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Phenomenological Analysis of ¢//e within an Effective
Chiral Lagrangian Approach at O(p®)

We have combined a new systematic calculation of mesonic matrix elements
at O(p®) from an effcctive chiral lagrangian approach with Wilson coefficients
taken from [1], derived in the framework of perturbative QCD, and restricted par-
tly by experimental data. We derive complete expressions for K — 2n amplitudes
and compare the results for /¢ with experiment.

The investigation has been performed at the Laboratory of Particle Physics,
JINR.

~

12 TPy I T I TN S ¢ SR DI & DR M e Y. T 1Y



1 Introdlietion

The starting point for most calculations of nonleptonic kaon decays is an effective

weak lagrangian of the form (2, 3]
LLAS| =1) = V2Gr ViV, > C:i O; Q)

which can be derived with the help of the: Wilson operator product expansion from
elementary quark processes, with additional gluon exchanges. In the framework of
perturbative QCD the coefficients C; are to be understood as scale and renormaliza-
tion scheme dependent functions. There exist extensive next-to-leading order (NLO)
calculations [4, 5] in the context of kaon decays, among others. These calculations are
based on the possibility of factorization of short- and long-distance contributions into
Wilson coefficient functions C; and mesonic matrix elements of four-quark operators’
0, fespectively. ‘The latter, however, can presently. be obtained only by using non-"
perturbative, i.e.. model-dependent, methods, because not only perturbative QCD
breaks down at scales 4 < 1GeV, but also:the QCD degrees of freedom (qﬁa.rksa.nd
gluons) have to be replaced by the mesonic ones. Thus, a fully satisfactory solution"
would include the theoretical understanding of confinement. The only consistent
approach to this problem may be found in lattice calculations. A discussion of the
present status has been given in [6] and will not be repeated here.

Usually, the results of calculations are displayed with the help of B-factors in the

form

TK—~21r = \/_GF Vuqua z [C )] < WWIO ]I‘ >vac.sat. 3 ' (2)

where the mesomc matrix elements of four—qua.rk opera.tors are a.pprox1ma.ted by thelr .
vacuum saturation values, Wthh are real and Y- mdependent In principle, factors
Bi(u) should be estimated by some hlgher-order ca,lcula.tlops in the long-distance
regime, for instance, in 1/N_-expansion [7] in the form 1 + O(1/N,), or from the
lattice a.pproa.ch The prellmma.ry stage of these ca.lcula.tlons is best characterized by
the long sta.ndmg difficulties to explain qua.ntlta.tlvely the well-known AI = 1/2 rule..
Of course, the lack of such ca.lcula.tlons for long—dlsta.nce effects severely restricts the
predlctlve power of (1) lea.vmg only the possibility for some semi-phenomenological
treatment (4, 1, 8] with correspondingly large theoretical uncertainties. v
The main aim of the present paper is a further semiphenomenological treatment.

of the long-distance (non-perturbative) aspects of the above lagrangian, especially
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in view of the actuality of the task to analyze the implications of the measured pa-
rameter of direct CP violation, ¢ /e. The features distinguishing our approach from
others {4, 5, 9, 10, 11, 12] are mainly the following:

— At first, a chiral lagrangian up to O(p®) is used for deriving mesonic currents and
densities, from which the matrix elements up to O(p®) are constructed.

- At second, according to Weinberg’s power counting scheme [13], the calculation
includes tree level, one- and two-loop diagrams, whereby the renormalization of the
perturbative (loop) expansion for the matrix elements in question makes use of super-
propagator regularization (to be discussed below), being connected to the intrinsic
scale 4mFy of the chiral lagrangian, and showing good stability (decreasing higher
order contributions).

While the consistency of this approach could be checked phenomenologically in the
strong interaction. (hadronic) sector, in the application to the weak AS = 1 interac-
tions there remains the above problem of matching the scale- and scheme dependence
of the C;, thereby bridging the gap between short and long distance treatments.

In the present paper, we perform the calculation of matrix elements successively
for increasing orders in p?, displaying also the intermediate results, in order to analyze
the trend of the successive expansion terms. An obstacle to this procedure is the
proliferation of structure constants in higher order chiral lagrangians, which have
to be fixed by experiment. This has been accomplished up to now only to O(p*)
[14, 15, 16]. As a way out, we invoke another effective model - the Nambu-Jona-
Lasinio (NJL) model [17] ~ whose modifications have been used by several groups
{18, 19, 20] to “derive” the chiral lagrangian by bosonization of the fermionic degrees
-of freedom, suitably adapting the free parameters to reproduce those of the chiral
lagrangian. In this framework, the structure constants of higher order lagrangians
can be calculated, and they are well comparable in the O(p*) case with the empirical
ones. Therefore it seems justified, to estimate effects of orders beyond O(p*) by
taking NJL-derived structure constants.

If we compare the predicted amplitudes (2) with experiment, it turns out that
even after replacing < ##|O;}K >yc4ae. by higher order matrix elements there are
still some correction factors needed, which we call B;. We restrict ourselves in this
paper to the display of their ranges and correlations, especially taking into account
the large value £’ obtained in the NA31 experiment [21] and confirmed recently by the
KTeV [22] and NA48 [23] collaborations. As our approach to the renormalization

of chiral perturbation theory involves no arbitrary cut-off or scale other than Fp,

the bare 7/ K decay constant, there is also no other possibility to match the scale
dependence of the Wilson coefficients, except that due to the renormalization of Fo
(and the other bare parameters of the effective lagrangian). This is at least partly
included in our approach, as we redefine the bare cotipling Fp for each order to reach
agreement with =/ K- pv decay. As mentioned above, this procedure is stable and
consistent, i.e. does not lead to large higher order corrections or large renormalization
effects. i . .
In sectioﬁ 2 wé repeat all relevant definitions taken from our earlier work. Section
3 discusses the higher order structure constants used in the calculation of K — 77
amplitudes, the latter being sketched in section 4. The last two sections give our

results and conclusions, .

