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HMuBapHaHTHOE raMHIBTOHOBO KBaHTOBaHHE
o61ueil TEOpHH OTHOCHTENBHOCTH

PaccMotpeHo kBaHTOBaHHE 06lUeil TEOPUH OTHOCHTENBHOCTH, HHBAPHAHTHOE
IO OTHOLUEHHIO K pernapamMeTpu3alMM BpeMeHH. MBI CTPOMM INpOM3BOAALUUA
¢ynkumonan @agneesa — Ilonosa o YHUTAPHOH TEOPUH BO3MYILEHHS B TEPMH-
Hax MHBapPHAHTOB KHHeMeTpHuecKoii rpynnbl (¢ = £'(1), x" = x''(t,x',x* x?%)). Ku-
HEMETPHUYECKas IPyIIa UMEET MEHBLIYIO pPa3MEPHOCTE, YeM anrebpa cBa3eit B Tpa-
JMLHOHHOM TOfiXofie K KBaHTOBaHHIO Jlnpaka — @anneesa — Ilonora (IPII).

Jna BoccTaHOBNEeHUd HapylueHHoM B noaxozae JPII penapaMeTpH3aLMOHHOM
HHBAapUaHTHOCTH BBOIOMTCA AMHAMHUYECKHIl HHBApHAHTHBIH MapaMeTp 3BONIOLUMH
KaK Hy1eBas ¢ypbe-rapMOHHKa JETEPMHHAHTA MPOCTPAHCTBEHHOH MeTpukH. Ta-
KHM o0pa3oM JOCTHraeTcs pernapameTpH3alMOHHO-HHBapHaHTHas Bepcua OTO
6e3 ceaseit. Mbl uccnenyeM npoussofdiumii ¢ynkuuonan ®anneesa — Ilonosa B
npenene 6ecKOHEYHOTO MPOCTPAHCTBA-BpeMeHU U obcyxnmaeM ¢pH3HUeCKHe Clel-
CTBHSI PaCCMaTpPHBAEMOIr0 KBAHTOBAHHUA.

Pa6ota Bhimonnena B Jlabopatopuu teopetuyeckoii ¢usuku um.H.H.Boro-
mobosa OUAH. '
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Invariant Hamiltonian Quantization of General Relativity
The quantization of General Relativity invariant with respect to time-repara-

metrizations is considered. We construct the Faddeev — Popov generating func-
tional for the unitary perturbation theory in terms of invariants of the kinemetric
group of diffeomorphisms of a frame of reference as a set of Einstein’s observers
with the equivalent Hamiltonian description (t' = t'(f), x" = x'(t,x",x% x%)). The
algebra of the kinemetric group has othér dimensions than the constraint algebra in
the conventional Dirac — Faddeev — Popov (DFP) approach to quantization.

To restore the reparametrization invariance broken in the DFP approach, the in-
variant dynamic evolution parameter is introduced as the zero Fourier harmonic of
the space metric determinant. The unconstrained version of the reparametrization
invariant GR is obtained. We research the infinite space-time limit of the Faddeev
— Popov generating functional in the theory and discuss physical consequences of
the considered quantization.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR. ’
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1. | Introduction

Quantization of General Relativity (GR) on the level of the unitary [1] perturbation the-
ory [2] was made by Faddeev and Popov [3, 4] and by DeWitt [5] in accordance with the
general Hamiltonian theory for constrained systems formulated by Dirac [2, 6] and devel-
oped later by many authors (see e.g. monographs [7, 8, 9]). However, the construction
of the unitary S-matrix in an infinite space-time is not enough to answer the questions:
What is Quantum Gravity? and What is Quantum Universe with a finite measurable
time of its existence and a finite volume of its space? Actual problems of the unification of
elementary particle physics with General Relativity, cosmology of the Early Universe, in
particular, the description of quantum processes at the beginning of the Universe require
the generalization of these results [4, 5] for a finite space-time.

In the present paper we try to generalize the Faddeev-Popov-DeWit{ construction of
the unitary S-matrix for a finite space-time and to answer the above mentioned questions
about the quantum version of GR.

A main problem of generalization of this type is the invariance of GR with respect to the
group of general coordinate transformations. This group includes the kinemetric group of
diffeomorphisms of a frame of reference as a set of Einstein’s observers with the equivalent
Hamiltonian description of GR [10]). Any Hamiltonian description of GR (classical or
quantum) should be invariant with respect to transformations of this diffeomorphism group
including reparametrizations of the coordinate time.

Therefore, the coordinate time should be excluded from the reparametrization invari-
ant Hamiltonian dynamics. Recall, that just the coordinate time is considered as the
time of evolution in both the Faddeeev-Popov-DeWitt unitary S-matrix and the Dirac
Hamiltonian approach to GR [2, 6, 4].

