


3ynauk B.M. E2-99-24
[apMOHUYECKHE CYTIePNOTEHUHANB H CHMMETPHH
B KanHGpOBOYHBIX TEOPHAX C BOCEMBIO CyNep3apsaaMH

Mognenu BzauMoneiicTBus D-MEPHBIX TMIEPMYNIBTHIUIETOB W CYNIEPCHMMETPHYHBIX Ka-
UOPOBOYHBIX MYNIBTHILIETOB ¢ N = 8 cymep3apsnamu (D < 6) MoryT 6b1Th chOpPMY/IHPOBAHBL
B paMKaX rapMOHHYECKHX CYNepnpocTpaHCTB. DddeKTHBHOE KyJIOHOBCKOE HU3KOIHEPIETH-
yeckoe aeicTBie w1 D = 5 BKmoyaeT coboaubiii unen u uneH Yepna—Caiimonca, MsI pac-
cMaTpHBaeM Takxe 1eabesieBo cynepnonesoe D = 5 neitcteue Yepna—CaiiMonca. burapmo-
nndeckoe D = 3, V= 8 cynepnpocTpaHCTBO BBOXHTCS [/ ONMHCaHuA [ M 1 CYNIEpMyIbTHILIE-
TOB M 3epKalbHOH cumMerpuu. D = 2, (4,4) xanuOpoBOYHasd TEOPHA M B3aUMONCHCTBHA
MIEepMYBTHIUIETOB PAacCMATPHBAIOTCH B TPHTApPMOHHYECKOM cymneprpocTpaHcTBe. CBA3H
ma D =1, N =8 cynepMynbTHIUIETOB peliaoTcs ¢ noMotbio SU(2) x Spin(5) rapMoHHK.
DthdexTHBHBIE KamOpPOoBOYHBle feficTBUS B MonHbix D < 3, N = 8 cyneprpocTpaHcTBax co-
[CpXKaT orpaHiveHibie (rapMOHHYECKHE) CYNepnoTeHUHalbl, ynoBiersopsiomme (6 - D)
ypaBHeHuAM Jlanmaca s KanmubpoBoyHoM rpymnel U(l) wuiaH  COOTBETCTBYIOIMM
(6 - D)p-mepupiM ypasHeHusm i rpynn [U(1))P. O6061ueHHbIe TapMOHHYECKHE MPEACTa-
BIEHUA CYMEPHNOTECHLMANOB CBA3BIBAIOT IKBUBAICHTHBIE CYIEPNOEBble CTPYKTYpPhI 3TUX TeOo-
pHil B 1OTHOM H aHATHTHYECKHX CYNepnpocTpaHcTBax. [apMOHHYecKHH Mmonxon ynpolaer
IOKA3aTesIbCTBA TEOPEM HEllePEHOPMHPOBKH.
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Harmonic Superpotentials and Symmetries
in Gauge Theories with Eight Supercharges

Models of interactions of D-dimensional hypermultiplets and supersymmetric gauge
multiplets with & = 8 supercharges (D = 6) can be formulated in the framework of harmonic
superspaces. The effective Coulomb low-energy action for D =35 includes the free and
Chern—Simons terms. We consider also the non-Abelian superfield D = 5 Chern—Simons
action. The biharmonic D = 3, % = 8 superspace is introduced for a description of / and r
supermultiplets and the mirror symmetry. The D = 2,(4,4).gauge theory and hypermultiplet
interactions are considered in the triharmonic superspace. Constraints for D = 1, N = 8 su-
permultiplets are solved with the help of the SU(2) x Spin(5) harmonics. Effective gauge ac-
tions in the D < 3, %V = 8 superspaces contain constrained (harmonic) superpotentials satis-
fying the {6 — D) Laplace equations for the gauge group U(1) or corresponding (6 — D)p-di-
mensional equations for the groups [U(1)}’. Generalized harmonic representations of
superpotentials connect equivalent superfield structures of these theories in the full and ana-
lytic superspaces. The harmonic approach simplifies the proofs of non-renormalization
theorems.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1 Introduction

The harmonic superspace (HS) has firstly been introduced for the off-shell description of
matter, gauge and supergravity superfield theories with the manifest D=4, N,=2 super-
symmetry [1, 2. The SU(2)/U(1) harmonics uf and corresponding harmonic derivatives
0*+, 0~ and 0° are used for the consistent solution of the superfield constraints in the
N,4=2 superspace. The basic relations for the harmonics are

[0**,07"1=03", [0°,0**] = £20**, (1.1)
o =0, 8% ur —uf, Ouf = duf (12)
" u; =0, 8 uf=r;. (1.3)

The HS approach has also been applied to consistently describe hypermultiplets and
vector multiplet in D=6, N;=1 supersymmetry [3, 4]. It is convenient to use the total
number of supercharges A for the classification of all these models in different dimensions
D instead of the number of spinor representations for supercharges Np. Let us review
briefly the basic aspects of the D=6, A/'=8 harmonic gauge theory. The harmonics uf are
used to construct the analytic 6D coordinates (=(54p, #%*+) and the additional spinor
coordinate §%~, where a, B, p... are the 4-spinor indices of the (1,0) representation of
the Spin(5,1) group and 8¥*=u¥#*®. The harmonized spinor derivatives and harmonic
derivatives have the following form in these coordinates:

D =04, Dg=-0- 07 8oy (1.4)
D** = 3% 4 %0‘”0“5,,7 +0%H3 (1.5)
D=0+ %oa-o‘r-éw, +0%°8 (1.6)

where 5&7 = §/0z*7.

