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Invariant Hamiltonian Quantization of General Relativity 

The quantization of General Relativity invariant with respect to time-repara­
metrizations is considered. We construct the Faddeev - Popov generating func­
tional for the unitary perturbation theory in terms of invariants of the kinemetric 
group of diffeomorphisms of a frame of reference as a set of Einstein's observers 
with the equivalent Hamiltonian description (t 1 = t1(t), x'; = x';(t,xl,x2,x 3

)). The 
algebra of the kinemetric group has other dimensions than the constraint algebra in 
the conventional Dirac - Faddeev - Popov (DFP) approach to quantization. 

To restore the reparametrization invariance broken in the DFP approach, the in­
variant dynamic evolution parameter is introduced as the zero Fourier harmonic of 
the space metric determinant. The unconstrained version of thr reparametrization 
invariant GR is obtained. We research the infinite space-time limit of the Faddeev 
- Popov generating functional in the theory and discuss physical consequences of 
the considered quantization. 

The investigation has been performed at the Bogoliubov Laboratory of Theo­
retical Physics, JINR. 
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1. Introduction 

Quantization of General Relativity (GR) on the level of the unitary [1) perturbation the­
ory [2) was made by Faddeev and Popov [3, 4) and by DeWitt (5) in accordance with the 
general Hamiltonian theory for constrained systems formulated by Dirac (2, 6) and devel­
oped later by many authors (see e.g. monographs [7, 8, 9)). However, the construction 
of the unitary S-matrix in an infinite space-time is not enough to answer the questions: 
What is Quantum Gravity? and What is Quantum Universe with a finite measurable 
time of its existence and a finite volume of its space? Actual problems of the unification of 
elementary particle physics with General Relativity, cosmology of the Early Universe, in 
particular, the description of quantum processes at the beginning of the Universe require 
the generalization of these results [4, 5) for a finite space-time. 

In the present paper we try to generalize the Faddeev-Popov-DeWitt construction of 
the unitary S-matrix for a finite space-time and to answer the above mentioned questions 
about the quantum version of GR. 

A main problem of generalization of this type is the invariance of GR with respect to the 
group of general coordinate transformations. This group includes the kinemetric group of 
diffeomorphisms of a frame of reference as a set of Einstein's observers with the equivalent 
Hamiltonian description of GR [10). Any Hamiltonian description of GR (classical or 
quantum) should be invariant with respect to transformations of this diffeomorphism group 
including reparametrizations of the coordinate time. 

Therefore, the coordinate time should be excluded from the reparametrization invari­
ant Hamiltonian dynamics. Recall, that just the coordinate time is considered as the 
time of evolution in both the Faddeeev-Popov-DeWitt unitary S-matrix and the Dirac 
Hamiltonian approach to GR [2, 6, 4). · 

One of constructive ideas for restoration of the reparametrization-invariance of the 
Hamiltonian dynamics in GR is the introduction of the internal evolution parameter as 
one of dynamic variables of the extendend phase space [11, 12, 13, 14, 15, 16, 17, 18]. In 
the present paper, this idea is used to construct the reparametrization-invariant gener­
alization of the Faddeeev-Popov-DeWitt unitary S-matrix in GR. We fulfil the invariant 
Hamiltonian quantizing GR with a dynamic evolution parameter identified with the zero­
Fourier harmonic of the space-metric determinant [16, 17). 

This quantization is considered in the context of the Dirac perturbation theory [2] 
in its simplest version, without nontrivial topology, black holes, and surface terms in the 
Einstein-Hilbert action. 

The contents of the paper are the following. In Section 2, we recall the conventional 
Dirac-Faddeev-Popov quantization and present the invariant Hamiltonian approach to GR 
corresponding to the diffeomorphism group of the Hamiltonian description. Section 3 is 
devoted to the formulation of the Dirac perturbation theory in GR with the invariant 
description of classical dynamics, in the reduced phase space, and of the measurable inter­
val. In Section 4, we consider the global sector of the invariant dynamics and define two 
different standards of measurement of the invariant intervals: the absolute standard for 
an Einstein observer and the relative standard for a Wey! observer who can measure 6nly 
a ratio of the lengths of two intervals and who·t.reats GR. as a scalar version of the \Vey! 
conformal-invariant. theory [17, 19]. Section 5 is devoted to the construction of quantum 
physical states of the Dirac perturbation theory [2]. In Section 6, we construct S-ma.trix 
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for Quantum Universe and research the conditions of validity of the conventional quantum 
field theory in the infinite space-time limit. 

2. Invariant Hamiltonian dynamics of GR 

2.1. The Dirac-Faddeev-Popov Quantization 

To state the problem considered in the present paper, we recall the Dirac-Faddeev-Popov 
(DFP) quantized General Relativity [2, 3, 4, 20] which is given by the Einstein-Hilbert 
action . 2 • 

W 9r(glµ) = I d4x[-FY~ _R(g)] 
3 

(µ 2 = Mj,/anck 81r) 

and by a measurable interval 
(ds); = 9a{Jdx0 dxfJ. · 

They are invariant with respect to general coordinate transformations 

Xµ-+ x~ = x~(xo,x1,x2,x3). 