One of constructive ideas for restoration of the reparametrization-invariance of the
Hamiltonian dynamics in GR is the introduction of the internal evolution parameter ds
one of dynamic variables of the extendend phase space {11, 12, 13, 14, 15, 16, 17, 18]. In
the present paper, this idea is used to construct the reparametrization-invariant gener-
alization of the Faddeeev-Popov-DeWitt unitary S-matrix in GR. We fulfil the invariant
Hamiltonian quantizing GR with a dynamic evolution parameter identified with the zero-
Fourier harmonic of the space-metric determinant [16, 17].

This quantization is considered in the context of the Dirac perturbation theory [2}
in its simplest version, without nontrivial topology, black holes, and surface terms in the
Einstein-Hilbert action.

The contents of the paper are the following. In Section 2, we recall the conventional
Dirac-Faddeev-Popov quantization and present the invariant Hamiltonian approach to GR
corresponding to the diffeomorphism group of the Hamiltonian description. Section 3 is
devoted to the formulation of the Dirac perturbation theory in GR with the invariant
description of classical dynamics, in the reduced phase space, and of the measurable inter-
val. In Section 4, we consider the global sector of the invariant dynamics and define two
different standards of measurement of the invariant intervals: the absolute standard for
an Einstein observer and the relative standard for a Weyl observer who can measure bnly
a ratio of the lengths of two intervals and who-treats GR as a scalar version of the Weyl
conformal-invariant theory [17, 19]. Section 5 is devoted to the construction of quantum
physical states of the Dirac perturbation theory [2]. In Scction 6, we construct S-matrix
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for Quantum Universe and research the conditions of validity of the conventlonal quantum
field theory in the mﬁmte space-time limit.

2. Invariant Hamiltonian dynanﬁcs of GR

2.1. The Dirac-Faddeev-Popov Quantlzatlon

To state the problem considered in the present paper, we recall the Dlrac-Faddeev—Popov
(DFP) quantized Genera.l Relatmty [2, 3, 4, 20] which is.given by the Einstein-Hilbert
action .

W o) = / oA TERE) 07 = M) (1

and by a measurable interval _
(ds)z = gc,pdz"'dzp.' ‘ ’ (2)

They are invariant with respect to general coordinate transformations
! ! .
z#-_) zp =$p(z‘o,1‘l,z‘2,$3)- (3)

The Hamiltonian description of GR is fulfilled in the frame of reference with the Dirac-
ADM 3 + 1 parametrization of the metric components [21]

(ds)? = g, dz#dz” = Ndt* - Clg;;dzide (dz' = dz* + N'dt), (4)

and it is given by the first-order representation of the initial action (1)
7] . .
WE = / dt / Pz[~mi;¢7 — NjH — N'P; + surf.terms)] (5)

obtained by Dirac [2] in terms of harmonical variables

7* =llgllg™, No=Nlgll™  (llgll = det(Pgiz), q=1lg"ll), (6)

6 ..
H= EQ" g [mimi — mim)

P; = 2[Vi(gHm) - VilgHmu)]. (®)

We omit in equation (5) surface terms and use a finite space-time .

/d3z=Vg,

According to the Dirac general Hamiltonian theory [2, 6], the time components of the
metric N,, N* are considered as the Lagrange multipliers, and six space components g7,
as dynamic variables. Four local Einstein equations for the time components of metric

$o:=H=0;

t <t<ts (9)

$i=P;=0. ' (10)
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are treated as the first class constraints which remove four variables from the extended
phase space. These four constraints should be supplemented by four local gauges which
remove their canonical partners Dirac [2] 1mposed the gauge constramts

Xo =1 :=g" 7ru-0 ' —3,(’—1/3 lk)_O )

to express the initial action in terms of two mdependent dynamlc va.nables of the metric.
The algebra of commutation relations of all constraints forms the Faddeev-Popov (FP)
determinant 3, 4] which restores the unitarity of S-matrix in quantum theory.
This determinant for constraints (10}, (11) has been computed in the monograph [20]

det {¢,‘, xo} = detAdetB (12)
where A and B, are operators acting by the rules : '
Af=qiV;V;f+ ¢?ORf; . (13)
o ymegien: 1.
Bimi = 474" (8,0:0; + 56,00l (14)

According to the Faddeev-Popov -prescription’ '[3); the generatmg functlonal of Green func-
tions has the form of the functional integral- ) . :

Zprpltilta] = / D(4,7, Noy N)[FP],[FP}, exp {iWE(ylu) +sources},  (15)

where . :
D(g,7, N, Ny =] (1’[ dg**dmy, 1’[ dN’dN ) B (16)
' ’ T \i<k j=1
and
[FP); = 6(x;))detB, I (17
[FPL = 8(x0))detA. | (18)

are the space and time parts of the FP determinant. This functional and its gauge-
equivalent versions are the foundation of the quantum field theory approach to General
Relativity in the framework of the perturbation theory formulated in the infinite space-
time limit. .