The Grassmann analyticity condition in HS is D} w=0. Superfield constraints of
D=6 SYM in the ordinary superspace (central basis or CB) are equivalent to the inte-
grability conditions preserving this analyticity. The Yang-Mills prepotential V*+*({,u) in
the analytic basis (AB) describes the 6D vector multiplet (Aap, A, X*) and possesses
the gauge transformation with the analytic matrix parameter A((,u)

SVH = DM A4 [VH ] = VA (L7

The action of the D=6 SY M theory has the form of integral over the full superspace

3]
TrV*(z,uy) ...V (z,u,)

(ufuf)... (ufuf)
where g, is the coupling constant of dimension d=1 and (u}u})~? is the harmonic distri-
bution [2]. :

The gauge variation of this action

SV = iz 3 (—“i—L/d‘*zd“odul ... du,

9s n=1

(1.8)

1
SV =< [ aute vray=- = —517 [ #sdsautern=v =0 (19)
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vanishes due to the an'alyticityvof the parameter and prepotential. We have used here the
harmonic zero-curvature equation

DYV — D=V* 4 [V V=] =0, (1.10)

where V=~ is the connection for the harmonic derivative D=~. Note that reality conditions
for the harmonic connections include the special conjugation of harmonics preserving the

U(1)-charges [1}

uf = ut | (VE)T =y (1.11)

The physical fields of the hypermultiplet f* and 1o and the infinite number of auxil-
iary fields are components of the analytic 6D superfield q*(¢,u). The interaction of the
hypermultiplet and gauge field can be written in the analytic superspace

S(¢*, V) = [de0dugt (D 4 Vgt , (1.12)

where d(C-*'=d’% ,(D~)* is the analytic measure in HS.

Universality of harmonic superspaces is connected with the possibility of constructing
N'=8 modelsin D<6 by a dimensional reduction. The HS analysis of the D=4 low-energy
effective actions has been considered for the gauge superfields [7] and for the hypermul-
tiplets [8]. The manifestly supersymmetric calculations in H.S are in a good agreement
with the basic ideas of the Seiberg-Witten theory [6], however, the HS geometry allows
us to rewrite the chiral-superspace Coulomb action as the integral in the full superspace

i / ded9F(W) + c.c. = / ded9duVV[F(W) + ccl] (1.13)

where F(W)=—iW~2F(W) is the holomorphic part of the superpotential in this represen-
tation. It should be stressed that the Lagrange density in the full superspace is not gauge-
invariant in contrast to the chiral density. The superpotential f(W, W)=[F(W)+ c.c]is
the most general solution of the constraints

DID:f(W,V_V)zo - ngwf(W;W)=0a (1'14)

which follow from the gauge invariance. Representations of the action in the full, analytic
and chiral superspaces are important for the HS interpretation of the electric-magnetic
duality [9].

The holomorphic action can be reduced to lower dimensions, however, this reduction
does not produce the general effective action. The AM=8 supersymmetries have some
specific features for each dimension based on differences in the structure of Lorentz groups
Lp, maximum automorphism groups R, and the set of central charges Z,. The main
result of this work is a construction of the Coulomb effective actions for the dimensions
D=1,2,3 and 5 in the full A'=8 superspace

Sp = /d"x &0 du VYV fo(W) (1.15)
where fr(W) is the superpotential and W is the constrained (6—D)-component superfield

strength for the U(1) gauge prepotential V**. The gauge invariance of this action implies
the (6—D)-dimensional Laplace equation for the general superpotential

ALfr(W)=0, (1.16)
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which generalizes the 2D-Laplace equation (1.13). The (6—D)-harmonic solutions of this
equation can be used for a description of non-perturbative solutions in the N'=8 gauge
theories. We discuss harmonic-integral representations of the D<3 superpotentials which
allow us to construct the equivalent analytic-superspace representations of Sp. .

It should be remarked that the function f, determines o-model structures and inter-
actions of the (6—D)-dimensional scalar field with fermion and vector fields.

Renormalization theorems in this approach are connected with the Rp-invariant solu-
tions of Eq.(1.16)

FHwp) =g  + kouwl™, D #4, (1.17)

where the invariant superfield w, can be interpreted as a length in the (6—D)-moduli
space, and gp and k,, are coupling constants.

The effective actions of the [/(1)]P gauge theories are considered also by these methods.
The matrix superpotentials of these theories satisfy the (6—D)p-dimensional Laplace-
type equations. It is interesting that rich harmonic structures of moduli spaces for the
D<3, N'=8 theories arising in connection with the equations for superpotentials generalize
naturally the original SU(2)-harmonic structure of the D>4, A'=8 theories.

Sect.2 is devoted to the 5-dimensional H.S theories. The effective action of the D=5
Abelian theory contains the free term and the cubic Chern-Simons term. We also construct
the non-Abelian superfield Chern-Simons term.

In Sect.3, we consider the biharmonic superspace (BHS) using harmonics of the au-
tomorphism group SU;(2)xSU,(2) in the D=3, N'=8 models. The l-analytic gauge pre-
potentials and hypermultiplets have their mirror partners in the r-analytic superspace.

The D=2, (4,4) models in the triharmonic SU,(2) x SUi(2) x SU, (2) superspace (T HS)
[29, 30, 31] are discussed in Sect.4. We underline the importance of the (4,4) gauge theory
and derive the formula for the effective action in the full superspace, which is equivalent
to the action in the ri-analytic superspace.

An adequate superfield description of the D=1, A'=8 theories requires the use of har-
monics for the automorphism group R, = SU.(2)x Spin(5). We define the corresponding
BHS gauge and hypermultiplet models in Sect.5.

Problems of the N'=8 gauge theories have earlier been discussed in the framework
of the component-field formalism or the formalism with N'=4, D=1,2,3 superfields (see
e.g.[l11, 13, 34, 39]). In particular, the (6—D) Laplace equations have been considered
in the N'=4 superfield formalism of the N'=8 gauge theories and in the formalism of the
corresponding g-models. Nevertheless, it should be stressed that the manifestly covariant
HS approach provides the most adequate and universal methods to solve the problems
of the A'=8 theories in all dimensions. A short discussion of these ideas has also been
presented in [10].

