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3yrrHHK E.M. E2-99-24 
rapMOHIIqeCKHe cyrreprroTeHUllaJlbl ll CllMMeTpHH 
B KaJJH6poBoqHbIX TeopIDIX C BOCeMblO cyrrep3ap5U:IaMH 

Monenu B3aHMoneikTBll.H D-MepHbIX rnrrepMyJibTHITJieTOB ll cyrrepCHMMeTpHqHblX Ka
JIH6poBoqHblX MYJibTHruJeTOB C :N= 8 cyrrep3ap.HUaMH (D :'., 6) MOryr 6b!Tb ccpopMyJIHpOBaHbl 
B paMKaX rapMOHHqecKHX cyrreprrpocTpaHCTB. 3cpcpeKTHBHOe KYJIOHOBCKOe HH3K03HepreTH
qecKoe neil:crnHe nJI.H D = 5 BKJI10qaeT CB06onm1ii qneH H qneH qepmr--Cai1MoHca. Mb! pac
cMaTpHBaeM TaK:lKe uea6eneBo cyrreprroneBoe D = 5 neil:crnHe qepmt-Cail:MoHca. EurapMo
HHqecKoe D = 3, :N = 8 cyrrepnpocTpaHCTBO BBOUHTC.H M.H OI1HCaHH.H / u r cyrrepMyJibTHruJe
TOB H 3epKa.JibHOH CHMMeTpllll. D = 2, ( 4,4) KaJJtt6poBOqHaJI Teop1rn ll B3aH~mneil:CTBH.H 
mnepMyJibTHITJieTOB paccMaTpHBaIOTC.H B TpHrapMOHIJqecKOM cyrreprrpocTpaHCTBe. CB»3H 
nn» D = 1, :N = 8 cyrrepMYJibTHruJeTOB pellla.IOTC» c noMOillhIO SU(2) " Spin(5) rapMOHHK. 
3cpcpeKTHBHbie KaJJH6poBoqHbie neil:CTBIDI B I10JIHbIX D s 3, :N = 8 cyrrepnpocTpaHCTBa.x co
nep:lKaT orpaHuqeHHbie (rapMOHHqecKHe) cyrrepnoTeHUHaJJhI, ynoBJieTBop»10mHe (6 - D) 
ypaBHeHH}IM Jlannaca UJl}I KaJJ116poBOqHOH rpyrrnhl U(l) HJIII cooTBeTCTBYJOIUHM 
(6- D)p-MepHbIM ypaBHeHIDIM M.H rpynn [U(l)]P. O6o6meHHbie rapMOHHqeCKHe rrpencrn
BJieHIDI cynepnoTeHUHaJJOB CB}l3b!Ba.IOT 3KBHBaJleHTHble cyrrepnoJieBble CTPYKTYPbl 3THX Teo
putt B I10JIHOM H aHaJJHTl!qecKHX cyrrepnpocTpaHCTBa.x. fapMOHHqecKHH nonxon yrrpomaeT 
noKa3aTenbCTBa TeopeM HerrepeHopMHpOBKH. 

Pa6oTa BbmonHeHa B Jia6oparnpHH TeopernqecKott cpH3HKH HM. H.H.Eoron1060Ba 
mum. 

TTpenpl!HT OfueJjllHeHHOro l!IICTl!Tyra .smepHblX HCcneL{0BaHHii. ,lly6Ha, 1999 
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Models of interactions of D-dirnensional hypermultiplets and supersymmetric gauge 
multiplets with :N = 8 supercharges (D :s 6) can be formulated in the framework of harmonic 
superspaces. The effective Coulomb low-energy action for D =5 includes the free and 
Chem-Simons terms. We consider also the non-Abelian superfield D = 5 Chem-Simons 
action. The biharmonic D = 3, :N = 8 superspace is -introduced for a description of l and r 
supermultiplets and the mirror symmetry. The D = 2,(4,4)-gauge theory and hypermultiplet 
interactions are considered in the triharmonic superspace. Constraints for D = 1, :N = 8 su
permultiplets arc solved with the help of the SU(2) x Spin(5) harmonics. Effective gauge ac
tions in the D s 3, :N = 8 superspaces contain constrained (harmonic) superpotentials satis
fying the {6 - D) Laplace equations for the gauge group U(l) or corresponding (6 - D)p-di
mensional equations for the groups [ U(l )JP. Generalized harmonic representations of 
superpotentials connect equivalent superfield structures of these theories in the full and ana
lytic superspaces. The harmonic approach simplifies the proofs of non-renormalization 
theorems. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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1 Introduction 

The harmonic superspace (HS) has firstly been introduced for the off-shell description of 
matter, gauge and supergravity superfield theories with the manifest D=4, N4=2 super
symmetry [1, 2]. The SU(2)/U(l) harmonics ur and corresponding harmonic derivatives 
[)++, a-- and D0 are used for the consistent solution of the superfield constraints in the 
N4=2 superspace. The basic relations for the harmonics are 

a++ ut = 0, 

a-- u;- = 0, 
a++ u;- = ut' a0ut = ±ut ' 
a-- ut = u;-. 

(1.1) 
(1.2) 
(1.3) 

The HS approach has also been applied to consistently describe hypermultiplets and 
vector multiplet in D=6, N6 =l supersymmetry [3, 4]. It is convenient to use the total 
number of supercharges .N for the classification of all these models in different dimensions 
D instead of the number of spinor representations for supercharges Nv, Let us review 
briefly the basic aspects of the D=6, .N =8 harmonic ?i,auge theory. The harmonics Uf are 
used to construct the analytic 6D coordinates ( =(xA p, oa+) and the additional spinor 
coordinate ea-, where a, {3, p ... are the 4-spinor indices of the (1, 0) representation of 
the Spin(5,1) group and 0±a=ur0•a. The harmonized spinor derivatives and harmonic 
derivatives have the following form in these coordinates: 

D°tx = a-:;_ , ~a.= -00 - i01- aa-y , 

n++ - a++ + !_ea+ 01+ 8 + ea+ a+ - 2 a-y a ' 

n-- - a--+ '!:._oa-01-a + ea-a-- 2 a-y a ' 

(1.4) 

(1.5) 

(1.6) 

where 8a-y = a I axa'Y. 
The Grassmann analyticity condition in HS is Dt w=0. Superfield constraints of 

D=6 SY M in the ordinary superspace ( central basis or CB) are equivalent to the inte
grability conditions preserving this analyticity. The Yang-Mills prepotential V++ ( (, u) in 
the analytic basis (AB) describes the 6D vector multiplet (Aap, >.?, X'k) and possesses 
the gauge transformation with the analytic matrix parameter >.( (, u) 

(1.7) 

The action of the D=6 SY M theory has the form of integral over the full superspace 
[3] 

(1.8) 

where 96 is the coupling constant of dimension d=l and (u;uft 1 is the harmonic distri
bution [2]. 