2 Lagrangians and currents
In the present paper we use the operators @; in the representation given in [2, 24}:

O, = arnu JL’7“-$L — dpyaur 7S,
O = upyuug dry*sp + JL'y,,uL arytsy + 2¢i_L'7,,dL JL'y“sL + 2517,8L JL'y“sL s

Os = upyuug JL'y“sL + JL'YuuL dry*s + 2JL'7udL JL'y“sL — 33L7usL JL'y“sL ,

O, = Uy JL'y”sL + JL'Y;;UL ﬁL7"3L - JL'YudL 3};7".51, )
Os = dpyhisy ( > @R qa) y Os =dryse ( 2. @R qn) )
g=u,d,s q=u,d,s

Or = 6dLyse ( > <7R4‘7»“Qqn) , O =6dpy,Aisy ( Y. @RT*AQ qn) )
g=tdys q=ud,s
where qp p = 3 (1 F 15)¢; AZ are the generators of the SU(N,) color group; @ is the
matrix of electric quark charges. The operators Os ¢ containing right-handed currents
are generated by gluonic penguin diagrams and the analogous operators Q73 arise
from electromagneiic t)énguin diagrams. The operators O; 3356 and O, describe
the transitions with, Al =1/2 and Al = 3/2, respectively, while the-operators O7g
contribute to the transition with both AF =1/2 and Al = 3/2.
The Wilson coefficients C; of the effective weak lagrangian (1) with four-quark
operators O; are connected with the Wilson coefficients ¢ corresponding. to the basis

of four-quark operators Q; given in Refs. [1, 4], by the following linear relations:

CI=CI—CZ+F3_C4+CS'f'ClO¢ sz"5(01+f2v—09—>6170)+03+04,
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Cs= =C, =€('3'(cl+c2)+c9+clo)

- 1
Cs cﬁ Ce = 2(C5 + ’gcﬁ) Cy = (C7 + 2Cs) , Cs= ch,. (3)

The bosom_zed ‘version of the effective La.gra.ngla.n (1) can be exéressed in the
form [25): - . ‘ y ; N

cz = Go{(ctt 4 6)[Uhm RIULH U5 - (Rt \,Jzu)(J,‘;szn)]

TG+ 552)[ JL“+ 1JLM) + — \/_ 53 JLM(JL;..+ 1JL“)

e [(Th= iIE) (I, i05,) + 2 JL“(JLM+ zJLM)]

—46s [(Jn—'Jn)(JL'*' iJp) - (Jn \/— [Jn (JL+1JL) o
\[ (it TR (VRS —JL)]

+s \@ (it 1L R + 667 (JE,+ L) (R, + % TRu)

~166 [ L+ 5 T VR E )

+\—lf6 (Jo+ iJR) (V2 I — Jg)]} +he .- : (4)

Here Gr = V2Gp V4V wes Jlyru and Ji g are boscl)rﬁlized'(.V-.:FuA) and (S ¥ P)
meson currents and densities, corresponding to the quark currents i1 F %)X
and densities §;(1 F 7°)A°q, respectively (A* are the genera.tbr’é of the U(3)F flavor
group); N

1Y\ 1
51» =0 (1 - J_V:) , €234 = Caaa (1 + E) ’
L 1 : .

&8 =Css ( N’) Cs 7, 6.7 = Cez, - (9)
where the color factors 1/N, origina.te from Fierz-tra.nsforma.tiofls‘ of four-quark op-
erators O; (see more technical details in [25]). -

Only the even-intrinsic-parity sector of the chiral strong lagrangian is required
to describe nonleptonic kaon decays up to and including-O(p®).- The meson cur-
rents/densities J¢ 5, and J{, 5 are obtained from the quark determinant by variation
over additional external sources associated with corresponding quark currents and

densities [25). From the momentum expansion of the quark determinant to O(p?")

oné can derive the strong lagrangian for mesons L.y of the sarne order and the corre-
sponding currents and densities J3,, and J} p to the order O(p**~") and O(p**~?),
respectively. For example, from the terms of quark determinant of O(p?) one obtains

the following:

2 2
y__F F,
) = St (L) +

F F?
J(P Ja _ 4 tr(z\"L,,) J(P Jo _ _41

(XU +UxY,
mR tr(\°U), - (6)

where U = exp (%np), with ¢ being the pseudoscalar meson matrix, and L, =
DU UY, DU = 3,U + (ALU — UAR) and AR/L =V, £ A, are right /left-handed
combinations of vector and axial-vector fields. Furthermore, Fy = 90 MeV is the
bare coupling constant of pion decay, x = diag(x2, x3, x?) = —2mo<gg>F; 2 is the
meson mass matrix, x:= 0.0114 GeV?, x3 = 0.025GeV?, x% = 0.47GeV?, mq is the
current quark mass matrix, <gg>= (—220MeV)? is the quark condensate, 77 ~ 265
MeV.is an average constituent quark mass, and R =<“q‘q>/(ﬁFJ) = —4.96.
At O(p*) one gets

1 1
J N (L1 - EL,) (trL2) + Lytr (§[L,,,L.,]’ + 3(L§)’) + Lyte[(L2)?)
—Latr (L}) tr (xU' + Ux') - Ls tr (L2(xU" + Ux"))
+Lstr (x'U)? + (xU')?) + Hatrxx'
a . 1
s = it {3 [ e + UX) 4 3 s L G0+ 0D}
JE = —mR (A [LU (L) + Ls(L2U) — 2LsUx'U — Hxx]}, (7)
where L; and H; are structure constants introduced by Gasser and Leutwyler [14].
For the sake of brevity, here and in the following expressions for the lagrangian at
O(p®) we restrict ourselves to the terms which are necessary to calculate the decay
K — 2x. At O(p®) one needs the following terms: ;.
) = tr{Q,,(xR"Uf(D D,U + D, D U)LY
+x'L*U(D,D,U* + D, D, UYUR)
+Qus[x(D.D,U'L*L* + R*R*UD,D,U")
+x(D.DUR*R" + L*1*D,D,U)]

"The rather lengthy full expression for the bosonized effective lagrangian at O(p®) was presented
in Refs.[20].