2 Five-dimensional harmonic gauge theories

Let us consider firstly the harmonic superspace with the D=5, A=8 supersymmetry.
The general five-dimensional superspace has the coordinates z=(z™, 0%), where m and
a are the 5-vector and 4-spinor indices of the Lorentz group L,=S0(4,1), respectively,
and ¢ is the 2-spinor index of the automorphism group R,=SU(2). The spinors of L, are
equivalent to the pair of the SL(2,C) spinors: ¥@=(y*, ¥%).



The invariant symplectic matrices ap and % can be constructed in terms of the
SL(2,C) e-symbols

0

Eap

fap= (% ). tep=eg. (2.1)

These matrices connect spinors with low and upper indices.

T‘he antisymmetric traceless representation of the Imatrices contains the 40 Weyl
matrices d,, and &-symbols

0 (om)as i€ 0
Tr —_ aff — af
Crlag = ( _grype @), waag= (5" 5, ) €
The corresponding representation of the 50 Clifford algebra has the following form:
(Tm)ag(Ta)?Y + (Ta) g Cm)PT = 2262 71ma , (2.3)

where (['n)P7 = QﬁPQ'V”(F,.)pg and 7my is the metric of the (4,1) space.
The 5-vector projector in the spinor space is

a 1 n 1 1
(W)pd = 7(T™)* (Cm)po = 5(6585 ~ 6563) + ;0007 . (24)

Consider also the relations between the antisymmetric 4-spinor symbol £ and the
matrices ? and T

_ 1 ‘ 1
Eapur = QapQuv + QapQp + QavQpp = _E(Fm)ap(rm)ﬂll + EQapQ/,w - (2.5)

It is convenient to use the bispinor representation of the 5D coordinates and partial
derivatives )

m 1 m
Iap = E(Fm)apz ) aap = ‘2—(F )ap(?m . (26)

The C-conjugation rules for the Spin(4,1) objects are similar to the corresponding
rules for (1,0) spinors in the 6D space

- Y *
0 =euaCq(O]) =07, (CHG=-65, (2.7)
Qap = —Qap TP = 2P gap = —0ap - (2.8)

The basic relations between the spinor derivatives of the D=5, A'=8 superspace have
the following form:

. 1
{Da 3 ny} = 1.6”(6(17 + 59&72) N (29)
where Z is the real central charge. We shall consider the basic superspace with Z=0

and introduce the central charges via the interaction of gauge superfields satisfying the
constraints

- .
{V&, Vh} =i¥(Vay + 5 W), (2.10)
where W is the real superfield.

-

The spinor SU(2)/U(1) harmonics u¥ can be used to construct the Rs-invariant HS
coordinates (=(z™, 0%*), 0%, spinor derivatives D% and harmonic derivatives by anal-
ogy with Egs.(1.4-1.6) '

Dy =08%, Dg=—05—i0" 0y, (2.11)
D** = 8% + %0°+07+aa7 +0%+aY (2.12)
We shall use the following notation for degrees of the spinor derivatives:
1
DD = 2D D%, DG = (LG5 D505 (2.13)
DY = pEp¥Y | D) = opH piE) (2.14)
and the important identities

pHIDEN =0,  DEPDED = —2)ay,pe DY, (2.15)

DY p--p--pH = _25™a,, DY (2.16)

The analytic Abelian prepatential V*+*((,u) describes the 5D vector supermultiplet.
In the WZ-gauge, this harmonic superfield contains the real scalar ﬁeld ®, the Maxwell
field Am, the isodoublet of spinors A and the auxiliary isotriplet Xk

Vit =i0099(z,) + O Aq,(z,)
+OUDPHuT N (2,4) + i[OI up uy XM (24) (2.17)

where

o4 = 20940, @I = (IL)EOR 40" . (2.18)

The real superfield strength of this theory can be written in terms of the harmonic
connection V-"(V**) (see Egs. (1.10) and (2.29))

W = —2p¥y-- (2.19)

This superfield satisfies the following constraints:
VHW =D"W + [V W]=0, (2.20)
DEIW =0. (2.21)

The Abelian superfield W does not depend on harmonics.

The 5D SYM action has the universal form (1.8) in the full harmonic superspace.
The SYM equations have the vacuum Abelian solution v++=1002 7 where 7 is the
linear combination of the Cartan generators of the gauge group ( see the analogous D=4
solution in ref.[8]). This vacuum solution spontaneously breaks the gauge symmetry, but
it conserves the D=5 supersymmetry with the central charge and produces BPS masses
of the Z-charged fields.

Chiral superspaces are not Lorentz-covariant in the case D=5, so onc can usc the
full and analytic superspaces only. It is readily to construct the most general low-encrgy
cffective U(1)-gauge action in the full A'=8 harmonic superspace

S, = / Erd0du VVV-gt + kW], (2.22)
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where g, is the coupling constant of dimension 1/2, and k is the dimensionless constant of

the 5D Chern-Simons intera(:tion The li p i g,
- € lmear superpotential =q-? + Wi 1
‘e straints f5 A Aks Is a SOluthIl

o D*f=0, DR =0, (2:23)
which arise from the gauge invariance of S.

Note that the R, invariance of the effecti i ‘
; ective action can be broken b -3
term in the analytic superspace e by the Fayet Tiopouls

Spr = / d(9dy gFuFutys (2.24)
which implies also the spontaneous breaking of supersymmetry.