2.2. Diffeomorphism group of the Hamiltonian description "

To extract any physical information from relativistic systems, one should point out a
frame of reference [10]. The latter means to answer the questions: Which quantities can

an observer measure? How do these quantities connect with the metric components? How
do results of measurements depend on a state of motion of an observer? The snmplest
example is the description of the energy spectrum of a relativistic particle in Special
Relativity (SR) with the Poincare group of symmetry. There are two distinguished frames
of the Hamiltonian description: the rest frame of an observer, and the comoving frame. In
both the cases, to solve the physical problem and to obtain the spectrum, it is sufficient
to restrict SR by only the subgroup of the Poincare group which exludes the pure Lorentz
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transformations. The latter are needed to answer the last question: How does the spectrum
in the rest frame connect with the one in the comoving frame?

The main assertion of the present paper is the following: for the Hamiltonian descrip-
tion of GR in a definite frame of reference, it is sufficient to restrict GR by the group of
diffeomorphisms of this frame.

Recall that the Hamiltonian formulation (5) is based on the possibility to introduce a
set of the three-dimensional space-like hyperspaces (4) numerated by the time-like coordi-
nate in the four-dimensional manifold of the world events. This set can be defined within
transformations of a kinemetric subgroup of the group of general coordinate transforma-
tions (3) [10, 16, 17, 18]

t—t' = f-'(t); T — .’E:‘ = Ig(t, T),T2, Ig), (19)

which includes one global function (the time reparametrizations '()) and three local ones
(zi(t,z)). This is the group of diffeomorphisms of a set of Einstein’s observers with the
equivalent Hamiltonian dynamics (5). This continuum of "observers” with the diffeo-
morphism group (19) is called the kinemetric frame of reference [10]. Action (5) can be
written in terms of the diffeomorphism invariants

t2

WEGln) = [ dt [ al-m;Dig? - NyH), (20)

ty
including invariant differentials
dtD.g" = dt[¢V + ¢"* VN7 + ¢*VEN' — 27V NF), (21)

The dimensions of diffeomorphism group (19) do not coincide with the dimensions of the
Dirac-Faddeev-Popov (DFP) algebra of constraints.

It is easy to see that, in the case of a finite time interval (! < t < t?), the DFP gener-
ating functional (15) breaks the invariance with respect to the global reparametrization
of the coordinate time (19). ‘

On the other hand, a local transformation of the coordinate time t' = (¢, z) goes
beyond the scope of this group (19). ‘ .

Thus, the generating functional (15) takes into account the symmetry which is absent
in the diffeomorphism group .(19) and it breaks the symmetry contained in this group.

Below we show that three gauges (11) x* = 0 are sufficient to remove all local am-
biguities from the Hamiltonian dynamics, so that the fourth local gauge can contradict
the Hamiltonian equations of motion. Only the space integral from the equation for the
lapse-function could be considered as the standard first class constraint (accompanied
by the second class one, i.e. gauge) in agreement with the diffeomorphism group of the
Hamiltonian description (19). )

2.3. The invariant Hamiltonian scheme

To restore the time-reparametrization invariance, we introduce the internal evolution pa-
rameter as the zero Fourier harmonic ¢o(t) of the space metric determinant logarithm [16).



This evolution parameter can be extracted by the conformal-type transformation of the
metric

goalt2) = (282 don(t,z). @)

The local part of momentum of the space metrlc determma.nt # and its motion equa.tlon
equivalent k . )
liijDzﬁ" . D log §

w(t,z) = 'ij‘;-, k tyx) = = 2
' Tt 2) =g &) N, "W, (23)
are given in the class of functions with the non-zero Fourier harmonics, so that
/dazi(t,z) =0, /dazl_c(t,:c) =0. (24)

Using the transformational properties of the curvature R(g) with respect to the transfor-
mation (22) it is'easy to obtain the action (1) in the form

WE(glu) = WE (glpo) ";/dt%%(%v) : V= / d%N;')', (25)

with the same number of variables. The Hamiltonian form of this action is
P2
E(qlu) = /dt (/d 1:[——7r,_,q - N,H - NP — ¢oPo + 4V) (26)

where the densities of the local excitations P; and H repeat the conventional Einstein
ones (8) and (7) where the Planck constant p is replaced by the internal evolution para-
meter o and g, 7 are replaced by ¢, 7

P ="P(g, 7 = q,7); 77:71(?1,”—)17,'7?; B = @0). .o (21)

We shall consider action (26) as one of the kinemetric invariant versions of the Hamiltonian
dynamics with the global variables which allow us to extract the time-reparamerization
invariant physical consequences in accordance with the diffeomorphism group (19).