+Qu[x(U'D.DUD* DUt + D,D.U'D*D*UUY)
+x'(UD,DU'D*D"U + D,DUD*D'U'D)]
+QusX Lux R + Qus (XX RuB* + xx'LuL*)
< +Qu(Ux'UX'LuL¥ + UNU'XBLR®) + Qus|(XU'L,Y? + (x!UR,Y]
+Qus[(xU + ('U)°] + Qao(Utxxtx + Ux'xx?) } , (8)

where Q; are structure constants introduced in [20], whereas - R, = U'D,U. The

corresponding terms of (V q: A) and (S F P) bosomzed meson currents are given by

VA tr{A“[ 2Qu [(x! +fo)D D, UU*L" +D,D U(U*xU*+xf)L"
~UD*((U'x + x')D, DUt + D,D, WU+ xUh)
‘LU ((U*x+fo)D D,U'+D,D, LU UX + xU*))
o +D"((Ux +XUND.DU + DDUWU +x'0)) U]
+2Qus(Ux'LuxU" + XUMLU ) o+ 2Qus({Ux'XU", L) + b, L)
+2Que({(Ux"), L} + {(xU")*, L.})
—4Q13(U?(fL“Ux + foL,,fo()] } ,

and

JFe o mRr{ X [Q1 L“U{D DU UR
« +@is(L"L* DD, U + D,‘D,,U - R*R*) ‘
+@(UD'D"U'D,D,U + D,D,UD DU - U)
2 +Q15L xR+ Qe (XR2 +L2x)+ Qn(UfoR2 +L2Ufo) _
‘. +2Qrs L“Ufo U+ le(UX ) U + on(Xfo +XXfU + Uy X)]} ~—
- We do not show explicitly the terms of the effective action at o(p®) generatmg the

scalar current Jy’ ) which is necessary for the full calculaticn of the tree-level matrix

elements at O(p®) for the penguin operators smce the, correspondmg contributions
turn out to be negligibly small
3 Structure consta'nts', '

For numerrcal estimates of K — 2r amplitudes and ¢ /e we, will need the values

of the structure constants L and @; which were introduced in the effectivé chiral:

lagrangians at O(p*) and O(p®), respectively. The current experimental status of
the effective chiral lagrangian at O(p*) has been discussed within ChPT in some
detail in [16). For the O(p*) lagrangian (7) all structure constants L; are at present
determined phenomenologically as measurable values LT depending on the renormal-
ization scale fi. The best values of the parameters L; quoted at a p-meson mass scale
and the sources of the experimental information used are listed in table 1. The scale

dependence of the measurable coeflicients L} is determined by relation

Li(ua) = (/11) + Int (9)

I;
(4m)? p’
where the coefficients ['; are also given in table 1.

In the context of the scale dependence of the structure coefficients L;, we have to
note that in our approach the UV divergences resulting from meson loops at O(p*)
and O(p®) were separated by using the superpropagator (SP) regularization method
[26] which particularly well suits the treatment of loops in nonlinear chiral theories.
The result is related to the dimensional regularization technique though some the
difference lies in the scale parameter it which is no longer arbitrary but fixed by the
inherent scale of the chiral theory ji = 47 F, = 1 GeV, and the UV divergences have

to be replaced by a finite term using the following substitution:
(C—1/e) - Csp = —-1+4C + B,

where C = 0.577 is Euler’s constant, € = (4 — D)/2, and B is an arbitrary constant
introduced by the Sommerfeld-Watson integral representation of the superpropagator
based on unitarity. v

The phenomenological analysis of the so-called Skyrme and non-Skyrme struc-
tures in the effective chiral lagrangian at O(p') was earlier carried out in [28] by
using the direct SP-calculations of meson loops for mn-scattering amplitudes. After

reformulating this analysis in terms of the structure coefficients L;, the values
Ly =(06%£02)-1072, Ly=(1.6+03)-10"%, L3=(-3.5+0.6)-10" (10)

were obtained from the experimental data on ww-scattering lengths. In the same
way, taking into account the tadpole loops, the splitting of the decay constants F,
and Fyx was used at O(p?) to fix Csp = 3.0 and Ls = (1.6 + 0.3} - 10~3. The latter
value as well as the values (10) are in a good agreement with the corresponding ones

given in table 1. This fact indicates that the choice i = m, for the renormalization



Table 1. Phenomenological and theoretical values of the structure coefficients

L; (in-units 1073).

L | Phenomenology [16] NJL model
Li(m,) © Input I; | Without feductjon After reduction
s * of resonances - | of resonances
1 04+03 | Keiand 1 — nw | 3/32 0.79 0.85
2 1.44+03 | Ky and nr = 77 | 3/16 1.58° . - 1.70
3|1 -35+1.1{ Key and e = 7 0 -3.17 -4.30
4 { -03+£0.5| 1/N, arguments 1/8 0 0
5 14405 Fr/Fx 3/8 0.98 1.64
8 | 09403 | mgo—mg+, Ls, | 5/48 0.36 112
baryon mass ratios '

scale of ChPT proves to be consistent with the internal scale of SP-regularization.
Therefore, we use the values of L; given in table 1 for further phenomenological
analysis. .

The structure constants Q; of the O(p®) lagrangian (8) are still not defined from
experiment. Therefore we need some theoretical model to estimate their values.
Both the structure constants L; and @; can be obtained from the modulus of the
logarithm of the quark determinant of the NJL-type model [17] which explicitly
contains, apart from the pseudoscalar Goldstone bosons; also scalar, vector and axial-
vector resonances as dynamic degrees of freedom. However, in order to avoid double
counting in calculating pseudoscalari meson amplitudes when taking into account
resonance degrees of freedom, one has to integrate out (reduce) these resonances in
the generating functional of the bosonization approach. As a consequence of thié
procedure, the structure coefficients of pseudoscalar low-energy interactions will be
quite strongly modified. Inthis way one effectively takes into account resonance-
exchange contributions [19, 27, 20].

Without reduction of resonance degrees of freedom, the structure constants L; =
N./(1672) - I;, and @; = N./(32x%*m?) - ¢; are fixed from the bosonization of an
NJL-type model as

1 1 1
=l = — = I,=0, l=gy—
L gl =5 I3 g U 0, =zy—=z,
1 , 1
lg-izy—zy—ﬁ,

and

1 171 T
@12 = oo q13=—§(§6—z+0), ql4=g,

2 1 T 1
Q15 = 31:(1 —-z) - (3—2z)c, Qie=——=+-z°+ -6-(1 —4z)—2(z— E)C’

—L+£(l 4z) (z+1)c = .r+(l ::)c
B7= 120" 6 6/ M7 3 6 :

2
Lo 2,4
510 ~ % +3.r + z(1 + 2zy)c,

Qo = ﬁ + 2% +2(1 — 2y)z* — z(1 + 2zy)c,

qi9 = —

where z = —mFZ/(2<Gg>) = 0.1,y = 4n2F}/(N;m?) = 1.5 and ¢ = 1 ~ 1/(6y).