(1) 

(2) 

(3) 

The Hamiltonian description of GR is fulfilled in the frame of reference with the Dirac­
ADM 3 + 1 parametrization of the metric components [21] 

(ds); = 9µvdxµdx" = N 2dt2 - (3lg;;JxiJxi (tfxi = dx; + Nidt), 

and it is given by the first-order representation of the initial action (1) 

t2 

WE= f dt f d3x[-1r;;li - Nq1l - NiP; + surf.terms.] 
t1 

obtained by Dirac [2] in terms of harmonica! variables 

qik = IIYII/\ Nq = NIIYll-113, (IIYII = det(C3lg;;), q = lllill), 

6 .. kl µ2ql/2 3 
1l= µ2q''q [7rik1fj/-1fij1fk,]+-6-< lR, 

P; = 2[v'k(l11r;1) - v';(l11rk1)]. 

We omit in equation (5) surface terms and use a finite space-time 

f d3
x =Vo, ti < t < t2. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

According to the Dirac general Hamiltonian theory [2, 6], the time components of the 
metric Nq, Ni are considered as the Lagrange multipliers, and six space components li, 
as dynamic variables. Four local Einstein equations for the time components of metric 

</>o := 1l = 0; </>;:=P;=O. 

·-· 

(~tn,n;.,;~· ..... ,ai"i 1;,,;r-i.>ryil' \ 
ml·'!!JiU.!t UC!;:l~~~~isuil 

6.-iS.H~!OTS:K,\ 
......... ----

(10) 



are treated as the first class constraints which remove four variables from the extended 
phase space. These four constraints should be supplemented by four local gauges which 
remove their canonical partners. Dirac [2] imposed the "gauge" constraints 

Xo := 1r := qii1r;; = 0, xk ::::::: ·a;(9-113g1k) = 0· (11) 

to express the initial action in terms of two independ~nt dyna~ic v~riables of the metric. 
The algebra of commutation relations of all constraints forms the Faddeev-Popov (FP) 

determinant [3, 4] which restores the unitarity of S-matrix in quantum theory. 
This determinant for constraints (10), (11) has been computed in the monograph [20) 

det{<f>µ,Xv} ~ detAdetB, 

where A and Bi are operators acting by the rules 

Af·= qij'v;'v;f + ql/2(3) Rf; 

B i -113·1;[riaa l~;aaJ k1Ji = q q uk I j + 3u1 j k 1/i· 

(12) 

(13) 

(14) 

According to th·e Faddeev-Popov prescription; [3]; the generating functional of Green func­
tions has the form of the functional integral· 

ZvFP[t1lt2] =f D(q, 1r, Nq, Nk)[FP].[FP] 1 exp {mrE(glµ) +sources}, (15) 

where 

and 

D(q, 11', Nq, Nk) = rr (n dikd11'ik rr dN~dNq) 
X •<k J=l 

[FP]. = o(x;))detB. 

[FP]t = o(xo))detA. 

(16) 

(17) 

(18) 

are the space and time parts of the FP determinant. This functional and its gauge­
equivalent versions are the foundation of the quantum field theory approach to General 
Relativity in the framework of the perturbation theory formulated in the infinite space­
time limit. 

2.2. Diffeomorphism group of the Hamiltonian description 

To extract any physical information from relativistic systems, one should point out a 
frame of reference [10]. The latter means to answer the questions: Which quantities can 
an observer measure? How do these quantities connect with the metric components? How 
do results of measurements depend on ~ state of motio~ of an observer? The simpiest 
example is the description of the energy spectrum of a relativistic particl~ in' Special 
Relativity (SR) with the Poincai-e group of symmetry. There are two distinguished frames 
of the Hamiltonian description: the rest frame of a_n observer, and the comoving frame. In 
both the cases, to solve the physical problem and to obtain the spectrum, it is sufficient 
to restrict SR by only the subgroup of the Poincare group which exludes the pure Lorentz 
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transformations. The latter are needed to answer the last question: How does the spectrum 
in the rest frame connect with the one in the comoving frame? 

The main assertion of the present paper is the following: for the Hamiltonian descrip­
tion of GR in a definite frame of reference, it is sufficient to restrict GR by the group of 
diffeomorphisms of this frame. 