2.4. Unconstrained form of GR

The unconstrained form of GR is obtained by exphcnt resolving the’ constra.mts The spa.ce
constraints

‘ JWE
and the diffeomorphism group (19) allow us to remove from the extended phase space
three local components of the graviton field by fixing the gauge’ (11)

Xk = 8,7 %™*) = 0. ' (29

=0=P=0 ' (28)

Constraints (28), and (29) can be explicitly solved by the decomposition of momenta 7;;
into the transverse part 7?;-1; and longitudinal components fi

_ - 2 pn
Fij =75+ ¢ P0if; + 05 fi - ng'jﬁlkasz]

(o =0).  @0)

L.

Substitution of this decomposition into constraint (28) leads to the equation for the lon-
gitudinal component fx '

Pilr,3) = Pu(7, @) - 5BEfi = 0= Bffi = 3P, 9) (31)

in the class of local functions with the non-zero Fourier harmonics where the reverse
operator (B~1)i (14) exists.
. Let us consider the equation for the lapse function
SWE P? .

e == N_.=0. . 32
N"JN 0= 1V2N, at (32)
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The integration of of equation (32) over the space coordma.tes determines the globa.l mo-
mentum F in action (26) - :

( / &N, ‘me):o = (P)e=+2/VH=+HR (H= / &' N ). (33)

as the functxona.l of all other va.ria.bles It is the generator of evolution with respect ‘to
the dyna.mlc evolution parameter ¢o. Thus, the global part of equation (32) removes the
global momentum Po, in the correspondence with the dlffeomorphlsm group (19). The
orthogonal to (33) (local) part of the same equation (32)

SWE 3 6WE _ - H
- _ = = — = 34
("JN /d 6N, Y A (34)
together with six equations for the transverse space metric components 7r:’; , 7, determines

the lapse function N, with an arbitrary time-dependent factor B(t)

Ny(t,z) = [\/’}—i(t,z)]'lﬂ(t). \ . : (35)

This factor represents the Lagrange multlpher The generator of the dynamic evolu-

tion (33)
R_ m/ﬁ: 2/d3:c\/7_l(t, z) (36)

does not depend on this factor ,H(t) . o

In accordance with the dlffeomorphlsm group (19) we consider as constraint only
equation (33) which is the equation for the Lagrange multiplier 3(t).

The global constraint (33) has two solutions Wthh correspond to two reduced systems

with the actions
w2=wo(t 2)

WR = ) / {( /d3z7rT6 q'j)vq: HR} : (37
e1=gpo(t1) ‘

where HE is ,,theAHa.miltohia.n of evolution (36;)"6f ‘the reduced phase.space variables

) (=L, q 7 ) with respect to.the dynamic evolution parameter ¢ = q.

1)



Following to Dirac [6], we'call the sector of the reduced phase space described by
action (37) the Dirac "observables”. These variables are kinemetric invariants by the
construction. The equations of motion of the reduced unconstrained system are

SWR omr ~ SHR
e raer A
SWR. . agi.  _ §HR

—e =0 —— = . |
5 =07 8 T ¥ G (39)
Solutions of equations (38), (39) determine, the dependence of the Dirac observables with
on the dynamlc evolution parameter ¢.

* The main problem is to construct the-time-reparametrization invariant Faddeev- Popov
generating functional for the unitary perturbation theory. ;

3. The invariant version-of the Dirac perturbation theory

The reparametrization-invariant version of the perturbation theory begms from the non-
perturbative ba.ckground metric w1th the homogeneous part of the space metric (22) (which
gives the dynamrc evolution para.meter) a.nd the global component of the lapse function
Ny (35) which defines the repara.metnza.tron 1nvana.nt conformal time

Ny = NoN; dT = No(t)dt ' (dT' = Njdt' = dT) (40)
For the local part of metric; we use the version of the Dirac 'perturba.tion‘ theory [2]
§PG; =6 +hl P =14424.; N=14v+... - (41)

Asymptotic states will be considered in the neglect of interactions, in accordance with the
standard suppositions of quantum field theory. :
In the lowest order of this theory equation (34) determines z = (logg)/12