After reduction of the resonances, the structure coefficients get the form

Te 1 re 1 . l" .'
et = St = [z 2zt -0 (Saz -0 - 23)]



B = -2z + 32 - 1)(—ytzz -n-z),

red red __ red __ !7 4 rcd ~ _2_421 _

red=0, I (y—l) 25, =Lz, wt=izi(F-s).
and

red red _ ¢ red
a2 =q13 =0, q¢ = ZAa

z8
q;;d—q;;d_-si{y-zA[4 6 1+4(1—-ZA))(1— )+4(1+16(1—-ZA)) }
1-
giet = —24}g = ZA[Sy 2zA(5-12( Uit ))]

1 T i '
q;;d - 3q18d - 192 ZA(3y 2) U

where j = 472 F2[(Z3N;m?) = 2.4, and Z3 = 0.62 is the 7 — A; mixing factor.

In table 1 we.also present the predictions of the NJL model for the structure
coefficients L; which after reduction of meson resonances turn out to be in'a’'good
agreement with phenomenology. This fact indicates that the'NJ L-model is a reason-
able. low-en‘ergy‘approximation for the effective four-quark interaction, generating
a realistic effective meson lagrangian. Therefore we also use it to fix the values of
the structure constants Q; for numerical estimates of the contributions of the O(p®)

lagrangian (8).

4 Amplitudes of K — 27 decays

Using isospin relations, the K — 2r decay amplitudes can be parameterized as

Vi,
2

TK4-"+g°

o 2 1 .
Tkgmntam ‘= \[z-Ao+ 7 Az, Tigmomw = Ao - 7

The isotopic amplitudes Az determine the K - o7 tra.ns1t10ns into sta.tes w1th

]

isospin I = 2,0, respectively:

K Ag = aq 8'62 : Ao':—‘ Qg e’5° )

where 6, 9 are the phasés of wm-scattering. It is well known that direct C P violation
results in an additional (small) relative-phase between a; and ao. Let us next in-

troduce the contributions of the four-quark operators O; to the isotopic amplitudes

10

A(,i) by the relations
' - 8 . 4";" -
A = FrA, Ar=-iYaAd, Ut ¢ o)
i=1 B B

where F, = \/_fo = £GpFo(mK - m?).
At O(p?), corresponding to the soft-pion limit, for the nonzero tree-level ampli-

tudes A{? we obtain the following expressions:

AP = —AF = A&" -1, A=A =2, A&‘”f—sz(’;_) Ls,

® _ 16(Rm)* ) T
A= ! F, (6403 + X3+ x3) A
+(Ls —4Ls)(x3 +3x3 +2x2) + 2Lsm ] }
8(Rm)*

q

+(L5 - 4L8)(Xa + 3xd + 2Xu) + 2L5mK]} (12)

The Lg and Hg contnbutlons in the penguin operators 053 also ha.ve a. ta.dpole
contribution from K —~ - (vacuum), included through strong resca.ttermg, K > rrK
with K — (vacuum). At O(p?), in case of the penguin operator Os, the Lg and
H; contributions to the direct matrix element from K — 27 vertices, are fully
canceled by the tadpole diagrams 2. This is due to the possibility of absorbing the
tadpole contribution-into a redefinition of the K — 27 vertex if all- pa.rticles are
on mass shell. Moreover, such a cancelation is expected at all orders of K = 2r
amplitudes mcludmg loop’ dla.gra.ms due to general counter term arguments given
in [15]. Accordmg to these arguments the structure constant-H; is not directly
measurable and does not occur in the amplitudes of physical processes; h

Some interesting observations on the difference of the momentum behavior of
penguin and non-penguin operators can be drawn from. power-counting arguments.
According to Eq. (6) the leading contributions to the vector currents and scalar den-
sities are of O(p') and O(p°), respectively. .Since in.our approach the non-penguin
operators are constructed out of the products of (V — A)-currents J¢ ,, while the pen-
guin operators are products of (S — P)-densities J}, the lowest-order contributions of
non-penguin and penguin operators are of O(p?) and O(p°), respectively. However,

due to the well-known cancelation of the contribution of the gluonic penguin operator

2We thank W.A. Bardeen and A.J. Buras for drawing our attention to this point.
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Figure 1. Topology of the main two-loop diagrams at O(p®) (diagrams with tad-
pole loops on the external lines and in the vertices are not sh()wn).t The external
lines denote the momenta. The internal lines correspond to various combinations of
virtual pions and kaons in different’ charge channels. The filled circle denotes the

week interaction vertex, the open circle corresponds to strong interaction.

12

Table 2. Isotopic amplitudes of I’ — 27 decays

Operators ()] (@) (3 (¢h Os Os aO7 a0
Soft pion approximation
o ReAl) [-1.000 1.000 1.000 0.000 -9.623 0.000 0.016 -1.458
Relta ReAY) | 0.000 0.000 0.000 1.000 0.000 0.000 -0.016 0.654
Born diagrams with g —  — 5’ mixing
ReAl? [ 0.004 -0.021 -0.039 0.020 0.119 0.004 -0.001 -0.002
ReA -0.004 0.021 0.039 -0.002 -0.119 -0.004 0.000 ~0.016
Sum ReAY) 1-0.996 0.979 0.961 0.020 -9.504 0.004 0.015 1.456
- ReAY) 1-0.004 0.021° 0.039 0.998 -0.099 -0.004 ~0.016 0.638
' Born diagrams
ReAY) [0.247 0249 0236 0008 -1.626 0.000 0.004 0.037
ReAY) 10.003 0.001 0.015 0.249 =0.059 0.000 -0.004 0.008
oY) R 1-loop diagrams ~
ReAl): [-0.171°.0.171 . 0.111  0.001 =2.072 0.000 0.001 0.188
mAY 0482 0.482 0.482 0.000. -4.572 0.000 0.008 0.344
ReA} | 0.000 0.000 -0.004 -0.149  0.001 0.000  0.001 -0.006
ImAY) | 0.000 0.000 0.000 -0.213 -0.004 0.000 0.003 -0.049
ReAl) [1.415 1.399 1.307 0.029 -13.202 0.004 0.020 1.871
Sum ImAY 10482 0482 0.482 0.000 -4.572 0.000 0.008 0.806
pr4+pt | Redl) 10.007 0.022 0050 1.099 -0.157 -0.004 -0.018 0.593
1mA%).| 0.000 - 0.000 0.000 -0.213 -0.004 "0.000 0.003 -0.151
‘Born diagrams
ReA? 1-0:003 0.005 0.005 0.000 0.012 0.000 0.000 0.001
ReAY |-0.001 -0.001 -0.001 0.005 -0.004 0.000 0.000 0.000
1-loop diagrams .
ReA? [0.106 0.107 0.018 0.002 -0.151 0.000 -0.002 0.016.
0% | mal? L0229 0232 0232 0000 -1.582 -0.001 0.004 0.063
ReAY) | 0.000 0.001 "0.002 -0.097 -0.004 0.000 0.000 0.007
1mA | 0.000 0.001 0.001 -0.077 -0.001 0.000 0.001 -0.007
2-loop diagrams
ReAS) | 0.202 -0.202 -0.220 0.000 1.753 0.000 -0.003 0.075
ImAY 1-0.169° 0.169 0.142 0.000 -1.704 0.000 0.003 0.115
ReAY | 0.001 -0.001 -0.001 -0.036  0.000 = 0.000 0.001 - 0.007
1mAY | 0.000 0.000 0.000 0.034 0.00 0.000 -0.001 0.006
ReAl) 11322 1309 1111 0.031 -11.588 0.003 0.015 1.664
Sum mA{? 10.880 0.883 0.856 0.000 -7.858 -0.001 0.014 [.I8
P+t 45 | ReAl) -0.007  0.021 0.049 0971 -0.166 -0.004 -0.018 0.566
mAY | 0.000 0.001 0.001 -0.256 -0.003 0.000 0.004 0.110
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Os at lowest order [29), the leading gluonic penguln as well as non-penguin contribu-
tions start from O(p?) 3. Consequently, in order to derive the (V — A)-currents which
contrrbute to the non-penguin transition operators at leadmg order, it is sufficient to
use the terms of the quark determinant to O(p?) only. At the same time the terms of
the quark determinant to O(p ) have to be kept for calculatmg the pengum contribu-
tion at O(p ?), since it ‘arises.from the combination of (8- P) -densities from Eqs. (6)
and (7 ) Wthh are of O( ) and O(p ) respectlvely In this subtle way a difference in
momentum behavror is revealed between matrix elements for these two types of weak
trans1t10n operators it mamfests itself more drastlcally in hlgher-order lagrangians
and curfents. This fact makes pengums especially sensitive to higher order effects.