The gauge variation of this action 

8S(V++) =-\ j d6xd'0duTr\7++>.v-- = --\ j d6xd60duTr>.D--v++ = 0 (1.9) 
9, 9. 
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vanishes due to the analyticity of the parameter and prepotential. We have used here the 
harmonic zero-curvature equation 

n++v-- - n--v++ + [V++, v--i = o , (1.10) 

where v-- is the connection for the harmonic derivative n--. Note that reality conditions 
for the harmonic connections include the special conjugation of harmonics preserving the 
U(l)-charges [1] 

~ = ui±, (V±±)t = -V±±. (1.ll) 

The physical fields of the hypermultiplet Ji and t/Ja and the infinite number of auxil
iary fields are components of the analytic 6D superfield q+((,u). The interaction of the 
hypermultiplet and gauge field can be written in the analytic superspace 

S(q+, v++) = j d(<-<>duij+(n++ + v++)q+ , (1.12) 

where d(<-<>=d'xA(D-)4 is the analytic measure in HS. 
Universality of harmonic superspaces is connected with the possibility of constructing 

.N =8 models in D<6 by a dimensional reduction. The HS analysis of the D=4 low-energy 
effective actions has been considered for the gauge superfields [7] and for the hypermul
tiplets [8]. The manifestly supersymmetric calculations in HS are in a good agreement 
with the basic ideas of the Seiberg-Witten theory [6], however, the HS geometry allows 
us to rewrite the chiral-superspace Coulomb action as the integral in the full superspace 

i j d'xd'O.r(W) + c.c. = j dfxd"0duV++v--[F(W) + c.c.] , (1.13) 

where F(W)=-iW-2 .r(W) is the holomorphic part of the superpotential in this represen
tation. It should be stressed that the Lagrange density in the full superspace is not gauge
invariant in contrast to the chiral density. The superpotential f(W, W)=[F(W) + c.c.] is 
the most general solution of the constraints 

D!Dtf(W, W) = O -+ 8w8wf(W, W) = O, (1.14) 

which follow from the gauge invariance. Representations of the action in the full, analytic 
and chiral superspaces are important for the HS interpretation of the electric-magnetic 
duality [9]. 

The holomorphic action can be reduced to lower dimensions, however, this reduction 
does not produce the general effective action. The ./II =8 supersymmetries have some 
specific features for each dimension based on differences in the structure of Lorentz groups 
Lv, maximum automorphism groups Rv and the set of central charges Zv. The main 
result of this work is a construction of the Coulomb effective actions for the dimensions 
D= 1, 2, 3 and 5 in the full ./II =8 superspace 

Sv = j dDxd'0duv++v--Jv(W), (1.15) 

where f v(W) is the superpotential and Wis the constrained (6-D)-component superfield 
strength for the U(l) gauge prepotential v++. The gauge invariance of this action implies 
the (6-D)-dimensional Laplace equation for the general superpotential 

Ll~fv(W) = 0, 

2 

<; .. ~ 

(1.16) 

which generalizes the 2D-Laplace equation (1.13). The (6-D)-harmonic solutions of this 
equation can be used for a description of non-perturbative solutions in the ./II =8 gauge 
theories. We discuss harmonic-integral representations of the D~3 superpotentials which 
allow us to construct the equivalent analytic-superspace representations of Sv. 

It should be remarked that the function f v determines a-model structures and inter
actions of the ( 6- D)-dimensional scalar field with fermion and vector fields. 

Renormalization theorems in this approach are connected with the Rv-invariant solu
tions of Eq.(1.16) 

g(wv) = g--;,2 + kvw~-4 
, Df,4, (1.17) 

where the invariant superfield Wv can be interpreted as a length in the (6-D)-moduli 
space, and 9v and kv are coupling constants. 

The effective actions of the [U(l)jP gauge theories are considered also by these methods. 
The matrix superpotentials of these theories satisfy the (6-D)p-dimensional Laplace
type equations. It is interesting that rich harmonic structures of moduli spaces for the 
D:;3, .N =8 theories arising in connection with the equations for superpotentials generalize 
naturally the original SU(2)-harmonic structure of the D2::4, .N =8 theories. 

Sect.2 is devoted to the 5-dimensional HS theories. The effective action of the D=5 
Abelian theory contains the free term and the cubic Chern-Simons term. We also construct 
the non-Abelian superfield Chern-Simons term. 

In Sect.3, we consider the biharmonic superspace (BHS) using harmonics of the au
tomorphism group SU1(2)xSU,(2) in the D=3,.N =8 models. The I-analytic gauge pre
potentials and hypermultiplets have their mirror partners in the r-analytic superspace. 

The D=2, ( 4, 4) models in the triharmonic SUc(2) x SU1(2) xSU,(2) superspace (TH S) 
[29, 30, 31] are discussed in Sect.4. We underline the importance of the ( 4,4) gauge theory 
and derive the formula for the effective action in the full superspace, which is equivalent 
to the action in the rl-analytic superspace. 

An adequate superfield description of the D=l, ./II =8 theories requires the use of har
monics for the automorphism group R, = SUc(2)xSpin(5). We define the corresponding 
BHS gauge and hypermultiplet models in Sect.5. 

Problems of the ./II =8 gauge theories have earlier been discussed in the framework 
of the component-field formalism or the formalism with .N =4, D=l, 2, 3 superfields (see 
e.g.[11, 13, 34, 39]). In particular, the (6-D) Laplace equations have been considered 
in the .N =4 superfield formalism or' the .N =8 gauge theories and in the formalism of the 
corresponding a-models. Nevertheless, it should be stressed that the manifestly covariant 
HS approach provides the most adequate and universal methods to solve the problems 
of the .N =8 theories in all dimensions. A short discussion of these ideas has also been 
presented in [10]. 

2 Five-dimensional harmonic gauge theories 

Let us consider firstly the harmonic superspace with the D=5, .N =8 supersymmetry. 
The general five-dimensional superspace has the coordinates z=(xm, 0f), where m and 
a are the 5-vector and 4-spinor indices of the Lorentz group L5 =SO(4, 1), respectively, 
and i is the 2-spinor index of the automorphism group Rs=SU(2). The spinors of L5 are 
equivalent to the pair of the SL(2, C) spinors: iila=(ip0

, ,°fi"'). 
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The invariant symplectic matrices flap and nap can be constructed in terms of the 
SL(2, C) c:-symbols 

( 
Eap O ) , 

flap= 0 c:;,;, flapnpa = .,g . (2.1) 

These matrices connect spinors with low and upper indices. 
The antisymmetric traceless representation of the f-matrices contains the 4D Wey! 

matrices am and c:-symbols 

( 
0 (am) 0 Ji ) 

(r m)af3 = -(am)/3a O ' ( 
ic:0 13 0 ) . 

