of resonances proposed in [24]. The
analysis of the et e~ -annihilation into hadrons carried out in [22] relied on a
certain “optimum” renormalization scheme constructed on the base of the
principle of minimal sensitivity (PMS) [26] with the third-order perturbation
theory used for optimization. Our analysis is not based on any optimization
of the scheme arbitrariness. Moreover, we show that the scheme dependence
in the APT is considerably less than in the standard approach, and its
predictions have practically no scheme arbitrariness in the entire energy
range.

The analyticization procedure can be also applied to observable quanti-
ties for which the appropriate analytic properties are known. The APT can
be applied to an object that has numerous applications, namely the Adler
D-function

n(-Q?)

ot —3ZQfl+d(Q)] 62

D(Q?) =~ 1<)

where I1(s) is the correlation function and d(Q?) is the QCD correction that

is expanded in the RG perturbation theory as

d(Q%) = a(Q*)[1 + d1a(Q) + dza*(Q?) + -+ |, - (3.3)

where ¥ @ = o, /7.
The D-function is related to the function R(s) defined as the ratio of
the hadron and lepton cross-sections for the ete~-annihilation by

oo ds
D(Q? =Q2/ —————R(s). 3.4
=@ [ et (3.4
This also implies the properties of D(Q?) as an analytic function in the

Q%-plane cut along the negative semi-axis. We define the spectral density
pfi(c) through the discontinuity of (3.3) on this cut,

p1(0) = pM(0) + d1p®(a) + dgp® () + - . (3.5)

°In this formula, we allowed ourselves to change the normalization of the cou-
pling constant so as to simplify comparing with the previous works on the subject,
where, as a rule, the quantity a = a, /= is used as the invariant charge.
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The expression p{!)(c) is the spectral function of the invariant charge and

p¥) (o) in (3.5) corresponds to the kth power of the effective coupling. Thus,
the analytic expression for the QCD correction to the D-function is written
as

dapr(@®) = 500(@7) + di6 B (@) + dabDn (@) 4 - (36)

where the first term &' APT Q% coincides with the analytic 1nvar1ant charge.
The subsequent terms do not reduce to powers of the analytic coupling;
thus, the APT method leads to non-power-series expansions. Propertles of

such expansions were analyzed in [12].
We define the QCD correction r(s) to the function R(s) in the same
manner as for the D-function in (3.2), and we use the relations

%0 S 1 feticds |
1@ =@ [* ) )= [y, @

27t Js—ie

where the integration contour in the last expression is in the analyticity
domain of the integrand and bypasses the cut along the real semi-axis.

We take the quark thresholds into account by using the approximate
formula proposed in [24],

R(s) =3 Q76(s—4m}) T(vs) [1 + g(vs) rs(s)], (3.8)
‘ ; | , ,

where vy and the functions T(v) and g(v) are given by

4m? v(3 — v?)
Uf 1- —sf-, T(‘U) = T_.’

' 4r 3+v/m 3 )]
= - ——=1. 3.9
9v) = 3 [2v 4 (2 4x (3:9)
In the APT, the correction r () is expressed through the effective spec-
tral density as :

i

rf(S) = _l Ed_gpf (0'), (3.10)

T

where p‘}ﬂ(a) is defined in terms of the discontinuity of ds(Q?) on the phys-
ical branch cut. The corresponding three-loop contribution is written as

ds(Q%) = as (@) + dVas (@) + dPad (@), (3.11)
17



Whe_ré"tho _I\—/I—S-shhémo ooefﬁoi\entS'afe equal to [26]

Cd® = 198650015 f,
d.(fz) = 18 244 — 4.216 f + 0. 086 f2 dSinglet ,
7 dsinglet _ K 1 2395 (Z_f’ Q, )2 ' :
f <3 Z}r Q,I -

It is hardly poss1ble to use perturbatlve expressmns for a dlrect descrlp-
tlon of the experimentally observed quantity R(s), because of the threshold
singularities of the form (a,/v)". We use the “smearmg” method proposed
in [24], which. does nevertheless. allow us to, compare the. results with the
experiment. The idea of this approach consists in replacing the quantlty
R(s) defined through the correlatlon function H as