Our calculatjons involve Born and one:. and two-loop meson diagrams and take
into account lsotopxc symmetry breaking (7%—n—n" mixing): The use of a specialized
analytical computation package based on REDUCE [30] to calculate amplitudes‘and
loop integration makes it possrble to evaluate & large number of loop dlagrams arising
for different charge channels. The main problem m the calculation of amplitudes at
O(p®) is the evaluation'of two-loop dlagrams A part of them is shown schematrcally
in figure 1 (we do not show rather trivial dlagrams with tadpole loops) The diagrams
of ﬁgure la were calculated analytlca.lly, because the 1ntegratlon in every loop can
be performed 1ndependently when using -the superpropaga.tor regularlzatlon The
two-loop: diagrams -of figure 1b,c,d cannot be: calculated a.nalytlcally, but they ca.n‘
be estimated numerlcally through a. dlsperswn relation approach in the same way
as it was already done in [31] for the so-called “box”.and. a.cnode ‘diagrams. Such
numerical estimates have shown that the_contrlbutlons of dlagrams of 1b,c,d do not
exceed 2% and can be neglected.

Table 2 presents the modrﬁcatlon of the amplltudes A(') when mcludmg succes-
sively the hlgher order correctlons at O( 4) and O(ps) In our numerrcal estimates
the: Born contrlbutlon at O(p ) and the one—loop contrlbutlon at O(pG) were calcu-
lated for central values of the phenomenological parameters L. from ‘table 1. The

Born contribution at O(p®) has been estimated for values-of structure constants Q;

ﬁxed from the bosonization 6f the:NJL-model with reduction, of meso'n resonances.

Table 2 shows that the Born' ¢ontribution at O(ps) is very small as . compared to loop:

contrrhutlons and does not” play an essential role in our further analysrs of decay

3There is no cancellatxon of the contnbutlon of the electromagnetrc pengum operator O at the

lowest order and the ﬁrst terms in the exprsslons (12) for .A(s) correspond to the contrlbutlons at

or°)-.

[ o : or ot
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amplitudes and €'/e. »

A strong indication that the 'development to hlgher orders is physically sensiti{'e
is given by the behaviour of phases: the strong interaction pha.ées:62,o' arise first at
O(p*), but for the quantitative description of the phases it is necessary to go beyond
O(p*). At O(p*), for the wx-scattering phase shifts and their difference A = 6o — 6,
we have obtained the values of 6y &= 22°, 6, = —13°, A = 35° which are in agreement
with [32]:- At O(p®); however, we obtained 6p = 35°, 6, = —9°, A ~ 44°, in a better
agreement with the experimental value A®? = (48 - 4)° [33]. :

5 Phenomenological results

In our approach the parameters ¢; in Eq. (ll) are treated as phenomenological (u-
independent) parameters to be fixed from the experimental data. They can be related
to the p-dependent QCD predicted &:(u) by using some p-dependent Bi-factor defined
. o ,
&* = &) Bilp)-

The factors B;i(u) can be related to the factors Bi(y) defined in (2) by obvious
relations. Table 3 shows the QCD predictions for the coefficients & () = £ () +
T{f")(p) which correspond to the Wilson coefficients ’
ViaVis

c.-(ul = z(n) + rye(u), TS YLV

" from the table XVIII of Ref. {1] calculated numerically from perturbative QCD

at g = 1 GeV for m; = 170 GeV in leading (LO) and next-to-leading orders in
“naive dimensional regularization” (NDR) and "t-Hooft-Veltman (HV) regularization
schemes. The numerical values of the QCD scale A( 375 given in table 3 correspond to

(4) 375(Mz) = 0.119 £ 0.003. 6(') and {,(”) were obtained from z; and y;, respectively,
usmg the Eqs. (3) and (5). ’

As we cannot calculate the factors E.—(p) theoretically, they can be fixed only
from data in the spirit of the semi-phenomenological approach [1, 4, 8]. Table 2
shows that the amplitudes of K — 27 decays are dominated by the contribution of
the operators O; with i = 1,2,3,4,5,8. Moreover, in case of the operators Oy 3 3, the
first term in the combination (—¢1+ €2+ £3) dominates in the effective weak meson

lagrangian (4). Thus, the isotopic amplitudes can be given after restriction to the

15-



Table 3. QCD predictions for the parameters &;(p) =

£ (n) +
7€ (y)( ) calculated with Wilson coefficients ci(p) = zi(p) + 7yi(p) at
=1 GeV for my = 170 GeV [1]

A =215 Mev.