(f4)af3 = 0 -ic:;,Ji (2.2) 

The corresponding representation of the 5D Clifford algebra has the following form: 

(r m)a13(r nl7 + (r n)a13(r ml7 = .!.2.sJl)mn , 

where (r0 )f37 = n/3Pn7a(fn)pa and 77mn is the metric of the (4,1) space. 
The 5-vector projector in the spinor space is 

(2.3) 

( a7 1 ( m)a'"f( ) 1 ( a 7 a 7) 1 a7 ( IT,)pa = 4 f f m pa = 2 .Sp .Sa - "a"p + 4flpafl . 2.4) 

Consider also the relations between the antisymmetric 4-spinor symbol £ and the 
matrices fl and r 

£apµv = flapflµv + flaµflvp + flavflpµ = -~(rm)ap(f m)µv + ~flapflµv . (2.5) 

It is convenient to use the bispinor representation of the 5D coordinates and partial 
derivatives 

xap = ~(r m)apxm , 8ap = ~(rm)ap8m . (2.6) 

The C-conjugation rules for the Spin(4, 1) .objects are similar to the corresponding 
rules f~r (1,0) spinors in the 6D space 

~ = E;kC!f(0l)* = 0?·, (C2)5y = -.S5y' 
ITap = -flap , x°P = xap , 8ap = -8ap . 

(2.7) 

(2.8) 

The basic relations between the spinor derivatives of the D=5, .N =8 superspace have 
the following form: 

k I } · kl (8 1,.., ) {Da, D7 = ic: a7 + 2"a7Z , (2.9) 

where Z is the real central charge. We shall consider the basic superspace with Z=O 
and introduce the central charges via the interaction of gauge superfields satisfying the 
constraints 

{v'~ , v';} = ic:kl(v' a7 + ~fla7 W) , (2.10) 

where W is the real superfield. 

4 

The spinor SU(2)/U(l) harm~nics u; can be used to construct the R5-invariant HS 
coordinates (=(x'.!', 0a+), 0a-, spinor derivatives D~ and harmonic derivatives by anal

ogy with Eqs.(1.4-1.6) 

D°t, = 8"t,, D0 = -80 - i07-aa7, 

v++ =a+++ :oa+07+aa,.., + 0a+a"t,. 
. 2 I 

We shall use the following notation for degrees of the spinor derivatives: 

D (±2l - !va±D± D(±2l -(IT )paD±D± -4 a, a7- sa7pa, 

Dl;3) = D~D(±2 ) ' D(±4) = 2n(±2l v<±2) 

and the important identities 

D<+2>v<+2> - o v<+2>v<+2> - -2(rr) v<+4> a7 - , a7 pa - , 0.7,pa , 

v<+4l v--n--Dl+4l = -2amamDl+4l . 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

The analytic Abelian prepatential V++((,u) describes the 5D vector supermultiplet. 
In the W Z-gauge, this harmonic superfield contains the real scalar field <I>, the Maxwell 
field Am, the isodoublet of spinors ,\f¥ and the auxiliary isotriplet Xik 

where 

v,;:i = i01+21 <I>(xA) + 0<+2)apAap(xA) 

+0{+2)0a+Ui ,\::i,(xA) + i[0{+2)] 2u;;uj Xkj(xA) , 

0<+2) = !0a+0+ 
4 a' 

0<+2l0 P = (IT,)~e0µ+0v+ . 

(2.17) 

(2.18) 

The real superfield strength of this theory can be written in terms of the harmonic 
connection v--(V++) (see Eqs. (1.10) and (2.29)) 

W = -2iD<+2>v-- . 

This superfield satisfies the following constraints: 

v'++w = v++w + [V++, WJ = o, 
D~;>w =0. 

The Abelian superfield W does not depend on harmonics. 

(2.19) 

(2.20) 

(2.21) 

The 5D SY M action has the universal form (1.8) in the full harmonic superspace. 
The SY M equations have the vacuum Abelian solution u++=i0<+2l Z where Z is the 
linear combination of the Cartan generators of the gauge group ( see the analogous D=4 
solution in ref.[8]). This vacuum solution spontaneously breaks the gauge symmetry, but 
it conserves the D=5 supersymmetry with the central charge and produces BI'S masses 
of the Z-charged fields. 

Chiral superspaces are not Lorentz-covariant in the case D=5, so one can use the 
full and analytic superspaces only. It is readily to construct the most general low-energy 
effective U( l )-gauge action in the £nil .N =8 harmonic superspace 

S, = j d'xd'0du v++v--[g;-2 + k, W] , (2.22) 
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where g, is the coupling constant of dimension 1/2, and k is the dimensionless constant of 
the 5D Chern-Simons interaction. The linear superpotential f,=g;: 2 + k, W is a solution 
of the constraints 

D±± J, = 0 , D (+2Jr -O 
a.p J; - ' (2.23) 

which arise from the gauge invariance oi S,. 
Note that the R, invariance of the effective action can be broken by the Fayet-Iliopoulos 

term in the analytic superspace 

Sn = j ac<-•>au ~ikututv++ , (2.24) 

which implies also the spontaneous breaking of supersymmetry. 
The gauge-invariant Chern-Simons term for the group [U(l)]P contains the following 

cubic interactions of the Abelian superfields v,:+ 

J d'xd8 0du kBCD vB++vc--wD ' (2.25) 

where kBcv are coupling constants and B, c, D=l ... p. 

It is not difficult to construct the non-Abelian 5D Chern-Simons term S~s starting 
from the following formula of its variation 

8S~s = k, I d'xd8 0du Trov++w--, n(+2>v--1 

= k, J d(<-<>au Tr ov++ n(H)w--, n(+2>v--1 ' (2.26) 

which guarantees the gauge invariance taking into account Eqs. (1.7,1.10,2.20) and (2.21) 

8>.S~s ~ k, j d(<-<>au Tr ,\fl(Hl[n(+2Jv--, y'++v--J 

= k, j d(<-<>au Tr>.n(Hl[n(+2>v--, n--v++] = 0 . 
(2.27) 

The non-polynomial formula for S~s can be written as an integral over the auxiliary 
variables 

1 

S~s = k, j ds j d'xd•Odu TrV++[V--(sV++), fl(+2>v--(sV++)], 
0 

where the perturbative solution for V-- [5] is used 

(2.28) 

V--c v++) = ~(- )nj d d v++(z, u,) ... V++(z, Un) (2 29) 
S LJ S U, .•• Un ( + +) ( + +) . . 

n=1 U Ul ... Un U 

The next-to-leading order effective Abelian 5D action can be written in terms of the 
manifestly gauge invariant function H(W). 
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3 Three-dimensional biharmonic superspace 

Three-dimensional supersymmetric gauge theories have been intensively studied in the 
framework of new nonperturbative methods [13, 14, 15]. Superfield description of the 
simplest D=3, N =2, 4 theories and various applications have earlier been discussed in 
refs. [16]-[20]. Three-dimensional harmonic superspaces were considered in refs.[21, 22]. 
The most interesting features of the D=3 theories are connected with the Chern-Simons 
terms for gauge fields and also with the mirror symmetry between vector multiplets and 
hypermultiplets. 