R(s),:ﬁ[n(er‘;e) H(s—ze)] - (3.12)
with the qu‘antiAt’y

Ra(s) = %[H(s—}-iA) CTi(s—-id)] - (3.13)
for some finite A. For the values of s near the threshold, quantity (3.12)
is very sensitive to the threshold singularities, in the vicinity of which the
perturbative expans1on looses its applicability. Stepping away from the real
axis into the g% complex plane by a finite distance A, as in (3.13), we can
expect that it would be possible to descrlbe (3 13) using an appropriate
perturbative approximation.

The “experimental” curve corresponding to (3.13) can be found if we
use the dispersion relatlon for the correlator TI(g?) to write Eq. (3.13) as

R(s) »
als) = —/ (s—s""—}-A2 o (3:14)

The corresponding “experimental” curves were found in [22] for some values
of A, whose estimates were made in [24]. We use these curves for comparing
with our results. ‘

We note that a direct use of perturbation theory for describing Ra(s)
is again impossible. Indeed, the R-ratio in (3. 14) parametrized using the
invariant charge with unphysical singularities leads to a divergence of the in-
tegral in (3.14). Thus, even though the use of the “smeared” quantity (3.14)
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allows us to bypass-the complication with the threshold singularities, there
arises a problem related to the behavior of the running charge in the IR
region. We can avoid this complication using the APT.

............

— AA

S Experiment
2 ......... PMS
1L (GeV)
I 1 1 I 1 1
0 1 2 3 4 5 6

Figure 6: The quantity Ra(q*) corresponding to the parameter value
A = 3GeV?. The figure shows the experimental curve, the result of the
PMS-optimization of the third-order perturbative expansion obtained
in [22], and the result of the analytic approach-through the third order.

For A = 3GeV?, Fig. 6 shows the corresponding experimental curve
and the curve found in [22] from the PMS-optimization of the third-order
perturbative expansion. "The same figure gives also the result of our calcu-
lation through the third order.!® For the scaling parameter in the analytic
approach, we took the value A, = 870MeV  (f = 3) obtained from the
analysis of the semileptonic 7-decay in the APT framework. For the quark
masses, we took the values that are close to the constituent ones (cf. [27]),

10As shown in [8], the calculation of Ra in the analytic approach leads to good
fit of the experimental curve already in the first order.
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Frgure 7. D- functron
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~ New ! experlmental” data for the D functron were obtamed recently [28].

We give in Fig.7.the corresponding curves and -alsoithe result of our calcula-
tion. Figure 7 shows that good fit of the experimental data can be achieved
already in the first order of APT. The same conclusion, as we have noted,
s valid for Ra in the entire energy. range [8]. We note here that loop stabil-
ity is not observed in the standard approach using the PMS -optimization.
Moreover, the whole “trick” is based here on higher approxrmatrons Thus,
the situation regarding the absence or the: presence of the infrared fixed
point that. can emerge in scheme optimization of the perturbative expan-
sion depends in an essential way on the quantity under consideration (i.e.,
is-defined by the coefficients of the perturbative expansion) [29]. .
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3.3 . The . .dependence. on: the renormahzatlon

Inevitable termination of the PT serles, 1e the approx1matlon of a phys-
ical quantity by one of its -partial sums, leads to,the known problem of
the dependence of the results on the renormalization prescription. Thus,
the partial sum of the PT series used in approximating a physical quan-
tity bears a dependence on the choice of-the renormalization scheme, which
is-the source of theoretical ambiguity in.describing: experimental data. In
QCD, such ambiguity is the greater the smaller are the energy -parameters
characteristic of the process. To solve the stability problem of the results
obtained, it is by far not enough to investigate only loop stability within a
certain. renormalization scheme; one should _also consider the scheme;stabil-
ity of the results. e g o I S

We discuss.the. scheme arbltrarmess arrsmg m the APT in the example
of the R-ratio for the et e -annihilation process into hadrons. We consider
a class of MS-like schemes and compare our results with those obtained in
the perturbative analysis. (see, for example, [30]).