“ _
Ags =325 MeV

Table 4. Predictions for the parameters; of ' = 27 decays in the

semi-phenomenological approach (B; = Bg = 1) The ratio ¢ /< is

given in units 10-4.

a) At O(p?):

AW — 215 MeV

{4} _ 4. Aot
Am = 325 Me\

(5'/5)7111';1 ‘02 -0.2 . -0.5
(SI/S)mn: -0.1 -0.1 -0.3

-0.2 -0.3 -0.4
-0.1 -0.1 -0.2

AIS E
LO NDR | HV LO NDR | HV LO NDR | HV
B 6.82 7.7 7.29 1 6.26 727 6.65 5.71 6.76 5.83 .
By 0.54 0.48 0.51 0.57 | 0.50: ; 0.53 0.60 0.52 0.58
A 1.76 f 1.21 0.59 | 3.17 2.73 2.06 5.02 5.91 4.29
Py 2.88 2.49 3.69 || 4.1 4.20 4.33 6.37 7.03 6.45

02| -02 | -04
01§ 61 | -02

b) Up to and including O(p*):

) _ a9k MeV
Ayrs =325 Mel

) _ jar r
Am =435 Me\

LO | NDR | HV

LO | NDR | HV

A“” = 435 MeV
. | o [npR| BV { 1o [ NDR| BV | 1O | NDR| HV
P [-1.286 | -1.061 | ~1.165 || -1.443 [*-1.159 | -1.325 || ~1.624 [ ~1.270 |-~1.562
) 0187 | 0195/ 0.198 [ 0172 0176 | 0.182| 0.157| 0.150| 0.165
1% 0129 0.143| 0137 0.122] 0137 0.130) 0.115| 0.131] 0.121
()| 0645| 0714 0.687 [ 0.609] 0.684| 0.650 | 0.573 | 0.654 | 0.599
)| -0.008 | -0.020 | -0.008 || -0.012 | -0.032 | -0.013 [| -0.016 | -0.056 | -0.023
) | "0.000 | '-0.003 | '0.000 || 0.001 | -0.007 | -0.001 || -0.002 | ~0.021 | -0.007
€970 | 0.002| 0.003]-0.001| 0.004| 0.008| 0.001] 0.006| 0.015| 0.032
€774 | 0000| 0002 0.001] 0001 0004l 0.002( 0001| 0.000| 0.067
2 0.044 | 0.038 0.048 || 0.054] 0048 0.053 | o0.065| 0.060| 0.069
¥ | -0.028 | -0.029 | -0.030 || -0.029'| -0.033 | -0.030 || -0.030 | -0.033 | -0.030
£ ] -0.002 | -0.002] 0.001. | ~0.002 | -0.002 | -0.002 | -0.002.| -0.002 | ~0.002
1 -0.009 | -0.010 | 0.004.| -0.008 | ~0.009 | ~0.009 || ~0.008 | -0.009 | -0.008
® | -0.081 | -0.076 | -0.067 || -0.109 | ~0.111 [ -0.092 || ~0.143 | -0.173 | -0.132
€9 | -0.033 | -0.042 | -0.021 || -0.049 | -0.076 | -0.033 || -0.071 | -0.139 | -0.051
£¥/a | 0.033] 0.004| 0006 0044 0.013| 0016 0057 0.027| 0.032
90| 0.031| 0028 0031 0.043| 0.041| 0.045| 0058 | 0.061| 0.067
16

A = 215 Mev

LO | NDR | HV

B, 454 [ 5.13 | 4.85

B, 048 | 043 | 045
By 391 ] 325 | 241

P 349 | 3.08 | 4.20
(/E)min | 04 0.1 -3.1
(€ /€ maz | 08 0.3 -1.5

4.16 4.79 4.42

0.51 0.48 0.47
6.09 5.68 4.58

5.21 5.04 4.99
0.8 0.6 -0.7
1.5 1.1 -0.4

3.79 4.41 3.86
0.54 0.16 0.51
R.87 10.46 T.87
743 8.34 .34
1.2 1.8 0.5
2.5 3.6 0.9

c¢) Up to and including O(p%):

AL =215 Mev AL = 325 MeV AL = 435 Me

1O | NDR | HV | LO | NDR | HV || LO | NDR | HV

B, 429 [ 485 | 458 || 393 | 453 | 417 || 357 1 417 | 3.64

B, 0.53 | 048 | 0.50 || 0.56 | 050 | 0.53 [l 0.60 | 051 | 0.57

P 393 | 323 | 240 || 6.08 [ 5.66 | 4.56 || 887 | 10.11 | 7.87

P 357 | 3.7 | 420 || 531 ] 515 | 507 || 7.55 51 | T3
(' /€)min | 0.3 0.1 32 | o7 04 0.4 | 1 1.7 0.1
€'/ mar | 06 0.1 ~16 | 1.3 0.9 -0.8 | 2.2 3.3 0.7
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dominating contributions of four-quark operators as
Al = AP AP,
AED = [ 696+ ) + €90 By A PR A
HEE () Bo() AP + 65 Bo(w) AP] (13)

and the relation (11) to the measurable amplitudes ma.y be modlﬁed to
(a () 4 'ra(”)) e’

At least two' fa.ctors B, and By can be estlmated from the experlmental values Ag? ~
10.9 and A5 =~ 0.347 (for fixed By and Bg) while the other two (penguin) factors
Bs and Bg should be fixed from other data. The factors B,, B4, By a.nd Bg are the

1/7)’ B(a/z)’ B(]h) and B(3/)

analogs of ‘the bag fa.ctors B respectlvely, introduced
in [1] '

The parameter € of dlrect CP- v1olatxon in K — 27r decays can be expressed by
the formulae

, w Imag _ Rea, ' llmaz

£ =
v : \/— Re ao .
and the ra.tlo €'[ebe estlmated as (recall tha.t experlmentally, €'/e ~ Ree'[e, arge =~

arge')

1 — Q) eilx/3+6:-60)
( : )e» C? Reao wImao

$.