2 B
(pAZ'—,Ho—po (p0=u, V()=/d3:1:). (42)
3 Vo

A solution of this equation recalls the FP gauge [4] where the internal evolution parameter
is changed by p and instead of the massive matter we have the non-zero Fourler harmonlc
part of the Hamiltonian for two transverse and trace-less graVltons S

Ho = %(WT)?J- + 5—4(6k(hT),-,-)2 = 0 *Hg + *Hp. (43)
The solutions of equation (42) is usually treated as the Newton interaction of particles, i.e.
of the transverse and trace-less gravitons h which form the asymptotical physical states,
similar to photons in QED These tra.nsverse gravitons h are considered in paper [18]in
context of the invariant Hamrltoman quantization. The trace component ‘of the graviton
momentum §77;; = p,/12 disappears from thé kinetic part of the Hamiltonian (43) Hx

as a result of the solution of the space constraints. Nevertheless, the momentum p, is not
equal to zero as it follows from the equations of the initial extended system for p,

S , F.) .
20°(¢ ~%Ni)=p. (= é = VP0dy2), (44)
and for N" = Nk/No

2 2 _ . .
—-‘:';—(akz' —~ ANy = PT = (2 7)i;0e (R T)ij (45)

in contrast with the Dirac gauge [2]. The perturbation part of the lapse function v is
determined from the motion equation of the reduced system for z unambiguously

v=0. : - ’ (46)

One can see that the range of applxcabllxty of the Dirac perturbation theory (41)is the
region where derivatives are far less than the internal evolution parameter Af/f << ¢

In the opposite limit 9 — 0, we got the local version of the model of an anisotropic
universe considered by Misner [22].

4. Measurable quantities

4.1. Geometry

The dynamic sector of the unconstrained GR restricted by the Dirac "observables” (37—39)
is not sufficient to determine evolution of the Einstein invariant interval

(dse)? = (£)4"/%(dso)?, e

here ds. is the conformal invariant interval
- (dsc)? = g/*[dT*N? - tj;j(izid'zj]; (dz! = dz? + N7dT) (48)

which does not depend on the global variable ¢. These intervals characterize the mea-
surable geometry of the space-time and contain the shift vector NF and invariant time
parameter (40). The latter is- well-known in the classical Friedmann cosmology [14, 17]
as the conformal time connected with the world Friedmann time by the relation

dTy = f%;)dT. : : (49)

Measurable geometrical quantities go out from the set of the Dirac "observables”, and
can be determined by invariant equations of the initial extended system for the global
variables Py, ¢ and the local ones 7;; which are omitted by the reduced- action (37). In-
particular, the evolution of the Universe is not also included in the dynamic sector of the
Dirac "observables”. . -



4.2. - Evolution of-a universe

The evolution of a universe is the dependence of the measurablé time (40) on the internal
evolutlon parameter given by the equa.tlon of the extended system

SWE do\ (Po)i fd3z’H A
W“[’:’(dT) =Eelek p=Tpmsg o (60

The integral form of the last equation
‘ $o ’
T(eo) =-/d¢p’."2(<p)- S e (B
T AR , L ,, .

is well-known as the Friedmann-Hubble law in the Friedmann-Robertson-Walker cosmol-
ogy. It is natural to call the Hamiltonian H the "measurable” one, as it determines the
evolutlon of the Dirac observables with respect to the measurable time T

Cpeemgmmg. @

Another global equation of the extended system
‘ SWE P RO '
oW _ Py
5 =0 B=V el S ®

leads to the conservation law for the measurable Hamiltonian.H [16].
elHg+ ¢ HR=0, )
where symbols K, R mean the Kinetic and potentia.l 'pa.rts (see eq. (43)). The shift vector

is determined by the equation

SWE
57_rj1

=0 = I +VIN' L VNI = T(q"q ik = 317 (55)

4.3. Standards of measurement

As it was shown'in papers' [16, 17], GR with the Einstein- Hibert action can be also treated

as the scalar version of the Weyl conformal theory [19] with the scalar field ®,, considered-

as the measure of a change of the length of a vector in its parallel transport. In this case
the role of the metric scale field ¢, = g*/*? in GR is played by the Lichnerowich [23, 11]
conformal invariant variable ¢, = ®,¢'/1? of the scalar field. Dynamics of both the
Einstein GR and the Weyl theory is the same (including the matter sector where the scalar
field forms masses of fermion and boson fields), but not standards of measurement. An
Einstein observer measures'the absolute lengths'(ds)., while a. Weyl observer can measure
only the ratio of lengths of two vectors (ds)y = (dsi)s/(ds2). =’(ds1)c/(dsz). which
is conformal-invariant. Thus, a classical state of the universe in GR (with the Einsteir-
Hilbert action) is determined both by the dynamic sector of the Dirac ”observables” in the
reduced phase space and the geometrical sector of ”measurables”; the latter are determined
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not only by invariant dynamics of the Einstein- Hllbert a.ctlon , 'but a.lso by standa.rds of
measurements )