In passing from one ‘renormalization scheme to another the couphng
constant transforms as ' '

Cmabuetudto). @)

We limit ourselves here to the three-loop level of the D-function achieved
at present with the QCD corrections taken in_ the approximation where

= a(1+d1a+d2a ), (316)

with the running charge determined as a solution of the renormalization
group equation with the three-loop S-function

Bla) = “2;_; = —ba®(1 + bya + baa?), . - (317
where
33— 2f 153 — 19f
S 77139 — 15099 4 325 f2
2 = 288(33 — 2f)
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The phreé—loop B-function coefficient b2 and the expansion coefficients d;
and ds in (3.16) depend on the choice of the renormalization scheme. Under
scheme transformation (3.15), they change as

by = b —v? — byvy +v2,
d, = dl -1, : ’ (3.19)
d, = dz - (dl - vl)vl - ‘U2 .

Thus, every term in representatlon (3.16) undergoes a transformation,

and we thus obtain the new function :
| &' =d(1+did + dya'?), | - (3:20)

where the coupling o’ is evaluated with the new S-function, with the three-
loop coefficient b, replaced by the primed one bj.
“Recalling the transformation law of the scaling parameter [31]

A = Aexp(v1/b).

and Egs. (3.19), we find two scheme inyé,riants [25]

b 2 .
p1 = —2—log % —dy, pz = bo+ dy — bydy — d2. (3:21)

We normalize the momentum scale at Agfs- In arbitrary scheme, the
invariant charge is then determined from the equation -

b e (D2 _ 4 wab (3.22)
§ Og ;\T — Uy - 1+ (01 2)1 ( : )
MS
where
1+ bia / dz
by — __b | b _ . (3.23
®(a,by) = 185 @ +02 (14 b1z)(1 4 by + byz?) (323)

Although there are no general arguments to prefer a certain renormaliza-
tion scheme from the start, we nevertheless can define a class of “natural”
schemes, which look reasonable at the three-loop level that we consider.
The relevant criterion was proposed in [32]. One should restrict oneself to
the schemes where the cancellations between different terms in the second
scheme invariant (3.21) are not too large. Quantitatively, this criterion can
be related to the cancellation index

1
C= Toal (1b2] + |d2] + df + |d1]by) - (3.24)
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One should of course keep-in ‘mind thé conventions involved in’ these-con-
siderations, in partlcu]ar as regards the mmlmal value of the cancellatxon‘
mdex : Co :

" Given a‘certain maximum value of the cancellation index Cpnax, We can
investigate stability of the results obtained by taking different schemes with
the index C' € Cmax.” As Cimax, We take the index corresponding to the
optimal PMS-scheme. We then have a relatively ‘small class of adm1551ble :
schemes bounded by the maximal index Cpys. SRR

For R(s), the cancellation. index ' C is‘evaluated using the known co-:
efficients i, and 7 of the:perturbative expansion of the correction r =

a(l+rja+rya?). For-the PMS-scheme,'it is Cpms =~ 2. To demonstrate the
scheme arbitrariness arising here, we choose two schemes from this class.
The first one is the H scheme with the parameters r( ) = ~3.2 and, b(H) =0

(the 't Hooft scheme), and the second is the MS-scheme correspondmg to

the paremete}s rgMS) =1.64 and b(MS) ='4.47. These schemes are close to

each other and to the boundary cance]latlon mde‘c CH ~Cys > CPMS ~ 2.

,0._20\ ’ — , ;

! PN . ——AA(MS)

T(S) i .\\ ......... AA (H_)
0.15F \’<. S e PT (MS)
010 F
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Flgure 8: The graph of r(s) calculated in perturbation theory (PT)
and in the analytic approach (AA) for two renormahzatmn schemes H
and MS with the same cancellation index Cg ~ 2
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~ Figure 8 shows the QCD correction r(s) as a function of V5[ Ay eval-
uated in perturbation theory and in the analytic approach for two renor-
malization schemes H and MS with approximately the same cancellation
indices Cr =~ 2. As can be seen from the figure, the analytic approach
allows us to drastically reduce the scheme arbitrariness.