The D=3, N =8 gauge theory can be constructed in the superspace with the automor
phism group R3 =SUi(2)xSUr(2). Coordinates of the corresponding general superspace 
are z=(x"'13, 0/:,)- We use here the two-component indices a., f3 ••• for the space-time 
group SL(2,R), i, k ... for the group SU1(2) and a, b ... for SUr(2), respectively. 

The relations between basic spinor derivatives are 

{D!"' DJ}= icklt:abaa/3 + i£klto,/3zab ' (3.1) 

where 80 13=8/8x"'13 and zab are the central charges which commute with all generators 
exept for the generators of SUr(2). These central charges can be interpreted as covariantly 
constant Abelian gauge supe~fields by analogy with [8]. 

The superfield constraints of the A! =8 SY M theory in the central basis can be written 
as follows: 

{v'!"' v'J} = it:klt:aby' a/3 + it:a/3tklwab , (3.2) 

where v' M are covariant derivatives with superfield connections and w•b is the constrained 
superfield of the SY M theory ( I-vector supermultiplet) 

y':•wbc + v'!bwc• + v'!cwab = 0 . (3.3) 

Note that gauge transformations in CB have the standard form 

6v':" = [T(z), y':•] , 8W"b = [T(z), W"b]. (3.4) 

It is evident that one can consider the mirror r-versions of superfield constraints for the 
vector multiplet and hypermultiplets. We shall define the biharmonic superspace which 
has simple properties with respect to the exchange I ++ r. The mirror symmetry connects 
I-vector multiplets with r-hypermultiplets and vice versa. 

Let us consider the I-harmonics Uf = u\±i,o) of the group SU,(2) and the analogous 
r-harmonics vi•.±1> of the group SUr(2). The notation of charges in BHS is (q,,q2 ), 

but one can use also the notation with the one charge for the I-harmonic superspace, 
for instance, Dt±. The spinor and harmonic derivatives have the following form in the 
I-analytic coordinates (i=(xf 13 ,o~+) and o~-: 

fl!+ = ut D;: = a!+ , D!- = Ui D;: = -a!- + i0/3b- 8~/3 , 

n++ = a++ - !..0°+013•+a1 + 0°+a•+ I I 2 a a/3 a a · 

The following relations will be used in this section: 

{n:+, n~-} = -ic"ba~13 , [n--, n:+1 = n:- , 

n<+>) = !n+• n+ n•b(+>) = !n•0 + Db+ 
o,/3 2 a a/3 ' 2 "' ' 

n<,,,+;> n•"<+>) = 0 ' D~tl) n~•> = (t:actbd + tbctad)(D+) 4 
• 
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(3.6) 

(3.7) 

(3.8) 

(3.9) 



The I-harmonic superspace is adequate to the solution of the constraints (3.2) 

ututf~7~•, y'~b} = {v'~+, y'~+} = 0, 

v~+ = g-1(z,u)D~+g(z,u)' 

(3.10) 

(3.11) 

where g(z, u) is the bridge matrix [1]. The I-analytic prepotential of the SY M theory is 

Vi++ = Vi<'·•> = (D++ g)g-1 ' 
cg= >..g-gr. 

n~+Vi++ = o, 

The components of this superfield can be determined in the W Z gauge 

(Vi++)wz = 0°•+0t+<I>.b(x1) + 0°•+0~+ Aa/l(x1) 

+ea•+et+ef+uk >..!ix1) + i(0+)4uj;uj Xki(x1). 

(3.12) 

(3.13) 

(3.14) 

The superfield strength of the D=3, N =8 gauge theory in the analytic basis contains 
the corresponding harmonic connection Vi--(Vi++) 

w•b = -in•b<+'>Vi-- , 

cw•b = [ >.., w•bi , n++ w•b + [Vi++, w•bJ = o . 

It satisfies the following constraints: 

D~+wbc + Dt+wca + fl~+w•b = 0, 

D~p)Wbc = 0, 

which are equivalent to the CB-constraints (3.3). 
The superfield W•b does not depend on harmonics in the gauge group 

vacuum Abelian solution of the SY M theory 

v++ = i0°0 +0:+ Zab 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

U(l). The 

(3.19) 

is covariant with respect to the supersymmetry with central charges z.b by analogy with 
the case D=4 [8]. 

The I-analytic hypermultiplet q+ = q(l,o) has the standard minimal interaction with 
Vi++ = v<2·•> (see (1.12)). By analogy with refs.[3, 8], one can construct the free HS 
propagator for this superfield in the covariantly constant background (3.19) 

i(q+(l)lq+(2)) = - ~z (D;)4(n:)4e(v,-v,>c 11 (z, - z,) ( / +)3 , 
1 u1 u2 

(3.20) 

where oz = 8°il8a/l + z•b z.b and D++v = v++. The manifestly supersymmetric pertur
bation theory is the important advantage of the HS approach. 

One can consider also the alternative version of 1-hypermultiplet w1 and I-linear mul
tiplet D'·•>, Dj'·•> D'·•>=0. 

The low-energy U(l) effective action can be expressed in terms of the superpotential 
f(W"b) which does not depend on u± 

S, = j d.'xd3 0du i-;++W-J,(W"b) . (3.21) 
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Th<> gauge invariance produces the following constraint : 

cs,= -2 j d'xd8 0du>..n--w+ J,(W"b) 

~ j d'x(D-)4du>..8°ili-;++ D~p>J,(W"b) = 0, 

where the analyticity of Vi++ and relations (1.10) and d'0=(D-)4 (D+) 4 are used. 
This constraint on the superpotential is equivalent to the 3D Laplace equation 

(3.22) 

D'+'l f (W"b) = 0 -+ _a ___ a_f (W"b) = 0 (3 23) 
a/3 3 8if •b 8Wab 3 

• • 

The general superpotential breaks the 5'Ur(2) invariance. The R,-invariant superpo
tential has the following form: 