The gauge-invariant Chern-Simons term fo i
Thy r the group [U(1)}? i
cubic interactions of the Abelian superfields V#+ greup (VAP contains the folloving

/ E2d*0du koo VHVo W, | (2.25)
where kycp, are coupling constants and B, ¢, p=1.. .p

It is not difficult to construct the non-Abelian

b dif 5D Chern-Si ' 2 i
from the following formula of its variation e tem'l s sfarting

653 = ks [ d0du Te6v++[y--, play—)
=k / d¢du Tr V++ DAY - pledy—-) | C (2.26)
which guarantees the gauge invariance taking into account Egs. (1.7,1.10,2.20) and (2.21)

555, = &, / N du TeADHI DAY == gy--]

=k / d(Odu TeADHO[DUDY =~ p—-yae) _ g (2.27)

The non-polynomial formula for Ses

| can be written as an i ili
vasiabi n integral over the auxiliary

1
Si =k, / ds / dod0du Te VH[V==(sV++), DDy ~—(gpey] (2.28)
[¢]

where the perturbative solution for V-~ (5] is used

V=o(sVH) = 3 -8 [ du VH(%”:)-;.V” 2, Un
(s = 3¢ )" [ du,...du, (u+u,+>...(u¢,f+) )| 229)

The next-to-leading order effective Abelian 5D action can be written

manifestly gauge invariant function H(W). i ferms of the

3 Three-dimensional biharmonic superspace

Three-dimensional supersymmetric gauge theories have been intensively studied in the
framework of new nonperturbative methods [13, 14, 15). Superfield description of the
simplest D=3, NM=2,4 theories and various applications have earlier been discussed in
refs. [16]-[20). Three-dimensional harmonic superspaces were considered in refs.[21, 22].
The most interesting features of the D=3 theories are connected with the Chern-Simons
terms for gauge fields and also with the mirror symmetry between vector multiplets and
hypermultiplets.

The D=3, N'=8 gauge theory can be constructed in the superspace with the automor-
phism group R,=SUj(2)xSU,(2). Coordinates of the corresponding general superspace
are z=(z%?, §%). We use here the two-component indices @, ... for the space-time
group SL(2, R), i, k... for the group SUi(2) and a, &... for SU,(2), respectively.

The relations between basic spinor derivatives are

{DE, DB} = ie¥e®8up + icHeapZ® (3.1)

o
where 0,3=0/0z°f and Z° are the central charges which commute with all generators
exept for the generators of SU,(2). These central charges can be interpreted as covariantly
constant Abelian gauge superfields by analogy with (8].
The superfield constraints of the A’=8 SY' M theory in the central basis can be written
as follows:
{VE, VR = ie¥e® Vg + icape® W (3.2)
where V,, are covariant derivatives with superfield connections and W* is the constrained
superfield of the SY'M theory (I-vector supermultiplet)

VEW 4+ VEWS + VEW =0. (3.3)
Note that gauge transformations in C'B have the standard form
§VE =Ir(2), Ve, oWt =[r(z), W] (3-4)

It is evident that one can consider the mirror r-versions of superfieild constraints for the
vector multiplet and hypermultiplets. We shall define the biharmonic superspace which
has simple properties with respect to the exchange ! ++ r. The mirror symmetry connects
{-vector multiplets with r-hypermultiplets and vice versa. :

Let us consider the I-harmonics uf = u{*** of the group SU;(2) and the analogous
r-harmonics v{*" of the group SU.(2). The notation of charges in BHS is (q,,4,),
but one can use also the notation with the one charge for the I-harmonic superspace,
for instance, Df*. The spinor and harmonic derivatives have the following form in the

l-analytic coordinates ¢;=(z*,6°+) and 62~:

DY =uf D2 =8, DY =u;D¥® =8 +i6%0l,, (3.5)
Dt = 9f* — S04 6P™ 0y + 0¥ Ot ‘ (3.6)
The following relations will be used in this section: ;
{D3t, D} = ~ie®d,, [D, DX¥)=D%, (3.7
1 1
DD = §D:°Du+,, , Dt = 5D“"’+D,';+ , (3.8)
DEPDOD =0, DUYPDED = (€acksa + €octaa)( D) . (3.9)
7



The I-harmonic superspace is adequate to the solution of the constraints (3.2)

uruf{Vie, VP = {Vit, Vi) =0, (3.10)
Vit = g7 (z,u)Detg(z,u) , (3.11)

where g(z,u) is the bridge matrix [1]. The l-analytic prepotential of the SY M theory is
YR EVEI = (DM, DY =0, (312)
bg=Ag—gr. (3.13)
The components of this superfield can be determined in the W Z gauge
(V" )wz = 070, @as(z1) + 072405 Aap(z1)
OG5 O] ug A () + 8(0% ) upuy X (z) (3.14)

The superfield strength of the D=3, N'=8 gauge theory in the analytic basis contains
the corresponding harmonic connection V;™~(V;**)

We = —ipetry - | (3.15)
SWeb =[x, W, DHWe L[V, W =0. (3.16)
It satisfies the following constraints:
DerWhe 4 D W 4 DSt =0, (3.17)
DiPWh =0, (3.18)

which are equivalent to the C B-constraints (3.3).
The superfield W? does not depend on harmonics in the gauge group U(1). The
vacuum Abelian solution of the SY M theory

vt =igeetoit 7, (3.19)

is covariant with respect to the supersymmetry with central charges Z,; by analogy with
the case D=4 [8].

The l-analytic hypermultiplet ¢+ = ¢©*® has the standard minimal interaction with
Vitt = V&9 (see (1.12)). By analogy with refs.3, 8], one can construct the free HS
propagator for this superfield in the covariantly constant background (3.19)

H{gH(DIT @) = — (DD 6" (z, — z,)

57 (3.20)

(wfuf)®’
where 0% = 6""&,;3 + Z°0Z4 and D**v = v**. The manifestly supersymmetric pertur-
bation theory is the important advantage of the HS approach.