!‘v;"‘ o w ‘a(Iv)‘ iy
== Im/\g (Po Py), '\/—E!Vud“Vu:l & (14)

with ImA; = Im V3V = IV.,bHVcblsmﬁ = 17|Vu,||Vd,|2 in the standard and the Wolfen-
stein pa.ra.meterlza.tlons of the CKM matrix. '
Table 4 gives the estimates of €' /e from a semi- phenomenologlca.l approach ob-
tained after fixing the correction factors B, and B for’ 1sotop1c a.mphtudes in the
representation (13) by experimental (CP-conserving) data on Re Aoz, and setting
Bs = Bs =1.. We ha.ve used the matrix elements of the opera.tors 0 dlsplayed in
table 2 (for central va.lues of phenomenological structure coefficients L; given in table
1), and the theoretical values &(u) from table.3. The values (€. /€)min and (€'/€)max
correspond to the interval for Im J, obtained from the phenomenological analysis of

indirect C P violation in' K — 2r decay and B® — B mixing [1, 8]

0.86-10~ < Im\, < 1.71-1074. , - (15)

Table 4 demonstrates the modification of the semi-phenomenological estimates of

the parameters El, B, and (5' /€)maz after successive inclusion of the corrections at
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O(p*) and O(p®). Most important are the corrections at O(p*). The peculiarity of

' the results at O(p?) lies in the observation that all estlma.tes of “J€ lead to negative

values. This is related to the fact that in the case correspondmg to table 4a-the
contribution of »gluomc penguins to AJ = 1/2 transitions appears to be suppressed,
leading, aftter the interplay between‘ gluonic and electromagnetic pengujns, to the
relation Py < P, for the two competing terms in (14). Generally speaking, Al = 1/2
transitions loose importance compared to Al = 3/2 when estimatin}g,e'/e. The
situation already changes after inclusion'of the correction at O(p*), due to relative
enhancement of the matrix elements for the operator Os (see table 4b): Taking into
account the dependence of the Wilson coefficients on the renormalization scheme,
after including the corrections at O(p*) and O(p®) we obtained the following upper
and lower bounds for €'[e (see table 4c):

-3.2.107"<e'/e <3.3-1074, : (16)

where the range cha.racterizes the uneertainty fr:)m short-distance physics.

Our calculations have shown that especially the penguin matrix elements are
most sensitive fo various refinements: higher-order derivative terms in chiral la-
grangians, the reduction of meson resonances, #° —n — 5’ mixing, a.nd meson loop
corrections. It should be added that the modification of penguin matrix elements,
discussed in this note, is much more important for gluonic than for eleetroma.gnetie
penguin transitions. This is obvious from the observation that the latter at the low-
est order contain terms of O(p®) which remain unchanged when taking intp account
the additional terms derived from the effective lagrangian at O(p*). '

We give some results concerning the dependence of the above semi-phenomenological
estimates for €'/¢ on the choice of the penguin correction factors Bs and Bs (figure
2) and on the values of the structure constants L; (figure 3). In figure 3 we show
the dependencnes of €' /e on the coefficients Ly, Ls and Lg only, to demonstrate the
apprec1a.ble sens1t1v1ty to the variation of these parameters within their phenomeno-
logical bourds given in table 1. It is caused by the fact, that the coefficients Ly,
Ls and Lg appear in,‘penguin contrlbut,lons_to the K.— 27 a.mphtudes alrea.dy at
O(p?) (see ( 12))“wvhile all other structure coefficients given in table 1 appear in the
amplitudes of hiéner orders. ° .

To study the upper and lower bounds for €'/e cdrrespdnding to the ‘va.ri'atien of
the parameters L; and Im A, within their phenomenological bounds; we haye used the

so called “scanning” and “Gaussian” methods [8]. In the first case the parameters L;

19



NDR

@
Aus=435MeV -

14

£7e-10%

12

10

|[|,rl‘l|.<l|||‘|[|1‘r[1_llll

X

L

‘lllLlll'lillI(IllllllllllIl'lJ_lIlllIllJ

1 1 12 13 14 15 16 17 18 19 2

5

e’/e-10*

-
-2

-3
NDR

|;ll|—r||f|lﬁ||rl1_r|l|1Y|||'l..r!llﬂ

-5 JLIIJ_IIJII_LIIIIJALlLllllllllJ_LIALlllllllL

11 12 13 14 15 16 17 18 19 2

[y

Figure 2. Bs and Bs-dependence of €'/e calculated for central values of the
phenomenological constants L; and Im A, = 1.29 - 10~* with Ag—)s = 435 MeV. The
[~?5—dependencc is calculated with f?s =1 and the Eg-dependence - with Es =1.
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Figure 3. Dependencies of s'/c‘ on Ly, Ls, and Lg calculated for central values
of Im A, and other L;-cocllicients with ’\%‘% =435 MeV and 3, = I}g = 1.
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were scanned independently within the intervals defined by their central values and
errors given in table 1 while the parameter Im A, was scanned within phenomenologi-
cal bounds (15). In the second case we calculated the probability density distribution
for £' /¢ obtained by using Gaussian distributions for the parameters L; with errors

given in table 1 4 while for the parameter Im A, using the result obtained in (8]:
ImA,;=(1.29 £0.22) - 107*.

In tables 5 a.nci 6 the “scanning” and “Gaussian” results for ¢'/e are given for different
values of Bs (Bs = 1). Figure 4 shows typical probability density distributions for
€' /e obtained in the Gaussian case.

Our results demen\strate that even after taking into account all uncertainties

Table 5. Upper and low bounds for 3 / € (m units 10“4) for different

related to both -phenomenological input vpara.meters and renormalization scheme de-

pendence; it is still rather problematic to explain theoretically with Bs = Bs = 1 the values of B5 (Bg = 1) Obtalned by the scanmng method
value of the direct CP-violation parameter Re(e’/¢) = (23.0+6.5) x 10~ measured in .
the experiment NA31 at CERN [21]. The rather high level of direct CP-violation ob- ' = @ e

By [ A8 LO NDR | HV

Ms? .

served in this experiment was confirmed by recent measurements of KTeV at FNAL p - T
(MeV) | min  max | min 'max| min " max

[22], (28.0 +:4.1) x 10™*, and NA48 at CERN [23], (18.5 £ 7.3) x 10~*. Taking into . 215 |38 85 140 75 72 3 3
account the result of the experiment E731 at FNAL [34] (74£5. 9) x 1074, the world o | 395 | 119 ~5"1"' s 66 sa
averaged value is estimated as S ; . | 435 |55 161 ]-50 10666 138
o 1 -2. .3 | -2. 7156 - 9.
Re(c'[e) = (21.2 £ 2.8) x 107*. (17) 215 1-24 163 [ -2.7 147 |-5.6 © 9.7