Essential reduction of the scheme dependence in the APT also takes
place for ather processes, for example the inclusive 7- -decay [11], and in
the Bjorken and Gross-Llewellyn Smith sum rules for the inelastic lepton—
hadron scattering [13, 14]. In the analytic approach, therefore, the three-
loop level reached presently for a number of physical processes is practically
invariant with respect to the choice of the renormalization prescription.

3.4 Incluswe T-lepton decay

The inclusive 7- decay (see Fig. 9 for the correspondmg diagram) allows one
to perform a low-energy test of QCD. The 7-lepton mass M, = 1777+8 %g MeV
[33], on the one hand, is sufficiently large to allow the hadronic decay modes,
but on the other hand, is small in the chromodynamics scale, where it is
in the low-energy domain. Theoretical description of the inclusive 7- -decay
is in principle possible without any model assumptions, which is important
for reliably determining the low-energy value of &,(M?) from experlmental
data. The main quantlty to be studied is the R,-ratio

_ T[r~ = v, + hadrons(y)] -
Be=—r=ent (3:25)

which in the modern experiments can be measures with the -accuracy of

several per cent.
The starting point of the theoretical analysis is the expression

,_2/M ds ( Mi,?)2<l+M2)}~?“(s)’ | (3.26)

where R(s) is defined by the imaginary part of the hadron correlator

= Z lV“le[HUQ.V(s) + Huq,A(s)]- (3.27)

g=d,s

Here Vg 2 are the Kobayashx—Maskawa matrix elements In the massless case
considered ‘here, the vector and axial- vector hadron correlators, Il,q,v and
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HADRONS

Figure 9: The inclusive T-lepton decay diagram.

I1,q,4 respectively, coincide, and the function E(s) is equal to the ratio R(s)
for the e*e~-annihilation process into hadrons.

The standard analysis of the r-decay immediately faces a difficulty in
applying the original formula (3.26), because the parametrization of the
f}mction R(s) by perturbative @&, with the unphysical singularities leads to
singularities in the integrand. The way out proposed in [34] consists in
the following. Integral (3.26) is represented as a combination of integrals
along the sides of the cuts in the's complex plane (see Fig. 10)." By the
Cauchy theorem, this integral is then “transformed” into the integral along
the contour |s| = M2. After the integration by parts, we are left with the
contour representation of R, mvolvmg the D-function,

L f 4z (1 1 2
parl -2)® (14 2)D(M}z). - (3.28)

The transition from the original expression (3.26) to contour represen-
tation (3.28) is based on certain analytic properties of the correlator, which
are violated in the standard analysis. Thus, the proper analytic proper-

ties ensuring the analytic approach are 1mportant for the consistency of the
inclusive 7-decay description.

. We describe this process in the APT [9). We single out the strong-
Interaction contribution A, to the R, -ratio e

B, =RO(1+4,), N

©) . . .
where R:” is a known factor including electroweak corrections.
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Figure 10: Transition to the contour representation for R,.

We express A, through the effective spectral function as

di [®do g di szl_i( __9_)3(1 L) off 3.30

m g

Because of the universality property, the integral in the first term can be
expressed through aan(0). The spectral function in the two-loop approxi-

mation has the form
. 1dy, 2R(L)I(L)
p () = o(0) + =+

B8 di [R2(L) + 1*(L)]*’