The same GR dyna.mlcs corresponds to dlﬁ'erent cosmologlca.l pictures for different
observers: an Einstein observer, who supposes that he measures an absolite’ interval,
obtains the Friedmann-Robertson-Walker (FRW) cosmology where the red shift is treated
as expansion of the universe; a Weyl observer, who supposes that he measures a relative
interval D,, obtains the Hoyle-Narlikar cosmology [24] The red shift a.nd the Hubble law
in the Hoyle:Narlikar cosmology [24] .

o(T) c,m'_ll ds'a(T)_mpT" '
Z(D) ;(T—l)c‘/c)_l—’HHuch/c ',’HHu.b_‘(p(T) daT (p(T) (56)

reflect the change of the size of atoms in the process of evolution of masses [24, 15, 16, 17):
Equation (56) gives the relation between the present-day value of the scalar field and
cosmological observatlons (the density of matter and the Hubble parameter)

Ve
#()= Hub(T) &7

Note that the present-day observatxonal data [27] on the ma.tter density

, . 3HS
p= pb = Qopc,-; : 0.1 < Qo < 2. - (Pcr = 8Hub MI%I) ’ (58)

glve the value of ‘the dynamic evolutlon pa.ra.meter Wthh coxncldes w1th the Newton con-
stant (or the Pla.nck mass) , , ‘
o po(To) =pR™ - (59)

Both the standa.rds of measurement of the present da.y va.lue of (,ao in observa.tlonal cosmol-

.ogy give the value of.the Planck mass (59). Nevertheless, only for the relative standard

of a Weyl observer, local measurements of the invariant interval do not depend on the
parameters of global evolution of the universe. :

5. "Measurable” Quantum Universe

We ca.lcula.te the genera.tlng functional for the unitary perturba.tlon theory as the S~ma.tr1x
element in the standard interaction representation a.pphed in qua.ntum field theory’

5[901,9021 =at < out (vz)lTexp {—zfdso(HP)} I(%) in >+

¥1

Y2

o~ < out (p1)[Texp {'H/ d‘P(Hf)} |(902) in >,

@1

where T, T are symbols of ordering and a.ntl-ordermg, HE I is the Hamiltonian of interaction
of the reduced system : R : o :
‘HR HR Ho (60)
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HR is the reduced Hamiltonian defined by equation (36), H& is a free part of this Hamil-
tonian H " in the perturbation theory (41), (43), and |(y) in(out) > is the in (out) - state
of Quantum Universe which satisfies the Schrédinger equatlon

: ( ) in(out) >= H |(<p) in(out) >. (61)
i

As we have seen above, the descriptiorr of both the Dirac dynamics (in the reduced phase
space) and the measurable geometry, i.e. the invariant interval

(ds,;)2 =dT? - (6:;; + h;j)d:tidzj ‘ (62)

can be given only by the constrained system with the extended action
P2 o
/ dt [ / d3mThT] Poip — No ~3% + Ho (63)

2 @
o= [ & ( <:’ + L@y )5 (WE=0; 9% =0) (64)

is the "measurable” Hamiltonian of "free” gravitons. This action includes the world time
interval dT = Nodt measured by an Weyl observer. .

The dependence of the. world time on the internal evolution parameter ¢ is treated.as
evolution of a classical Universe. Quantization of the extended constrained system with
the *free” gravitons (63) was performed in paper [18] where the holomorphic variables

of "particles” (a*, a) were defined as variables which diagonalize the measurable Hamil-

tonian (64), and "quasiparticles” (b*, b), as variables' which diagonalize the classical
and quantum equations of motion and lead to the equivalent oscrllator-lrke system vrrth
the set of conserved "quantum numbers”. For the latter system there is the canonical
transformation [25, 26, 18] of the extended system - (63) to a new set of variables

where

(a+’ alPO) ‘P) = (b+1 blnv 77)7_ ) . (65)

so that the new internal evolution parameter 7 coincides, in the equation of motion for the
new momentum TI, with the invariant time measured by a Weyl observer in the comoving
frame of references

SWE

oIl

Thus, after the canonical transformations the states of the measurable er.ar.rtum Unive.rse
(with a conserved number of ”quasiparticles”) are determined by the Schrédinger equation

z;Tl (T)in >= Zwb n,T)= (b+b + bdD)(T) in >= E]|p(T) in >,  (67)

where n denotes a set of parameters of gravitons (projections of spins, and momenta) and
Ef is an eigenvalue of the oscillator-like Hamiltonian.
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Thestate of "nothing” is the squeezed vacuum (without quasiparticles) b, (T)|o(T) in >=
0. It was shown [18] that for small ¢, and a large Hubble parameter, at the beginning of
the Universe, the state of vacuum of quasiparticles leads to the measurable density