15| 325 |26 222|-3.0 219 |-41 169
Finally, we give some results concerning the factor By required to describe the ) | S| 435 [-29 206-29 35.6 -4.2 .26.7
| 215 |-09 240[-13. 220 |-44 162
20 | 325 |-07 325|-12 323|-25 257
435 |-04 432[ 01 514-18 395

experimental value (17) within our semi-phenomenological approach. In figures 5,

6 and 7 we show the probability density distribution for factors B, B and B,

respectively, obtained by using Gaussian distributions for the parameters L;, Im A,

and ¢ /€. The parameters Bl, 1§4 and ]§5 were defined from the experimental values
of the isotopic K -+ 27 amplitudes Ay, A, and the ratio e'/e with By ='1. The
dispersion of these parameter values in figures 5, 6 and 7 is caused mainly by the
uncertainties of . L; and Im);, while the experimental error of &'/¢ is much less in-
fluence. Figuvre:"i demonstrates the necessity for a rather large factor Bs. It should
be emphasized, that for even larger values of Bs, the contribution of nonpenguin
operators to the AJ = 1/2 amplitude are still dommatmg (see figure 8).. In figure 9
the proba.blllty denSJty plots show the correlatlons between parameters Bl, B and 4

4With exception of L which is not determined experimentally and therefore taking uniform
distribution inside “theoretical” limits —0.8-10~3 < L4 < 0.2.1073.
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Table 6. Upper and low bounds for &' /¢ (in units 10~*) for different 10000 F
values of Bj (Ea = 1) obtained by Gaussian method . The limits [
without brackets correspond to the confidence level of 68% while the 7500 |- e
limits in brackets correspond to the confidence level 95%. o0 T
5000 [~
B; | A9, LO NDR HV 2500 |-
(MeV) | min  max | min max | min max C
215 | 21 30 | 24 24 | 49 -02 -01"5' e
(-51 72) |[(-51 6.4)|(-80 26) V
1.0 | 325 | 23 43 | -27 40 | -36 21 L
(63 99) | (66 97) |(-7.6 6.5) ' 10000 [~
435 | 26 59 |25 T6 [ -35 47 ] -
(-7.8 134) | (-8.1 16.6)| (-85 11.7) ‘ 7500 |-
215 | 05 73 | 08 65 |-32 31 | -
(-38 144) | (-39 13.0)|(-6.7 8.3) 5000 |-
15| 325 [ -02 101 [-05 98- -15 69 s
(-46 19.5) | (-4.9 193)|(-5.9 14.4) 2500 |-
435 | 38 144 | -39 130 | 67 83 T
' (-55 25.8)|(-5.7 30.8)|(-6.3 23.6) ‘ 01"5" L
215 | 08 11.8 | 05 106 | -1.8 6.6
(2.9 21.8) [ (-3.1 20.0) | (-5.7 14.4)
20} 325 | 15 160 | 12 158 | 01 119 10000 [~
(-34 291)|(-38 289)|(-47 228) N
435 | 24 210 | 32 249 | 14 191 7500 |-
(-4.0 365) | (-4.0 40.7) | (-4.8 34.5) -
' 5000 |-
2500 |-
-15 -10 -5 0 5 10 15
, 4
el/e-10
Figure 4. Probability density distributions for /¢ with Bs=DBs=1..
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Figure 5. Probability density distributions for B; with Bs = 1.
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Bs. The correlations between pairs of parameters By, B, and Bs, B, are caused by
the isotopic symmetry breakin'g related with 7° — 7 — ' mixing. The first plot in
figure 9 demonstrates the strong correlation between Bi and B,. Due to-relatively
small contributions of penguin operators to isotopic am})litudes of K — 7r decays
there are no visible correlations between I§1, Bs and. E,‘, Bs. Figure 10 shows the
correlations between Bs and By calculated for central values of the phenomenologi-
cal constants L; and Im A, with Re(e'/e) = 21.2 x 107* used as experimental input.
From this figure one can see that even for Bs = 0 values of By > 2 are necessary to

explain the large value of &' /e (17).

6 Conclusion

From studying the irﬁpact of the recently confirmed large €’ value on the parameter-
ization of the hadronic weak lagrangian, including step by step various refinements,
we have shown the necessity for a rather large gluonic penguin contribution (the
factor Bs is found well above 1, see figure 7). The large B; and B; values may be
a hint that the long-distance contributions are still not completely understood. An
analogous conclusion has been drawn in [35], where also possible effects from physics
beyond the Standard Model are discussed. From the phenomenological point of view,
there is no difficulty in taking (4) as a bona-fide weak current-current lagrangian with
coupling constants £; to be fixed experimentally. The problems arise when matching
these parameters to Wilson coefficients derived from perturbative QCD, which is, of
course, a neceésary requirement. It should be remarked that in our approach there is
also no convincing argument for the large correction factor B (due to the AT =1/2
rule); but then we may ask, why B, and B; should behave differently: as can be
seen from table 2, the relative changes of the respective matrix elements in going to
higher powers of p? do not differ very much.

In this context, one should note recent progress in the estimates of the B-factors
with a matching procedure based on higher-order calculations in the long-distance
regime within the 1/N.-expansion. An essential enhancement of the bag factor for
the gluonic penguin operator by the 1/N. corrections at next-to-leading order in
the chiral expansion has been observed in [36], where the value B(lm 1.6 £ 0.1
has been obtained. The similar value, B{/? = 1.6 + 0.3, arising from O(p*) chiral
loop corrections, was obtained in [10, 11] within the semiphenomenological chiral

quark model with values of the quark and gluon condensates fixed by reproducing
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the AI = 1/2 rule.

Since our results are very sensitive to the relative contribution of the gluonic pen-
guin operator, the question of its phenomenological separation in K — 27 decays
becomes critical, in the context of the Al = 1/2 rule as well as for a very important
problem of direct C P-violation. C P-conserving K — 27 data alone are clearly not
sufficient for such a separation. It codld be accomplished, on the other hand, when
taking into account Dalitz-plot data for K — 3x as well as differential distributions
for radiative decays K — 27+, K — 727 described by the same lagrangian (1). As
emphasized above, the reason for this possibility is found in the difference in momen-
tum power counting behavior between' penguin and non-penguin matrix elements,
which appears in higher orders of the chiral theory, when calculating various param-
eters of differential distributions, for instance, slope parameters of the Dalitz-plot
for K — 3x. A substantial imgrovemeht in the vaccuracy' of such experimental data
(mostly being of older dates) would be very helpful for such a- phenomenological
improvement of the theoretical situation for £'/e (see [25] for discussion"of this point
and [37, 38] for some recent measurements).

The authors gratefully acknowledge fruitful and helpful discussions w1th W.A. Bar-
deen, A.J. Buras, J. Gasser, E.A. Paschos and P.H. Soldan.
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