(3.31)

where the spectral density of the invariant charge p(o) is defined in (2.8) and
the functions R(L) and I(L) are given by (2.9). Inserting (3.31) in (3.30)
allows us to evaluate the strong-interaction contribution A, in terms of the

scale parameter A.
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Using the experimental value R, = 3.633+0.031 [33], we obtain a(M?) =
0.400 + 0.026 and the corresponding value of the scaling parameter AE(,?,) =
935 £ 159 MeV. These values are larger than those obtained in PT using
the contour representation [35]. The reason lies in the fact that the nonper-
turbative corrections characteristic of the analytic approach give a negative
contribution to A; [9, 10). Thus, to obtain the same value A, in PT and
in the analytic approach, the “perturbative component” contribution of the
latter should be increased by increasing A. The inclusive T-decay was an-
alyzed at the three-loop APT level in[36]. The corresponding value of A
turned out to be smaller, AY) = 871 + 155 MeV. The scheme stability of
this analysis was also shown in [36]. It should be noted that the quan-
tity Aa, is very sensitive to the experimental value of R.,. Thus, using
R, = 3.559 £ 0.035 [37], we obtain AL) = 640 + 127 MeV, which cor-
responds to a considerably smaller invariant charge at the mass M, (see
Table 1).

4 The analytic approach in inelastic lep-
ton-hadron scattering

In this section, we give a theoretical foundation of a possible application
of our analytic description to inelastic lepton—hadron scattering processes.
The key point of our construction—the analytic properties of the structure
function moments with respect to (Q2—requires a certain modification of
the standard formalism, in particular, the change of the standard Bjorken
moments M, (Q?) with the modified moments M, (Q?) with respect to a
new scaling variable that takes kinematic mass dependence into account.
We start with the Jost-Lehmann integral representation (see, for example,
§55 of [5]) for the Fourier image of the corresponding matrix element.

4.1 The Jost—-Lehmann representation

The structure functions of the inelastic lepton-hadron scattering depend on
two arguments, and the corresponding representations that accumulate the
fundamental properties of the theory (such as relativistic invariance, spec-
trality, and causality) have a more complicated form in our analysis than
in representations for functions of one variable. Two such representations
are known in the literature. We use the 4-dimensional integral representa-
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tion proposed by Jost and Lehmann [38] for the so-called symmetric case.!
Applications of this representation to automodel asymptotic structure func-
tions were considered by Bogoliubov, Viadimirov, and Tavkhelidze [4], some
of whose results and notation we use in what follows. The proof of the Jost-
Lehmann representation is based on the most general properties of the the-
ory, such as covariance, Hermiticity, spectrality, and causality (see [5]; some
mathematical problems related to the Jost-Lehmann-Dyson representation
are also considered in [40, 41]).

For definiteness, we speak about the inelastic scattermg of charged lep-
tons (electrons, muons) on nucleons, i.e., we consider the process £+ N —
¢ + hadrons. In the lowest order in the electromagnetic coupling constant
(one-photon exchange), this process is shown in Fig. 11, which also explains
our notation. In the unpolarized case, the cross-section of the process is

defined by the hadronic tensor
1 , T z
Wale,P) = = X [ dz exptia-=) (Pre|[1(5) 2 (-5)] | o)
(4.1)

constructed of the commutators of the currents, with the sum taken over
the nucleon polarizations.

Figure 11: The deep inelastic lepton-hadron scattering diagram in the
one-photon exchange approximation.

Relativistic invariance and the electromagnetic current conservation lead
to the parametrization of tensor (4.1) in terms of two structure functions w;
and wy,

1A more general case was considered by Dyson [39], and similar representations
are therefore often called the Jost—-Lehmann-Dyson representations.

28

WilaP) = (~gut q;q") (g, P) (4.2)

1 P-gq P-q
+ W(I)u‘ 7 Q>(u—?—Qu)w2(Q»P),

where M = v/PZ is the nucleon mass.

We now list the main properties of the functions w ‘following from the
general principles of local QFT:

~ covariance property means that the functions w depend on two scalar
arguments, which we choose as v = P.q and Q% = —¢?,

w(g, P) = W(»,Q%);

— spectrality property is written as

W(r,Q%) =0 for o “—=z>1,
where we used the dimensionless Bjorken variable, which in the physical
domain of the process for (¢ + P)% > M? is kinematically restricted by the
interval 0 < ¢ < 1;
— the structure function parametrlzes the scattering cross-section and is
real (the reality property),

(V’Q)_W*(V’ )’

— Hermiticity of the current operator leads to the (anti-)symmetry prop-
erty .
) ,