One can consider also the alternative version of I-hypermultiplet w; and I-linear mul-
tiplet L, D3 [39)=(,

The low-energy U(1) effective action can be expressed in terms of the superpotential
f(W=¥) which does not depend on u*

S, = / Fzd0du ViV, f(We) . - (32

8

™

The gauge invariance p'roduces the following constraint :
58, = —2 / Prd0durD Vi f,(W™)
~ / P(D7) dudd PV DD f (W) =0, (3.22)

where the analyticity of V,** and relations (1.10) and d*6=(D~)*(D*)* are used.
This constraint on the superpotential is equivalent to the 3D Laplace equation

a 0

Yy v aby _ .
sV =0 (3.23)

D(;t;)f:(wub) =0 -
The general superpotential breaks the SU,(2) invariance. The Rj-invariant superpo-
tential has the following form:

Hws) =gt + kwlt, wy = WeEWL (3.24)

where g, is the coupling constant of dimension d= — 1/2, and %, is the dimensionless
constant of the =8 W ZNW-type interaction of the vector multiplet. This superpoten-
tial is singular at the point- Z,;=0 of the moduli space. The field model is well defined
in the shifted variables W.,,,:Wa,, — Z,, for nonvanishing central charges. 1t should be
remarked that the superfield interactions of the 3D-vector multiplets with dimensionless
constants (Chern-Simons terms) have earlier been constructed for the case N=4[18] and
N=6[20, 21).

The general solution of Eq.(3.23) can be written in the harmonic-twistor representation
AW = [doR[WeD, ofa0], WOD = ol 0w, (3.25)

where F, is an arbitrary function with ¢=(0,0), and W©? is the r-harmonic projection
of the basic superfield. The proof is based on the following r-harmonic representation of
the Laplace operator:

a o a B 8 2 .
Co e Wy OWeg WO GW oD (5ee) (3:26)
Eac = v(ﬂo,l)v(u,—l) o Uiu'l)’()(u'_l) i (327)

This solution is a covariant form of the well-known integral representation of the 3D-
harmonic functions [22].
Let us introduce the following definitions and relations for the spinor derivatives in

the biharmonic superspace:

Dgﬂ'ﬂ) — u&il,n)v‘(zo,il)D:;a s D(iz,ii) — [)(1!.11)« l)ﬁ,ﬂ'*l) . (32(\)
[D;iz'o),fol'ﬂ)] —_— Dgﬂ’ﬂ) , [Df_o'*z),DS,ﬂ':n)] — l)i‘il,il) , (32())
[Dgiz,o), DS;“':“)] — [Ds_o.-_t?)’DLﬂ.il)] =0 , (3.30)
DD = Pl [an=s | DD = Pt [y-2a (3.31)

The constrainté((3.17) arc cquivalent to the following conditions in 1311S5:
DEIWed =0,  DEIWED =0. (3.32)



By analogy with the D=4 analytic linear multiplet L*+ ,(D*+L*++=0) we shall call this
3D representation the r-linear multiplet. These restrictions on W* are evident in the
BHS representation

woe — _iD(z_z)Vl(—z,o) - _i/duD(—z.z)Vl(M) . (3,33)
Consider the r-harmonic decomposition of the full spinor measure
&6 = DI pes | (3.34)

Using this decomposition and Eqs.(3.21,3.25) and (3.33) we can construct an equivalent
form of the effective action in the r-analytic superspace

S, = / PzDO I WO R WD, poi) (3.35)

It should be underlined that this action with the gauge-invariant analytic Lagrangian can
be generalized to the case of non-Abelian SY M theory.

Let us consider now the set of l-analytic prepotentials V% in the [U(1)]" gauge
theory and the corresponding r-analytic superfields Wea(V3), The effective action of
this theory in the r-analytic superspace is

14
ST = [ EaDOdy 3 WEIWOIF WS, wos] (3.36)

B,c=1

where Fic are real ¢=(0,0) functions of the superfields W{*¥, ... W% and v-harmonics.
The corresponding effective action in the full superspace contains the matrix superpoten-
tial of the [U(1)]P gauge theory

P
sr=y / Pz d9 dudv VEOVS £ (W, .. Wb | (3.37)
B,c=1
2 (Wi, Wity = [ s wem, ves) (3.38)

It is evident in the v-integral representation that this superpotential satisfies the following
conditions: -

a 5}

W W pe =0, (3.39)
DR fe =0, (3.40)

These conditions guarantee the gauge invariance of S? in the full superspace.
The r-forms of the hypermultiplet constraints have been discussed in ref. [22]. Consider
the superfield constraints for these hypermultiplets in the framework of BHS

DE e — g groM = (g©, gy, ) (3.41).
Dgxﬂ'l)“’r =0, DI(*M)(“’H q:(o,x)) =0, (3.42)

where D{**® are the I-harmonic derivatives.
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These hypermultiplets are dual to each other and also to the r-linear analytic multiplet
qa(n,l) — ,Uu.(o,l)wr + va(o,—l)L(o,z) . (343)
r
The duality relation between the w, and r-linear multiplet is described by the action

/ Pz DO du{w, [DO LOD] + FOO[LOD, y®2]} | (3.44)

where F(®* is an arbitrary r-analytic function.

It is clear that the [-analytic hypermultiplets q,(l'o) and w; are dual to the alternative
r-version of the vector multiplet which can be described by the r-analytic prepotential
Vo, *

4 Two-dimensional (4,4) harmonic superspaces

The two-dimensional (4,4) and (4,0) o-models have been discussed in the field-component
formalism and in the framework of the ordinary or harmonic superspaces [24]-[33]. The
(4,4) gauge theory has been considered in the component formalism and in the (2,2)
superspace [34, 35, 36]. We shall study the geometry of this theory in the manifestly
covariant harmonic formalism which is convenient for the superfield quantum calculations.