% vz(T))'
HT) W @ )’

where g is the initial value, and py = %Zw,,(ri) is the density of the Kasimir vacuum
n

s < plat, a) >p= pol ( (63)’

of "particles”. The first term-corresponds to the rigid state equation (in accordance with
the classification of the standard cosmology) and it leads to the Kasner anisotropic stage
T+ (p) ~ £¢? (described by the Misner wave function [22)). LFrom the point of view of -
fields of matter for which  forms masses, the negative solution ¢?(T.) < 0 (anti- Universe)
is not stable, in this stage. The second term of the squeezed vacuum density (68) leads to
the stage w1th the mﬂatlon of the scale ¢ wnh respect to the time measured by a VVeyl
observer

(T) = exp(T/2po/ o).

It is the stage of intensive creation of "measurable particles”. After the inflation, the
Hubble parameter goes to zero, and gravitons convert into photon-like oscillator excitations
with the conserved number of particles.

At the present-day stage, we can describe in- and out -states in terms of the.” measur-.
able” time T and the Hamiltonian ‘Hy (64) where ¢ is changed by g, in agreement. with -
the data of the observational cosmology ¢(Tp) = i discussed above.

The internal evolution parameter can be connected with the time measured by an
observer of a quantum state of the Universe |out > in terms of the conserved quantum
numbers of this state: energy E,,; and density py = E,it/Vo .

d .
"f = v/ Pout- (69

It is natural to suppose that Eoyut is a tremendous energy in companson with possible
deviations of the free Hamlltoman in the laboratory processes

Ho = E s + 6Ho, < out|0Hplin ><< Eou. ' (70)

6. Infinite volume limit of Quantum\Gravity‘

We consider the infinite volume limit of the S-matrix element in terms of the measurable
time T for the present-day stage T = To taking into account only the contribution of the

Universe a+ =lLa" =0
w(T2)
S[Ty = To — AT|T; = To + AT] =< out (T2)|Texp{ —i / d(p(Hf) (Th ) in>. (71)
v ) w(h) '

'One can express this matrix element in terms of the time measured by an .observer of an

out-state with the tremendous number of particles in the Universe using. equation - (69)
and the approximation (70).
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In the infinite volume limit, we get
de[HF) = dT[FH1 + O(1/Vo) +O(1/Eou)] - (12)
where Hy is the Hamiltonian of interaction. in GR, and

Eaut

F= o (73)
Eaut + (SHO .

is the multiplier which plays the role of a form factor for physical processes observed at the
"laboratory” conditions when the cosmic energy Eou: is much greater than the deviation

of the free energy

: 6Ho = Ho — Eout; (74)
due to creation and a.nmhllatlon of real ‘and virtual particles in the la.bora.tory experlments
The measurable time of the laboratory experiments T — T is much smaller than the age
of the Universe Ty, but it is much greater than the reverse ”laboratory” energy 6, so that

the limit L 4o
=]

is valid. We can get the conventlonal quantum field theory representation of matrlx

element " (71)
+o0

S[~o0] 4+ 00] =< out|T exp {—z / dTHI} lin >, (75)

. L —00 -
if we neglect the form factor (73) which removes a set of ultraviolet divergences. This
matrix element corresponds to the FP functional integral

ZQFT = /D [FP],exp{ WE[q|,u]+sources} 7 (76)
where WE[g|y] is the initial actlon (1) in terms of the conforma.l-mva.rla.nt time T for

N =1 (40).
The main difference of the obta.med generating functional from the Faddeev-Popov-

DeWitt one [4, 5] is the absence of the fourth gauge which fixes the determinant of the.

space metric [4] or its momentum [2]. In both the cases, these gauges contradict the
motion equations for these variables, as we have seen above, in the context of the Dirac
perturbation theory 2. .

The result (76) could be predicted from the very begmnmg, the problem was to show
the range of validity of the conventional quantum field perturbation theory [3, 4] and its
possibilities for solution of problems of the Early Universe.

The relativistic covariance of the considered scheme of quantization can be proved in
the infinite space-time on the level of a.lgebra of commutation relations of the generators
of the Poincare symmetry in perturba.tlon theory by analogy with QED [28].