W(-1,Q% = -W(»,Q%;
— the vanishing of the commutator of currents at space-like intervals
because of the local commutativity of currents gives the causality condition

/ dq exp(—t’qé)W(q P)=0 - for 22<0
(2m)* | ' '
For the function W(y,Q?) satisfying all these conditions, there exists a
real moderately growing distribution %(u, A?) such that the Jost-Lehmann
integral representation holds; in the nucleon rest frame, this can be written

as (4]

W (v, Q%) = €(go) / du d,\? 5.[q(2,‘ —(Mu—q)? = Ap(u,A2),  (4.3)
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with the function % (u, A%) supported on the set

p=lul <1, A3 ME1-y/1-p%)"

For the process under consideration, the physical values of v and Q?
are positive. We, thus, can neglect the factor €(go) = €(v) and keep the
same notation for W (v, Q?). Taking into account that the weight function
¥(u, X2 = ¥(p, A?) is radial-symmetric, as follows from covariance [4], we
write the Jost-Lehmann representation for W in the covariant form,

1 o 1 -
W(,Q%) = /Odp,;?/A2 d/\z/_ldz (4.4)
X 8(Q%+ M?p? + A2 — 22p\/v2 + M?Q?)%(p, \Y),

M= M1 —/1-p2)" (4-5)

4.2 Analytic moments of the structure functions

where

As follows from representation (4.4), a natural scaling variable is given by

s=-1- Q@2 +4M?) ::1:\/7 2+ 4M2 (4.6)

2 V2+M2Q2 Q2+4M2032 ! :
which accumulates the root structure determined by the é-function argu-
ment. At the same time, in the physical region of the process, the s variable
changes in the same way as the Bjorken variable z, i.e., from zero to one.
The variable s bears a dependence on the mass of the target (the nucleon)
and is different from both the Bjorken variable and the Nachtmann vari-
able [42]

¢ = 2z
T 141 +224MT/Q?
that is sometimes used in the kinematical account of mass effects of inelastic
scattering processes. However, only the s variable leads to the moments that
have the analytic properties in Q% that we need.
To establish these properties, we integrate over z in (4.4) as

W(v,Q%)

s 1 00
d d)? A7
Q2\/'1+4M2/Q2A PP . (47)

. 2 M2 2 ./\2
X 0[@2,;2_3@_%\/_%,___%_2_)] ¥(p, A2).
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We now define the modified s-moments of the structure functions (cf. [43])

1

ML (Q?) =
@) (14 4M?/Q?) "=

1

- / dss™ W (1, Q). (4.8)
0

Inserting W (v, Q?) as given by (4.7), we obtain

(@) n © (0 ~ Omin) ,
Ma(Q7) = ~—— /0 dpp +l/0 dam;)—nl/’(P»U—MzPZ),

where 0 = A2 + M?p? and opin = 2M%(1 - /1 - p?).
Introducing the weight function

1 1
ma(0) =2 [ dpp"10(0 = Omin) Wlpy0 — M), (49)
we obtain the representation for the s-moments
Mn Q2 — 2\yn-1 /ood m"(a)
Q%) = (@Y L oo (4.10)

which implies the analyticity of M, (Q?) in the complex Q? plane cut along
the negative semi-axis, i.e., the Killén—Lehmann type analyticity.

In [44], the Deser-Gilbert-Sudarshan integral representation [45] was
used to arrive at a similar statement regarding the analyticity of the Kallén-
Lehmann type for the z-moments. However the status of this representation
in QFT is less clear, since it cannot be obtained starting with only the basic
principles of the theory.

The relation between moments (4.8) and the standard Bjorken moments

1
Mo(Q?) = /0 dz =W (v, Q%) (4.11)
can be expressed by '
B 1 &I+ (m+1)/2 ( am2\F
@) = i e () @),
B 1 © [k + (n+1)/2] [4M?\"
@) = L () @)

In the asymptotic domain corresponding to large values of the trans-
ferred momentum Q2, where power corrections of the form 1/(Q?%)™ can be
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neglected, the z-; s-, and £-moments are identical. Outside the asymptotic
domain, on the other hand, where it comes to studying the contribution of
higher twists, the difference between these definitions of moments must be
taken into account.