J;'(w,) = g; 2 + k,w; 1 
, w = J~v•bw 3 ab , (3.2·1) 

where g, is the coupling constant of dimension d= - 1/2, and k, is the dimensionless 
constant of the N =8 W Z NW-type interaction of the vector multiplet. This superpoten
tial is singular at the point z.b=0 of the moduli space. The field model is well defined 
in the shifted variables w.b=Wab - z.b for nonvanishing central charges. It should be 
remarked that the superfield interactions of the 3D-vector multiplets with dimensionless 
constants (Chern-Simons terms) have earlier been constructed for the case N =4 [18] and 

N =6 [20, 21]. 
The general solution of Eq.(3.23) can be written in the harmonic-twistor representation 

J,(W"b) = j dvF,[W' 0
•
2 >, v~•.± 1>] , Hf(O,l) = v~•.l)vt 1>iv•b 

1 (3.25) 

where F, is an arbitrary function with q=(0, 0), and W' 0
·'

1 is the r-harmonic projection 
of the basic superfield. The proof is based on the following r-harmonic rcprcsrntation of 
the Laplace operator: 

a a a a a 2 

€ac€bd 8Wab 8Wcd ~ 8WC0,2) 8WC•,-2) - (;}1,\/C•.•l) 

Cac = v~O,l}v~0,-1) _ v~O,l)v~0,-1) • 

(3.26) 

(3.27) 

This solution is a covariant form of the well-known integral representation of the :ln
harmonic functions [22]. 

Let us introduce the following definitions and relations for the spinor dcrivat iws in 
the biharmonic superspace: 

D~±l,±1) == u~±l,O)v~0,±1) n~a ' 
[Dj±2,0) 

1 
D~'fl,±1)] = D~±l,±1) 

1 

D(±2.±2) = [JC±l,±1)• IJ~±l,±1) • 

[D~0,±2) 
1 

D~±l,'fl)] = /)~±1,±1) 
1 

[Dj±2,0), D~l,±1)] = [D~0,±2), [J~±l,±1)] = 0 , 
[JC±4,0) = [JC±2,2) 1)(±2,-2) 

1 
LJ(D,H) = JJC2,±2) J)(-2,±2) 

The constraints (3.17) arc equivalent to the following conditions in /JI/ S: 

D~±1,1>w<•.2J = 0, J)~•.2) wco,2) = 0 . 

!) 

(:l.2S) 

(:l.2!J) 

(:l.:lO) 

(:l.:11) 

(:l.:12) 



,,! 

I 

By analogy with the D=4 analytic linear multiplet£++ , (D++ L++=0) we shall call this 
3D representation the r-linear multiplet. These restrictions on we•.•> are evident in the 
B HS representation 

we•.•> = -iDc•.•>v,c-•·•> = -i J duDc-2,,>v,t'·•> . 

Consider the r-harmonic decomposition of the full spinor measure 

d:'0 = nc•.-•) nc•.•> . 

{3.33) 

(3.34) 

Using this decomposition and Eqs.(3.21,3.25) and (3.33) we can construct an equivalent 
form of the effective action in the r-analytic superspace 

s, = J d'xDC•,-•>dv[wc•.•>12 F,[wc•.>)' v<•.±1>] . {3.35) 

It should be underlined that this action with the gauge-invariant analytic Lagrangian can 
be generalized to the case of non-Abelian SY M theory. 

Let us consider now the set of /-analytic prepotentials ½~·•> in the [U{l)jP gauge 
theory and the corresponding r-analytic superfields wi•·2>(½~·•>). The effective action of 
this theory in the r-analytic su perspace is 

p 

SP= jd3xDC•.-•>dv " wc•.•>wc0,2>F3 [w<o,>) v(O,±l)] 
3 L..., B C BC A ' ' 

B,c=l 
{3.36) 

where F 8 c are real q=(0, 0) functions of the superfields Wi"''>, ... W?·'> and v-harmonics. 
The corresponding effective action in the full superspace contains the matrix superpoten
tial of the [U(l)]P gauge theory 

p 

Sp " J J3 -'8/1 d d v;c>,o)v;(-2,0)/3 (Wab w•b) 
3 = L..., a X au u V lB le BC 1 '. . . p ' 

B,c=l 

f!c(Wtb, ... w;b) = J dvF!c[w~•·'>, v<•,±>J . 

(3.37) 

(3.38) 

It is evident in the v-integral representation that this superpotential satisfies the following 
conditions: 

a a 
8Wcd 8W, f!c = 0 , 

M cdN 

D~+;>f!c = 0. 

These conditions guarantee the gauge invariance of Sf in the full superspace. 

(3.39) 

(3.40) 

The r-forms of the hypermultiplet constraints have been discussed in ref.[22]. Consider 
the superfield constraints for these hypermultiplets in the framework of BHS 

D~±•.•>q;c•.•> = 0 , q;<•·•> = (q~•·•>,iJ!,•·•>), 

D~±•.•>w, = 0, D/±•.•>(w,,q;<•·1>) = 0, 

where Dj±>·•> are the /-harmonic derivatives. 
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(3.41) 

{3.42) 

t 

l 
.\ 

~ 
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These hypermultiplets are dual to each other and also to the r-linear analytic multiplet 

q;co,1) = v•<•,•>w, + v•<•.-•> £<0,2) . (3.43) 

The duality relation between the w, and r-linear multiplet is described by the action 

j d'xn<•.-•>dv{w,[Dt·'> £< 0
•
2>] + p•,•>[£<0

,
2>, vc•,±1>)}, (3.44) 

where F(•.•> is an arbitrary r-analytic function. 
It is clear that the /-analytic hypermultiplets q}1•0

> and w1 are dual to the alternative 
r-version of the vector multiplet which can be described by the r-analytic prepotential 
V(0,2) • 

r • 

4 Two-dimensional (4,4) harmonic superspaces 

The two-dimensional (4,4) and (4,0) u-models have been discussed in the field-component 
formalism and in the framework of the ordinary or harmonic superspaces [24)-[33]. The 
( 4,4) gauge theory has been considered in the component formalism and in the (2,2) 
superspace [34, 35, 36]. We .shall study the geometry of this theory in the manifestly 
covariant harmonic formalism which is convenient for the superfield quantum calculations. 