The maximum automorphism group of the (4,4) superspace is SO;(4) xS0, (4); how-
ever, we shall mainly use the group R,=SU.(2)xSUi(2)xSU,(2). Let us choose the left
and right coordinates in the (4,4) superspace

2= (y1 aiu) > Zr = (ga éia) ) (4'1)

where y = (1/v/2)(t + z) and § = (1//2)(t — z) are the light-cone 2D coordinates; and
the following types of 2-spinor indices are used: i,k,... for SU:(2); a,f... for SUI(2)
and a,b... for SU,(2), respectively. The SO(1,1) weights of coordinates are (1, 1/2) for
z1 and (—1, —1/2) for z,. The algebra of spinor derivatives in this superspace

{Dras Dig} = ieni€apdy , (4.2)
{Dklu le} = ieklsubay 9 (4.3)

{Diar D} = t€11 2 l (4.4)

contains the central charges Za.
The C B-geometry of the (4,4) SY M theory is described by the superfield constraints

{Vka» Vig} = tepi€asVy , (4.5)
{Via, Vo } = tepeaVy (4.6)
{Viar Vi } = ictuWos ; (4.7)

where V=D, + A, is the covariant derivative for the corresponding coordinate. The
gauge-covariant superfield W, satisfies the constraints of the (4,4) vector multiplet which
are equivalent to the constraints of the so-called twisted multiplet 24, 28].

The authors of refs.[30, 31, 32] have discussed three types of harmonics: uf=u{*"""
for SU.(2)/U.(1) ; &% for SUI(2)/Ui(1); and r°*V for SU,(2)/U.(1). We use the

1



notation with 3 charges in the triharmonic superspace (T HS) and the standard notation
in the c-harmonic superspace. The basic geometric structures of the gauge theory are
mainly connected with the c-harmonics u¥ and the corresponding analytic coordinates
¢e=(ye, 0a+), 6°~ and {=(g, 9a+)) 6.

The c-harmonized spinor derivatives and harmonic derivatives have the following form
in the superspace with vanishing central charges:

D =at, Dy = -9, —i679; , (4.8)
Df=0f, D;=-0;-i6;0:, ' (4.9)
Dt =9 + %0“0:&; + %5”6}5; +6°taF 4+ 6°tor . (4.10)

The basic combinations of the spinor dérivatives are
(Di)2=D:taD‘:f , (Di)zzbnibf , (Di)«i:(Di)Z(Di)Z . (4.11)

The c-harmonic projections of the constraints (4.5-4.7) are equivalent to the integra-
bility conditions of the c-analyticity by analogy with the D>3, A'=8 theories

(V5 VY ={Vi, Vi = {VL,Vi} =0, (4.12)
where Vi = u}Vi and V} = u} Vi,
The prepotential of the (4,4) gauge theory in this version of HS is the c-analytic

harmonic connection V4*((. ,{., u) = V*°? which determines the second harmonic
connection V7~ = V{*°9). The WZ gauge for this prepotential has the following form:

(VC++)wz = 00+0—b+q>0b(yc ,yc) + (0+)2A(yc 7:‘70) + (6+)2A(yc ,gc)
+(01)20 ui X (ye , e) + (0F)20%ui Molye , ) + (0%)(04) up vy XH(ye , ) (4.13)

where the components of the 2D vector multiplet are defined.
The gauge-covariant superfield strength can be constructed by analogy with D=3

Was = (Gm)ame = —iD:D;_Vc_- (414)

where (6™)qs are the Weyl matrices for SUj(2)x SU,(2) and Wi, is the 4-vector represen-
tation of this superfield. )
In the Abelian case, the constraints for this superfield are

_ 1
D:pr = %EapD+prb ) DIWﬂb = EEEBD+CWGC ) (415)
D¥*Wa =0, (DY) ’Wa= (D)W =0. (4.16)

The universal harmonic construction of the U(1) effective action with 8 supercharges
has the following form in the case D=2:

Sy = [ @20V V i (Wa), (DYPL(Wn) = (D L(Wa) =0, (417)

where *z = dtdz = dydy.

12

A L“""\."‘_

The general (4,4) superpotenti'a.l satisfies the 4D Laplace equation

w ' w a 2
Aq fz(Wm) =-O ’ Aq = (m) . (418)
The 4D Laplace equation in the (4,4) o-models has been discussed, for instance, in refs.[27,
33).
The R,-invariant (4,4) superpotential is

FRw) = g7 + Rw? o w, = [ WerlW,, . (4.19)

An analogous function has been considered in the derivation of the R,-invariant (2,2)
Kahler potential of the D=2,(4,4) gauge theory [35]. Note that the Kahler potential of
the (2,2) formalism is gauge-invariant by definition, and the 4D Laplace equation arises
in this approach from the restrictions of the (4,4) supersymmetry; while in our (4,4)
formulation the analogous condition on the (4,4) superpotential (4.18) follows from the
gauge invariance. The manifestly (4,4) covariant formalism of the harmonic gauge theory
simplifies the proof of the non-renormalization theorem.

The c-analytic (4,4) hypermiltiplets ¢} and w, have the minimal interactions with
V*. The corresponding HS Feynmann rules can be formulated by analogy with ref. [2].
The (4,4) HS methods can be useful in the analysis of the vector-hypermultiplet Matrix
models with (8,8) supersymmetry.

The THS projections of the 2D spinor derivatives are

DAL — o (£1.00)(041.0) pyai DO — o (£1.00)000.41) i (4.20)
The rl-version of the c-vector multiplet (4.14) has the following form:
WO = 1o pieny(-200 _ -—i/duD“’""”D(""’"’Vc“""“’ . (4.21)
This superfield satisfies the conditions of the rl-analyticity
DHaIWeIn =g pEeDe = g (4.22)
and the harmonic conditions
DFEOW LN = eI - peeapyenn — g C(4.23)

which are analogous to the constraints on the ¢ superfield of ref.[30] (this notation
does not indicate the U.(1) charge). Note that the vector multiplet (4.21) contains the
2D vector field instead of the auxiliary scalar component in the superficld ¢