4.3 Dispersion relation and the operator product
‘expansion

To establish the relation with the operator product expansion, we start
with the Jost-Lehmann representation and obtain a dispersion relation for
the forward Compton scattering amplitude with respect to the new vari-
able (4.6). We write the matrix element of the process corresponding to
representation (4.4) as

1 1 o 1 . »
r(u,Q2) = .7;/0 dppz/)'\z- d>\2/_1 dz : (4.12)
P(p, A?)
Q2+M2p + A2 = 22p\/07 + M2Q? -

In the complex v? plane, the function T'(v,Q?) has a branch cut along
the positive part of the real axis starting at 12, defined by the condition

\/ +M2 2 — min
; mm Q vorz)

Recalling (4.5) and the range of the integration variable z in (4.12), we
can simplify this to

VViin + M?Q? = min = (4.13)

2p

Q2+M2p2‘+)\2 -
2zp )

which leads to v2;, = (Q?%/2)%. Thus, the sought dispersion relation has the
form ‘ ‘

T(u,Qz)v /Qoo ————d—ulz———W(ul, Q?). (4.14)

1gvi— V2 —

We note that in terms of the Bjorken variable z, relation (4.14) is rep-
resented as

T(v, Qz) = %/01 %I—_—(—}J;)—zW(Vl,Qz). (4.15)
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This'expression determines simple properties of the amplitude T'(z, @?) in
the complex z-plane and is convenient in the operator product expansion.

_.In considering consequences of the Jost-Lehmann representation, as
noted above, the natural scaling variable is given by s. In this case, there
arises a similar structure of the dispersion integral 12

T(v,Q?) = % /01 fi_sll 1_(;1/3)2_1{[/‘(,/1,@2&)‘; . v(4.16)

2o o [Q2+4M2 _Mz] _

The identity between the structures of the dispersion relations with re-
spect to the variables z and s allows us to establish the relation of analytic
moments (4.8) to the operator product expansions of currents used in finding
the Q2-evolution of the structure functions of the moments. The moments
in Eq. (4.11) correspond to the case where only the Lorentz structures of
the form P,, ... P, are taken into account in matrix elements of the opera-
tor (P|O“1 tin IP) Then the application of the operator product expansion
for the Compton amplitude leads to the expansion in powers of (g - P)/Q?,
i.e., to the expansion in the inverse powers of z. A similar expansion in the
inverse powers of z can also be done in dispersion integral (4.15). The coef-
ficients are then determined by the z-moments. Comparing the two power
series gives the sought relation between the z-moments and the operator
product expansion. ‘ ' \

In the general case, the symmetric matrix element (P|O,,. ,‘,,|P) con-
tains the Lorentz structures given by {P,, ... Py}, M?9uiu{Pus - Puns }s
etc. The moments with respect to the £ variable correspond to choosmg the
operator basis where the expansion goes over traceless tensors, i.e., such
that the contraction of g,,,; with (P|O,,...n|P) vanishes for any two in-
dices. It is then obvious that the Lorentz structure of the matrlx element
(PIO,, .| P) is fixed unambiguously.

Dispersion representation (4. 16) allows us to expand the Compton am-
plitude in the inverse powers of s. If the operator basis is chosen such that
an arbitrary contraction of the tensor (P|Oyy..,| P) with the nucleon mo-
mentum P,; vamshes, then the operator product expansion leads to a power
series for the forward Compton sca.ttermg amplitude with the expansion pa-

12\We note that in using other scaling variables, for example, the Nachtmann one,
this structure can be destroyed. ,
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rameter ¢,.q, (P, P, — g,,P?)/(¢%)?, which corresponds to expanding disper-
sion integral (4.16) in powers of 1/s2. We thus arrive at the relation between
the analytic s-moments and the operator product expansion. We stress that
the orthogonality requirement of the symmetric tensor (P|Om_._,‘"|P) to the
nucleon momentum P,; determines its Lorentz structure-unambiguously.