The maximum automorphism group of the (4,4) superspace is S01(4)xS0,(4); how
ever, we shall mainly use the group R,=SUc(2)xSU1(2)xSU,(2). Let us choose the left 
and right coordinates in the (4,4) superspace 

z1 = (y, 0'"') , Zr = (iJ, ij••) , (4.1) 

where y = (1/../i)(t + x) and iJ = (1/../i)(t - x) are theHght-cone 2D coordinates; and 
the following types of 2-spinor indices are used: i, k, ... for SUc(2); a, f3 ••. for SU1(2) 
and a, b ... for SU,(2), respectively. The SO(l, 1) weights of coordinates are (1, 1/2) for 
z1 and (-1, -1/2) for z,. The algebra of spinor derivatives in this superspace 

contains the central charges Zab• 

{Dka, D1/3} = ick/Cc,/Jay , 
{Dka, fl1b} = i£k/Cab8y , 

{Dka, D1b} = i£k1Zab 

(4.2) 

(4.3) 

(4.4) 

The CB-geometry of the ( 4,4) SY M theory is described by the superfield constraints 

{v'ka, v'1/3} = frk/13:c,fly'y, 
{'V' ka, 'y'lb} = i£k/£ab 'y' y , 

{v'ka, 'v'1b} = i£k1Wab, 

(4.5) 

(4.6) 

(4.7) 

where v' M=DM + AM is the covariant derivative for the corresponding coordinate. The 
gauge-covariant superfield Wab satisfies the constraints of the (4,4) vector multiplet which 
are equivalent to the constraints of the so-called twisted multiplet [24, 28]. 

The authors of refs.[3O, 31, 32] have discussed three types of harmonics: u;=u;±•.•.•> 
for SUc{2)/Uc(l) ; /~·±•.•> for SU1{2)/U1(l); and r~•-•,±1> for SU,(2)/U,(1). We use the 
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notation with 3 charges in the triharmonic superspace (TH S) and the standard notation 
in the c-harmonic superspace. The basic geometric structures of the gauge theory are 
mainly connected with the c-harmonics u; and the corresponding analytic coordinates 
(e=(Ye, 0"+), 0"- and (e=(fie, 0•+), 0•-. 

The c-harmonized spinor derivatives and harmonic derivatives have the following form 
in the superspace with vanishing central charges: 

n-:; =a-:;, Di= -a;; - i0;;ai, 

n: =a:, n-;; = -tJ;; - i0-;;ai, 
. . 

n++ =a+++ :0+0 0+ae + :0•+0+[Je + 0°+a+ + 0•+a+ 
c c 2 ay 2 ay a a· 

The basic combinations of the spinor derivatives are 

(D±)2 = n±<> D! , (lJ±)2 = lJ•± lJ; , (D±)4 = (n±)2(fJ±)2 • 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 

The c-harmonic projections of the constraints (4.5-4.7) are equivalent to the integra
bility conditions of the c-analyticity by analogy with the D~3, N =8 theories 

{V!, Vt}= {V!, Vt}= {v:, Vt}= O, (4.12) 

where V! = utV~ and V;; = utV~. 
The prepotential of the ( 4,4) gauge theory in this version of HS is the c-analytic 

harmonic connection V,,++((e ,(e, u) = V.,( 2
•
0·0> which determines the second harmonic 

connection v,,-- = V,,(-2
,
0·0>. The WZ gauge.for this prepotential has the following form: 

(V.,++)wz = 0"+0b+if>ab(Ye, f}c) + (0+)2 A(ye, Ye)+ (0+)2 A(ye, Ye) 
+( 0+)20°+u;- ,\~(Ye, Ye) + (0+) 20+•u;- ,\~(Ye, Ye) + i( 0+)2

( 0+) 2u;;-u,;- Xki(ye, Ye) ( 4.13) 

where the components of the 2D vector multiplet are defined. 
The gauge-covariant superfield strength can be constructed by analogy with D=3 

Wab = (am)abWm = -iD!lJtv,,-- (4.14) 

where (am)ab are the Wey! matrices for SU1(2)xSUr(2) and Wm is the 4-vector represen
tation of this superfield. 

In the A belian case, the constraints for this superfield are 

+ur 1 +Pw -+ 1 fl-+ew D" "fJb = 2.Cc,{JD pb, n. Wab = 2£.b ae, 

D;±Wab = 0 , (D+) 2 W00 = (lJ+) 2 W00 = 0 . 

( 4.15) 

( 4.16) 

The universal harmonic construction of the U(l) effective action with 8 supercharges 
has the following form in the case D=2: 

S2 = j d2xd'0duV.,++v,,-- J,(Wm), 

where d'x = dtdx = dydy. 

(D+) 2 !,(Wm) = (fJ+) 2 !,(Wm)= 0 ' 
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( 4.17) 

The general (4,4) superpotential satisfies the 4D Laplace equation 

fl;" J,(Wm) = O , a )2 
fl;"= (awm . ( 4.18) 

The 4D Laplace equation in the (4,4) a-models has been discussed, for instance, in refs.[27, 
33]. 

The R,-invariant (4,4) superpotential is 

Jt(w,) = g:; 2 + k,w:; 2 
,. w2 = Jw0 •W0 •• (4.19) 

An analogous function has been considered in the derivation of the R,-invariant (2,2) 
Kahler potential of the D=2, (4, 4) gauge theory [35]. Note that the Kahler potential of 
the (2,2) formalism is gauge-invariant by definition, and the 4D Laplace equation arises 
in this approach from the restrictions of the (4,4) supersymmetry; while in our (4,4) 
formulation the analogous condition on the (4,4) superpotential (4.18) follows from the 
gauge invariance. The manifestly ( 4,4) covariant formalism of the harmonic gauge theory 
simplifies the proof of the non-renormalization theorem. 

The c-analytic (4,4) hypermultiplets qd and We have the minimal interactions with 
V.,++. The corresponding HS Feynmann rules can be formulated by analogy with ref. [2]. 
The ( 4,4) HS methods can be useful in the analysis of the vector-hypermultiplet Matrix 
models with (8,8) supersymmetry. 

The TH S projections of the 2D spinor derivatives are 

fl(±l,±1,0) = ui±l,0,0) l~-±1,0) Dai ' jj(±l,0,±1) = U~±l,O,OJT~0,0,±1) [Jai . 

The rl-version of the c-vector multiplet ( 4.14) has the following form: 

W(0,1,1) = -in(l,1,0) b(l,O,l)v(-2,0,0) = -i J duD(-1,1,0) fJ(-1,0,l)v(2,0,0) 
e e 

This superfield satisfies the conditions of the rl-analyticity 

fl(±l,1,0)W(0,1,1) = Q' 

and the harmonic conditions 

fJ(±l,O,l)w(o,1,1) = Q 

D~±2,o,o>w(o,1,1J = Dl°''·o>w(o,1,1> = D~o.o,2iw(o.1,1i = O 

(4.20) 

(4.21) 

(4.22) 

('1.23) 

which are analogous to the constraints on the q(l,l) superfield of ref.[30] (this notation 
does not indicate the Ue(l) charge). Note that the vector multiplet (4.21) contains tlw 
2D vector field instead of the auxiliary scalar component in the superficld q(l.ll_ 

Let us consider the r/-analytic coordinates 

(, = (y,,0(±1,1,oJ), 0(±1.±1.oJ = u\±1,o,oiz~-±1,oi0,a, 
i YI = y + 2[0(1,-1,0)0(-l,l,O) - 0(-1,-1,0)0(1,1,0)] ' 