Let us consider the rl-analytic coordinates

(= (ylyo(ﬂ.x,o)) s glE1E10) ugﬂ,o,o)lg).tl,o)gia , (1.24)
w=y+ %[0(1,_1,0)0(—1,1,0) _ 0(_1,_1,0)0(1,1,0)] , (1.25)
Er — (gr,ﬁ(il,u,l)) , 0(11,0,11) = ugtl,u,o)rio,o.il)o‘iu , (126)
yr=y+ %[0(1,0,—1)6(—1,0,1) . 0"(—1,0,—1)0(1,0,1)] . (1'27)
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The spinor and harmonic derivatives have the following form in these coordinates:
D(tl.l,o) = ia(tm,o) , D(tx.—:,o) = :Fa(tl.-x.u) + io_(tl,—l,o)?; , (4.28)
D(tl,ﬂ.l) — :ta(tl.o,l) , D(tm,-x) — :Fa(tl.o.—l) + io(tl.-l,a)a; , (429)
_D}o,z,o) — a;o,z,o) + 1-0(1,1,0)0(_—1.1,0)6; + 0(1.1.0)6(—1,1,0) + 0(—l.1,o)a(1,1,o) , (430)
A0 (=101 5T 4 A(1,0.1) 5(~1,01) 4 H(=1,0,1) 51,01}
Ds‘a,o,z) — a,(‘o,o,z) + 10(101)0( ““)ay + 0 1,0,1 a 1,0,1 + 0 a R (431)

The c-analytic coordinates in the THS notation are

(c — (yc’ o(l,tl,o)) , Ye=19 + %[9(-1,1.0)9(1,4,0) + 0(1,1.0)0(—:,—1,0)] , (432)

z — (!] é(l,o,tl)) =17+ _i_[g(—x,o,x)g(n.o,-x) +5("°"’é("'°"‘)] . (4.33)
c = <y ’ ¢ 9

It is important that all coordinates (., C., ¢ and {; are separately real with respect to the
corresponding conjugation. ) '
The solution of the 4D Laplace equation (4.18) has the simple harmonic representation

F:(Waa) = / didr B{W®, 1, 1], (4.34)

where F, is the real function and WD = [19p0eM e (4.21). The proof is based on
the THS decomposition of the 4D Laplace operator
a 0 0 0 7} 0
AW W,y QWD gWO—1-1 — WL gWe=1n |
Note that the formal change of the density in (4.34)
E[Wew 1 7] — FWerD, wes | r] (4.36)

does not produce more general superpotentials. This can be easily shown for the polyno-
mial solutions of Eq.(4.18).
Consider the THS decomposition of the Grassmann measure
&40 = Do-2-D pean : (4.37)
D(o,tz,tz) - D(l,tl,o)D(-l,tl‘D)D(l,D,tl)D(—l,o,tl) . (438)

(4.35)

Using this decomposition and Egs.(4.17,4.21) one can obtain the following equivalent
representation of the effective (4,4) action in the rl-analytic superspace:

S, = / dldr e DO~ [WESIRE WD, 1, 7] (4.39)

One can construct the effective (4,4) action for the gauge group [U/(1)? in the rl-
analytic and full superspaces by analogy with the case D=3 (3.36,3.37).

An analogous action of the ¢&" multiplet and dual superfields w(*¥) has been con-
sidered in refs.[30, 31, 32}. The relation between the c-analytic gauge superfield and
rl-analytic hypermultiplets is a specific manifestation of the 2D mirror symmetry [34].

The triharmonic superspace is convenient for the classification of the (4,4) supermulti-
plets. Let us consider, for instance, the cr-analytic superfield QU((e, Cr, u, 7) satisfying
the subsidiary harmonic conditions

D(Z,0,0)Q(l,o,l) — 0 D(o,o,z) Q(l,o,l)r = 0 , . (4'40)
c cr ? L4 cr

where the analytic coordinates (4.32) and (4.27) are used. The cl-analytic superfield
Q% (Le, Cryu, 1) can be defined analogously.
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5 One-dimensional harmonic superspaces

The one-dimensional o-models have been considered in the component formalism and also
in the framework of the superspaces with A’'=1,2 and 4 [36, 37, 38]. Recently, the N'=4
superspace has been used also for the proof of the non-renormalization theorem in the
N=8 gauge theory [39].

We shall consider the D=1, AM'=8 superspace which is based on the maximum auto-
morphism group R,=SU.(2)xSpin(5) and has coordinates z=(¢, 0%) ( i,k,!... are the
2-spinor indices and a, 3, p... are the 4-spinor indices of the group Spin(5)=USp(4)).
The algebra of spinor derivatives is *

{D§, D} = ie"Qapd: + ic¥ Zap (5.1)

where Zqap are central charges.
Conjugation rules in the group Spin(5) differ from the corresponding rules in Spin(4,1)
(2.8) .
0 =0y, Qap=-0%, Zap=2%. (5.2)

The C B-geometric superfield constraints of the A/'=8 SY M theory are
{VE: Vi} = ie"0ap(8: + Ar) + ie¥Wayp , (5.3)

where a traceless bispinor superfield representation of the 1D vector multiplet W p(2) is

defined.
+

The harmonics uf can be used for a construction of the D=1 c-analytic coordinates

(cz(tm 9+a) .
to=1t+ %0,‘39,au*+u‘- . 0t = ytpte (5.4)

The algebra of the c-harmonized 1D spinor derivatives resembles the corresponding
algebra of the 5D derivatives (2.13-2.15) with Spin(5) indices instead of the Spin(4,1)
indices. In the case of vanishing central charges we have

Di=2%, Da = —0y+i030¢ , (5.5)
DIt =9t — SO 04 4 0740 . o (56)

The constraints (5.3) correspond to the integrability conditions of the c-analyticity
(V&V} =0,  Vi=ulVi. (5.7)

The c-analytic prepotential V.**({., u) describes the 1D vector multiplet and contains also
the pure gauge one-dimensional field A

(Vi wz = OFDA(L,) + 0D B4 5 2,)
+OUIX UL AG () + i[O Pupur XM (L), (58)

where the notation (2.18) is used. Of course, one can use the subsidiary gauge condition
A(t.)=0. '
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The AB-superfield strength of the corresponding harmonic gauge theory is the 5-vector
Wi with respect to Spin(5)

. 1 . — -
Wap = -Q-(Fm)ame — —zDg;)V , QaPWap =0, (5.9)

where the T' matrices of Spin(5) are introduced. )
The constraints for this superfield have the following form:

2 2 +0 l +0
D&Wﬂ,r = BQQﬂD+UW07 — EQa—rD Wo.ﬂ + Snﬁ,rD Woa (510)
DHDWap =0, VHWap=0. (5.11)

In the Abelian gauge group, the superfield Wap does not depend on ha.rmoni.cs, and
four components of this superfield W3, Wi, Was, W4 satisfy the conditions of different
twisted chiralities, e.g.