5 Conclusions:

We considered the analytic formulation of QCD, where the analyticized RG-
solutions for the invariant coupling functions, the Green’s functions, and the
matrix elements are free of unphysical singularities. An important property
of thls formulatlon that we found is the stability of the analytic invariant

charge with respect to hlgher—loop correction in all of the Q? range. The key

point here is the existence of the universal limiting value aan(O) = 47r/ﬂg
that is invariant with respect to multiloop corrections. This ‘constant is
independent of the Aqcp parameter and is determined only by the general
symmetry properties of the Lagranglan ‘Therefore, the family of curves
&an(Q?*/A?) for dlfferent values of the A parameter is a bundle with the

common point &,n(0) = 4 /Bo (this picture is mdependent of the number

of loops). ‘

The invariant analytic formulation essentially modifies the behavior of
@an () in the IR region by makmg it stable with respect to hlgher—loop cor-
rections. The two-loop approximation differs from the one-loop one by no
more than ~ 10 % in the small-Q? domain, and the three-loop approxima-
tion differs from the two-loop one by only =~ 1%. This is radically different
from the situation encountered in the standard renormalization-group PT,
which is characterlzed by strong instability with respect to the next loop
corrections in the domain of small Q2 ~ A2, We note also that main-
talmng the proper analytic properties with respect to Q? is essential for a
self-consistent definition of the effective coupling function in the time-like
region [15]. In describing the concrete processes, for example the inclusive
7-lepton decay, a consistent analysis is possible 9] only’ provided the above
analytic propertles hold.

There are at least two possibilities to describe physical quantities in the
new approach framework. The simplest one consists in replacing &, (z) —
@an(z) in the explicit expressions for the observables “processed” by the RG
method, or more precisely, for the related quantities defined in the space-like
region of the Q? variable.
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We take another possibility, however. For the quantities similar to the
Adler D(Q?)-function“that are represented by the PT power series, accord-
ing to a special convention, the analyticization procedure is applied to each
power of &;(Q?) separately. This leads to a new non-power-series expansion,
in which the powers of @,(Q?) are replaced with new nonsingular functions
of A,(Q?). We call this algorithm, which was first proposed in [9], the
APT. Applying this algorithm to analyze the amplitudes of the processes
like the ete ™ -annihilation into hadrons_and the inclusive Tédecay, and also

-of the sum rules for the inelastic lepton—-hadron scattering, we see that in

addition to possessing loop stability, the APT results are much less sensitive
to the choice of the renormalization scheme than in the standard approach.
In other words, the three-loop APT level practically insures both the loop
saturation and the scheme invariance of the relevant physical quantities in
the entire energy or momentum range.

It appears that by accounting for the additional information about the
proper analytic properties, the first terms of the APT non-power-series ex-
pansion already give sufficiently good approximation to the sum of the whole
series. We recall here the analogy with summing up the perturbative ex-
pansions with the additional information on the behavior of the remote PT
series terms taken into account [46]. In that case, it also turned out that the
expression for the approximated function given by the first several terms of
the loop expansion was practically unchanged by higher corrections.

In this work, we considered also the structure functions of the inelastic
lepton-hadron scattering, which are more complicated objects than the two-
point functions, which are in one way or another related with the Kallén—
Lehmann representation. For these functions, the general quantum field
theory principles, including covariance, Hermiticity, spectrality, and causal-
ity, are expressed by the Jost-Lehmann-Dyson integral representation. In
using the analytic approach to define the Q?-evolution, it was convenient
to introduce the moments M, (Q?) of the structure functions correspond-
ing to the special scaling variable (4.6). It is these moments, rather than
the Bjorken or Nachtmann ones, that exhibits simple analytic properties
with respect to Q2. In this work, we found the relation of the new analytic
moments M, (Q?) to the operator product expansion, where the tensor
structure of the matrix elements of operators with respect to the nucleon
states must be fixed according to the condition that they be orthogonal to
the nucleon momentum.
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