(r = (fir, 0(±1,0,1)) , 0(±1,0,±1) = U)±l,O,O)r~0,0,±l)ijia 
1 

i - - - -Yr = Y + 2,[0(1,0,-1)0(-1,0,1) _ 0(-1,0,-l)O(l,0,1)] , 
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(4.24) 

(•1.25) 

(4.26) 

(•1.27) 



The spinor and harmonic derivatives have the following form in these coordinates: 

D(±l,1,0) = ±8(±1,1,0) , D(±l,-1,0) = =i=a<±1,-1,0) + i0(±1,-1,o)a~ , ( 4.28) 

j)(±l,0,1) = ±a<±l,0,1) , [)<±1.0.-1) = =i=a<±1.o.-1) + iii<±1.-1.o)a; , (4.29) 

·Dt·'·o> = a)°''·o> + io<1.1,o>oc.,.1,1,o>a~ + o<1,1,o>a<-1,1,o> + o<-1,1,o>a<1,1,0J , (4.30) 

D~0,0,2) = 8;0,0,2) + iO(l,O,l){j(-1,0,l)a; + {j(l,O,l)l)(-1,0,1) + ij(-1,0,l)l)(l,O,l) . (4.31) 

The c-analytic coordinates in the TH S notation are 

(e = (Ye, 0<1,±1,0)) , 
z Ye= y + -[o(-l,1,0)o(l,-1,0) + 0<1,1,0)0(-1,-1,0)1 
2 , (4.32) 

- - z- - - -(e = (Ye,0(1,0,±1)), Ye= y + 2w-1,o,1)o(l,O,-l) + 0<1,0,1)0(-1,0,-1)1. (4.33) 

It is important that all coordinates (e, (e, (1 and (r are separately real with respect to the 

corresponding conjugation. 
The solution of the 4D Laplace equation ( 4.18) has the simple harmonic representation 

f,(Woa) = j dldrF,[W< 0
•
1

•
1>, l, r] , (4.34) 

where F, is the real function and W'0•1·1> = /~·1·0>r~0·0•1>w0
• (4.21). The proof is based on 

the TH S decomposition of the 4D Laplace operator 

a a a a 
8W<>b awc,b ~ awco,1,1) aw<o,-1,-1) 

a a 
aw(o,l,-1) aw(0,-1,1) 

( 4.35) 

Note that the formal change of the density in (4.34) 

F,[w<o,1,1>, /, r] ➔ F'[w<o,1,1>, w<o,1,-1>, /, r] (4.36) 

does not produce more general superpotentials. This can be easily shown for the polyno

mial solutions of Eq.(4.18). 
Consider the TH S decomposition of the Grassmann measure 

d'O = D<o,-2,-2> Dco,2,2) , 

D'o·""·"''> = Dc1.±1,o) D<-1,±1,0) 1y1,o,±1) [J<-1,0,±1) 
{4.37) 

( 4.38) 

Using this decomposition and Eqs.(4.17,4.21) one can obtain the following equivalent 
representation of the effective ( 4,4) action in the r/-analytic superspace: 

S, = j dldrd'xD< 0 ,-,.-,> [w<0·1·1>] 2 F2[w<0•1·1>, /, r] . (4.39) 

One can construct the effective {4,4) action for the gauge group [U(l}]P in the r/
analytic and full superspaces by analogy with the case D=3 {3.36,3.37). 

An analogous action of the q< 1
,
1> multiplet and dual superfields w<±1

,'f
1
l has been con

sidered in refs.[30, 31, 32]. The relation between the c-analytic gauge superfield and 
r/-analytic hypermultiplets is a specific manifestation of the 2D mirror symmetry [34]. 

The triharmonic superspace is convenient for the classification of the ( 4,4) supermulti
plets. Let us consider, for instance, the er-analytic superfield Q~~0

•
1
> ( (e, (., u, r) satisfying 

the subsidiary harmonic conditions 

D~2,o,o>Q~~·o,1> = o , D;0
•
0

•
2
> Q~~·0

•
1> = 0 , ( 4.40) 

where the analytic coordinates ( 4.32) and ( 4.27) are used. The cl-analytic superfield 
Q~)·1·0>((e,(1,u,I) can be defined analogously. 
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5 One-dimensional harmonic superspaces 

The one-dimensional a-models have been considered in the component formalism and also 
in the framework of the superspaces with .N =l, 2 and 4 [36, 37, 38]. Recently, the .N =4 
superspace has been used also for the proof of the non-renormalization theorem in the 
.N =8 gauge theory [39]. 

We shall consider the D=l, .N=8 superspace which is based on the maximum auto
morphism group R,=SUe(2)xSpin(5) and has coordinates z=(t, Of') ( i, k, I ... are the 
2-spinor indices and a,{3,p ... are the 4-spinor indices of the group Spin(5)=USp(4)). 
The algebra of spinor derivatives is • 

{Dk DI } · klo 8 · klz c,, p = ZE Hc,p t + ZE c,p , (5.1) 

where Zap are central charges. 
Conjugation rules in the group Spin(5) differ from the corresponding rules in Spin( 4, 1) 

(2.8) 
Of' = Oh, , flap = -flap , Zap = zap . (5.2) 

The CB-geometric superfield constraints of the .N =8 SY M theory are 

{V~, V~} = ic:k
1flap(8t +At)+ ic:k

1Wap , (5.3) 

where a traceless bispinor superfield representation of the lD vector multiplet Wap(z) is 
defined. 

The harmonics uf can be used for a construction of the D=l c-analytic coordinates 
(e=(te, o+a) 

Z Ci k+ I te = t + 2ok 01c,U U - , 0+a = utOkCi • (5.4) 

The algebra of the c-harmonized lD spinor derivatives resembles the corresponding 
algebra of the 5D derivatives {2.13-2.15) with Spin(5) indices instead of the Spin(411) 
indices. In the case of vanishing central charges we have 

D°tx=atx, n; = -a; + io;a; , 

D++ = a++ - ':.oa+ o+ ae + oa+ a+ 
C C 2 Cit Ci" 

(5.5) 

(5.6) 

The constraints (5.3) correspond to the integrability conditions of the c-analyticity 

{Vix, V~} = 0 , + + i V Ci= U; V Ci. (5.7) 

The c-analytic prepotential V,,++((e, u) describes the lD vector multiplet and contains also 
the pure gauge one-dimensional field A 

(V,,++)wz = 9(+2) A(te) + 9(+2Jap<I>ap{te) 

+0<+2Joa+u;; ,\~(tc) + i[0(+2lj 2u;;uj Xki(te) , (5.8) 

where the notation (2.18) is used. Of course, one can use the subsidiary gauge condition 
A(te)=O. 
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The AB-superfield strength of the corresponding harmonic gauge theory is the 5-vector 

Wm with respect to Spin(5) 

w.. - l (rm) W "D<+2>v--ap = 2 ap m = -i ap ' n°PWap = 0, 

where the r matrices of Spin(5) are introduced. 
The constraints for this superfield have the following form: 

+ 2 +a 2 +a 1 n +a 
D0 W13

1 
= 5n 0 13D Wa1 - 50a.1 D Wa/3 + ""f,"/3'YD Waa , 

D<+2>wap = 0' v++wap = 0. 