;From the-point of view of .the quantum field theory limit, the conformal variables
and measurable quantities, including the conformal time, are favorable, and thé Einstein
General Relativity looks like a scalar version of the Weyl conformal invariant theory,
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where the Weyl scalar field forms both the Planck mass (in agreement with the present-
day astrophysxcal data) and masses of elementary partlcles [17] (m a.greement with the
principle of equivalence),

In the Weyl theory, the Higgs | mecha.msm of the formation of particle masses becomes
superfluous and, moreover, it contradicts the equivalence prmc1ple, as, in’ this case, the
Planck mass and masses of particles are formed by different scalar fields.

In the conformal theory [16, 17], we got the o-version of the Standard Model [19]
without Higgs particles, and with the prescription (73) to.be free from the ultra-violet
d1vergences for the precision calculations.

7. Conclusion

We have obtained the generalization of the unitary S-matrix in General Relativity [5, 4, 20]
for a finite space-time in agreement with the group-of invariance of the Hamiltonian
dynamics in GR. This group contains reparametrizations of the coordinate time (t) and
gauge transformations with three local parameters. We have shown that the solution
of one global constraint (with respect to the zero Fourier harmonic of the space metric
determinant o) and three local constraints remove all ambiguities from the perturbation
theory for transverse gravitons, so that the fourth gauge [2, 4] for fixation of the space
metric determinant is superfluous and can contradict equations of motion. :

As a result of the solution of these constraints, we got the unconstrained version of
GR which describes the dynamics of the Dirac "observables” in the reduced phase space
with the dynamic evolution parameter. Besides the unconstrained dynamics, the extended
Hamiltonian GR. contains the geometry of measurable quantities” {which depend on all
components of metric including those which cannot be defined by complete set of equa.tlons
in the sector of the Dirac ”observables”). .

The geometric sector of "measurable intervals” is a specific. feature of -GR which
strongly distinguishes it from classical unconstrained systems where the dyna.mlc evo-
lution parameter coincides with the measurable time. -

In particular, the evolution of the universe is the evolution of the Dirac sector of ”ob-
servables”. (together with their dynamic evolution parameter) with respect to the "mea-
surable” interval (including -the invariant proper time), and this ”measurable” evolution
goes beyond the scope of the sector of the Dirac "observables”. This fact is the main
difficulty for the standard quantization.

To emphasize the autonomy of the ”measurable” geometrlca.l sector in GR, we pointed
out two different standards of measurement (relative and a.bsolute) which correspond to
two theories with the same dynamics: GR and the scalar version of the Weyl geometry
of similarity (with a scalar field as the measure of a change of the length of a vector
in its parallel transport). In terms of the conformal invariant variables, actions of both
these theories coincide, but the measurable intervals are different. An Einstein observer
(who measures lengths by the absolute standard} sees the Friedmann-Robertson-Walker
evolution of a universe, 'while a Weyl observer (who treats the determinant of the three-
dimensional- metric multiplied by the Planck constant as a measure of a change of the
length of a vector in its parallel transport) sees the Hoyle-Narlikar evolution.

We have considered the phenomenon of Quantum Universe mamly ”w1th a view to
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its measurement describing the methods of mea.surement and defining the standards on
which they depend” [29].

The phenomenon of Quantum Universe can be described by two measurable quantities:
the time in the comoving frame, and the red shift of spectral lines of the cosmic object
atoms in terms of the dynamic evolution parameter (i.e. the scale factor). Both these
quantities determine the background metric of the considered perturbation theory for the
unconstrained GR and measurable density. »

Now, we can define the Quantum Universe as the universe filled by "free” quantum
fields in the space-time with the considered background metric and standard of the mea-
surement of the invariant time intervals. The evolution of the Quantum Universe is ex-
pressed in terms of the measurable time by canonical transformations which convert the
dynamic evolution parameter into the measurable time and the variables of particles (di-
agonalizing the measurable density) into the quasiparticles (diagonalizing equations of
motion) with the squeezed vacuum.

-The Quantum Gravity is the theory of S-matrix between the sta.tes of the Qua.ntum
Universe. :

The infinite space—tlme limit of this S-matrix leads to the standard quantum field
theory S-matrix provided the measurable time is the conformal time of a Weyl observer
and General Relativity. is the scalar version of the Weyl conformal mva.rla.nt theory with
the set of prediction, including : : ;

the Hoyle-Narlikar version of observational cosmology, where the physical reason of
red-shift is changing masses of elementary particles in the process of evolution of the
Universe, :

the cosmic mechanism of the formation of both the masses of elementa.ry particles
and the -Planck mass by the Weyl scalar field (which does not contradict-the present-day
astrophysical data),

the squeezed vacuum inflation from ”nothing” at the beginning of the Universe,

and the negative result of CERN experiment on the search of Higgs particles.
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