Df: W13 = D§W13 = 0 3 D:I*:W“ = DfW“ = 0 . (512)
The D=1 low-energy cffective action has the following universal form:
S, = / dtd*0du VIV fi(Wn) - (5.13)

The gauge invariance of 5, is equivalent to the 5D Laplace equation for the superpo-

tential

DU [ (W) =0 = AYfi(Wm)=0. (5.14)
The R,-invariant D=1 superpot.ential is
fHw) = g;z + klwl-3 , w, = (WPUWpU)l/Z . (5.15)

Note that the same function determines the Kahler potential of the D=1 gauge theory in
the N'=4 superfield formalism [39].

The c-analytic hypermultiplets g* (¢, u) and we((e, u) can be introduc'e(% by z.a,na.logy
with HS of higher dimensions. These superfields have the R,-invariant minimal interac-
tions with the prepotential V. )

Let us introduce now the biharmonic 1D-superspace using the SU(2) ha.rmo‘mcs
w9 =y and harmonics o8&, y§"* of the group USp(4) [40]. The basic relations

for the v-harmonics are

Qang'°'°>v§;’~~"'°> =g (5.16)
Qapvg.o.a)vg.o,—w =6, (5.17)
Q"Pv‘(;""“’vf,;"“"” =0. (5.18)

where a,b = *1 and 6, is the Kronecker symbol. These harmonics determine the 8-
dimensional coset space Hg=USp(4)/U(1)xU(1). .
The harmonic derivatives D©®#29, D%+ and D{*!#) are defined in ref.[40]

DOANHETD = yE) Dslo.o.iz)vg.om) =y | . (5.19)
Dﬁ,"'*""’vg'*""’ _ Dgo‘ij_n)v(ao,a.i:l) — Ds}a,o,i?)vg,il.o) — DLD.D.&?)U&).O,;H) =0, (5.20)

» 0,£1,0) _
Ds,o_ﬂ,i;)vg,o,;x) - v((;,tl,o) DE,o'ﬂ'ﬂ)U(ao'a’ﬂ) — DEJU.:H il)v(a ) =0 . (521)

?
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The algebra of harmonic derivatives on Hg contains also the U(1)-charges D%, and
D%,. The harmonic derivatives on the coset SU,(2)/U.(1) are D{***® and D?. -
The biharmonized spinor derivatives are

pELBo ui_il.o,o)vg.il,o)Dia , DlEtedn — ust:,o.o)vg,o,tx)Dia . (5.22)

The basic superfield of the biharmonic approach is the v-projection of the bispinor
superfield (5.9)

W(O,X.l) — ___l'D(l,l.U)D(l,ﬂ.l)‘/c(—z,o.o) = ___i'/duD(—l,?,O)D(—l.U,l)‘/‘:(2.0,0) s (5.23)

where the c-harmonic connections are used. This superfield is v-analytic
D(il,l,o)W(o,l,l) — 0’ D(il,o,l)w(ﬂ,l,l) = 0 (5.24)
and also satisfies the harmonic constraints
DEFOOWEID =0, DIWCN =0, (5.25)
where D2 is the triplet of harmonic derivatives conserving the v-analyticity (5.24)

D: = (DE]O,],])’D(O,Z,U)’ D(0,0,Z)) R (5,26)
[D,, DE4O) = D, D*0] = 0 . (5.27)

The v-analytic coordinates {,=(t,,0®*", §*°1) can be defined by analogy with
(5.4)

t,=t+ %'[g(-:,—x.o)o(:,x,o) — (L1 (-110) _ gUuo-ng-1en) 0(—!.0.—1)9(1.0.1)] R (5.28)
flarre) — ugi:,o.o)vg,ﬂ.u)g:a , fiEr0.1) — ug*‘-°-°’vg""*')0'a . (5.29)

The BHS representation of the general 1D superpotential (5.14) is

(Wap) = [ doR W, wa], (5.30)

where the real function F, determines the general solution of the 5D Laplace equation.
Partial solutions can contain, for instance, functions of two variables W3 and W,,.

Using this relation and Eq.(5.23) we can obtain the v-analytic representation of the
1D effective action (5.13)

81 = [ dvdt, DO DWEN (G RIWE(G), val | (5.31)
where the following Grassmann measure is used:

D(o,—z,—z) - D(l,—),o)D(—x,—l,o)D(l,o,—:)D(—x,o,—l) . (5 3())

The effective action for an arbitrary gauge group can be constructed in the v-analytic
superspace. The matrix superpotential for the gauge group [U(1)!” in the full superspace

satisfies the following conditions:
a a

W gy e W W) =0, DU p 0. (5.33)
M
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It is not difficult to define the triplet of v-analytic superfields which is dual to the
superfield W9

Wy = (WSJO“‘-‘)1“’&0'_1'1)7“’(1:0'0'0)) ’ (534)

D(g:,x.o)wu — D(tx.o,x)wv — D(cﬂ,o,o)wu =0. (5.35)

These superfields have an infinite number of auxiliary components.
The interpolating term for the duality relation has the {following form:
/dvdtD(D,—ﬂ,—l)[W(D,l,I)D(O,l,l)w(ﬂ,o,o)
+W(O,!,l)D(D,l,o)w(o.—l,l) + W(U,I,X)D(O,D,I)wio,l,—])] . (5.36)
v v v
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