(5.9) 

(5.10) 

(5.11) 

In the Abelian gauge group, the superfield W ap does not depend on harmonics, and 
four components of this superfield W13, W14 , W23 , W24 satisfy the conditions of different 

twisted chiralities, e.g. 

DtW13 = D}W13 = o, DtW14 = D;W14 = o . (5.12) 

The D=l low-energy effective action has the following universal form: 

S, = j dtd8 0du v,,++vc-- J,(Wm) . ( 5.13) 

The gauge invariance of S, is equivalent to the 5D Laplace equation for the superpo

tential 
D<+2l f,(Wm) = 0 ➔ c.:J,(Wm) =c 0. (5.14) 

The R,-invariant D=l superpotential is 

ft(w,) = 9-;2 + k,w-;3 ' w, = (WPaWpa )1/2 . (5.15) 

Note that the same function determines the Kahler potential of the D=l gauge theory in 

the N =4 superfield formalism [39]. 
The c-analytic hypermultiplets q+((c,u) and wc((c,u) can be introduced by analogy 

with HS of higher dimensions. These superfields have the R,-invariant minimal interac

tions with the prepotential V,,++. 
Let us introduce now the biharmonic lD-superspace using the SUc(2) harmonics 

u\±i,o.oJ=u; and harmonics v~·±•,0>, v~·0·±•J of the group USp(4) [40]. The basic relations 

for the v-harmonics are · 

n°Pv~·•-0>vt·-•·0> = o"' , 
,-,ap (0,0,o) (0,0,-b) _ cab 
" Va Vp - u , , 

naPv~·-.o>vp·0·•> = 0. 

(5.16) 

(5.17) 

(5.18) 

where a, b = ±1 and 0
0

, is the Kronecker symbol. These harmonics determine the 8-

dimensional coset space H8 =USp(4)/U(l)xU(l). 
The harmonic derivatives D~0 -±2 ,

0 >, D~0-0,±2l and D~0-±1,±1
l are defined in ref.[40] 

D~0-±2,0>v~·"'·0> = v~·±•,0> , D~0-0,±2>v~·0·"1> = v~·o,±•> , 
D~0,±2,0)v~-±1,0) = D~-±2,0)v~·0,±1) = D~0,0,±2)v~-±•,o) = D~o,o,±2)v~·o.±I) = 0 ' 

D~0,±1,±l)v~·O,'fl) = v~-±1,0) ' D~0,±1,±l)v~·0,±1) = D~0,±1,±l)v~-±1,0) = 0 . 
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(5.19) 

(5.20) 

(5.21) I 

The algebra of harmonic derivatives on H8 contains also the U(l)-charges De2 and 
De3 • The harmonic derivatives on the coset SUc(2)/Uc(l) are D~±2.o,oJ and D~. 

The biharmonized spinor derivatives.are 

D<±1,±1.0J = u\±1,0,oJv~-±1,oJ Dia , D(±l,0,±1) = u\±1.0,0)v~·0,±1) Dia . (5.22) 

The basic superfield of the biharmonic approach is the v-projection of the bispinor 
superfield (5.9) 

wco,1,1> = -iD(l,1,oJ D<1,o.1iv,,c-2,o.o> = -i J duDc-1,1,oJ Dc-1.o.•>v,,c2.o.o> , 

where the c-harmonic connections are used. This superfield is v-analytic 

D(±l,l,o)w(o,1,1) = 0, 

and also satisfies the harmonic constraints 

D(±l,O,l)W(0,1,1) = 0 

D~±2,0-0>w<0•1·1> = 0, v:w<0
•
1

•
1> = 0, 

where v: is the triplet of harm"onic derivatives conserving the v-analyticity (5.24) 

v: = (D~0·'·'>,D~0·2·0>,D~0·0·2>), 
[VA, D(±l,1,0)] = [VA, D(±l,0,1)] = 0 . 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

The v-analytic coordinates (v=(tv, 0<±1,1,o), 0(±,.o,,)) can be defined by analogy with 
(5.4) 

fv = t + ½(0(-1,-1,0)0(l,l,O) _ o(l,-1,0)0(-1,1,0) _ O(l,O,-l)0(-1,0,1) + 0(-1,0,-l)O(l,O,l)] ' 

0(±1,±1,0) == u~±l,O,O)v~·±l,O)OiQ' , 0(±1,0,±1) = u~±I,0,0)v~·O,±l)oia . 

The BHS representation of the general lD superpotential (5.14) is 

J,(Wap) = j dvF,[W'0·'·'>, va] , 

(5.28) 

(5.29) 

(5.30) 

where the real function F, determines the general solution of the 5D Laplace equation. 
Partial solutions can contain, for instance, functions of two variables W13 and W14 • 

Using this relation and Eq.(5.23) we can obtain the v-analytic representation of the 
lD effective action {5.13) 

s, = J dvdtvD(O,-l,-l)[w<0·1·1>((v)]2F,[W<0·1•
1>((v), Va], (5.31) 

where the following Grassmann measure is used: 

D(0,-2,-2) = D(l,-1,0) D(-1,-1,0) D(l,0,-1) D(-1,0,-1) (5.:l2) 

The effective action for an arbitrary gauge group can be const{ucted in the 1•-analyt.ic 
superspace. The matrix superpotential for the gauge group [U{l)]P in the full superspace 
satisfies the following conditions: 

_a __ a_ I ( ap 0.P) _ 
1aaw Inc W1 , ... WP - 0 

awM 10"N 
n(+2) J;,c = O · (5.:13) 
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It is not difficult to define the triplet of v-analytic superfields which is dual to the 
superfield we•.•·•> 

Wv == (w~o,1,-1) ,W~o,-1,1) ,w~o,o,o)) ' 

fl(±l,l,O)Wv = fl(±l,O,l)Wv = D~±2,0,0)Wv = 0 • 

These superfields have an infinite number of auxiliary components. 
The interpolating term for the duality relation has the following form: 

J dvdtn<•.-•.-•> [we•.•.•> D~•·•·•>w~•·•·•> 

+w<o,1,1) n~•···•>w~•·-•·•> + w<o,1,1) n~•···•>w:,O·'·-•>] . 
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