Recall that the Hamiltonian formulation (5) is based on the possibility to introduce a 
set of the three-dimensional space-like hyperspaces (4) numerated by the time-like coordi­
nate in the four-dimensional manifold of the world events. This set can be defined within 
transformations of a kinemetric subgroup of.the group of general coordinate transforma­
tions (3) [10, 16, 17, 18] 

t ➔ t' = t'(t); Xi ➔ X; = X;(t, X1, X2, X3), (19) 

which includes one global function (the time reparametrizations t'(t)) and three local ones 
(x:{t,x)). This is the group of diffeomorphisms of a set of Einstein's observers with the 
equivalent Hamiltonian dynamics (5). This continuum of "observers'' with the diffeo­
morphism group (19) is called the kinemetric frame of reference [10]. Action (5) can be 
written in terms of the diffeomorphism invariants 

12 

WE(glµ) = j dt j d3x[-1r;;D1qij - Nq1i], (20) 
t, 

including invariant differentials 

dtDtij = dt[qij + qik'vkNi + qjk'vkNi - 2qij'vkNk]. (21) 

The dimensions of diffeomorphism group (19) do not coincide with the dimensions of the 
Dirac-Faddeev-Popov (DFP) algebra of constraints. 

It is easy to see that, in the case of a finite time interval (t 1 < t < t2 ), the DFP gener­
ating functional (15) breaks the invariance with respect to the global reparametrization 
of the coordinate time (19). 

On the other hand, a local transformation of the coordinate time t' = t'(t, x) goes 
beyond the scope of this group (19). 

Thus, the generating functional (15) takes into account the symmetry which is absent 
in the diffeomorphism group (19) and it breaks the symmetry contained in this group. 

Below we show that three gauges (11) xk = 0 are sufficient to remove all local am­
biguities from the Hamiltonian dynamics, so that the fourth local gauge can contradict 
the Hamiltonian equations of motion. Only the space integral from the equation for the 
lapse-function could be considered as the standard first class constraint (accompanied 
by the second class one, i.e. gauge) in agreement with the diffeomorphism group of the 
Hamiltonian description (19). 

2.3. The invariant Hamiltonian scheme 

To restore the time-reparametrization invariance, we introduce the internal evolution pa­
rameter as the zero Fourier harmonic cp0 (t) of the space metric determinant logarithm [16). 
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This evolution parameter can qe extracted by the conformal-type transformation of the 
metric . 

· 9o{J(t,.x) = ( cpo(t) )2Yo/J(t, x). (22) 
µ 

The local part of momentum of the space metric determinant ii" and its motion equation 
equivalent k . . 

- . -ii - - if;; D1ifi Dt log ij 
1r(t,x) := q 1r;;, k(t,x) := -~ = -~ (23) 

. -Nq . Nq 

are given in the class of functions with the non-zero Fourier harmonics, so that 

j d3 xir(t, x) = 0, j d3xk(t, x) = 0. (24) 

Using the transformational properties of the curvature R(g) with respect to the transfor­
mation (22) it is easy to obtain the action (1) in the form 

12 

wE(glµ) = wE(Ylcpo) -1 dtcpo:t(cpoV) (V = j d3 xRq- 1)·, (25) 

t, 

with the same number of variables. The Hamiltonian form of this action is 

!2 ( 2) E 3 • ij - - · - Po 
W (qiµ)= j dt j d x[-ft;;ij - Nq'H - N'P;] - cpoPo + 

4
V , 

t, 

(26) 

where the densities of the local excitations P; and ft. repeat the conventional Einstein 
ones (8) and (7) where the Planck constant µ is replaced by the internal evolution para­
meter cp0 and q, ,r are replaced by ij, ii" 

P = P(q,1r ➔ ij,ir); it.= 1L(q,1r ➔ ij,ft; µ ➔ cpo). (27) 

We shall consider action (26) as one of the kinemetric invariant versions of the Hamiltonian 
dynamics with the global variables which allow us to extract the time-reparamerization 
invariant physical consequences in accordance with the diffeomorphism group (19). 

2.4. Unconstrained form of GR 

The unconstrained form of GR is obtained by explicit resolving the constraints. The space 
constraints . 

owE - . 
oNk = o => A = o (28) 

and the diffeomorphism group (19) allow us to remove from the extended phase space 
three local components of the graviton field by fixing the gauge (11) 

xk = a;(ir1J3¢k) = o. (29) 

Constraints (28), and (29) can be explicitly solved by the decomposition of momenta ii";j 
into the .transverse part ff'/; and longitudinal components fk 

' 2 . 
rr;; =ff{;+ if- 113[ad; + a;f; - 3ii;;i/ka1!kl ( {)i(ijl/3irf;] = 0 ) . (30) 

6 

.. 

Substitution of this decomposition into constraint (28) leads to the equation for th_e lon-
gitudinal component fk · · 

P- (- -) p- (- -) 1Bk 1 0 _._ Bk 1 . Ip·- (-T -) 
i 11", q = i 11" '. q - 2 i J k = -,, i J k = 2 i 7r , q (31) 

. . 
in the class of local functions with the non-zero Fourier harmonics where the reverse 
operator (B- 1 )i (14) exists. 

Let us consider the equation for the lapse function 

_ owE PJ - -
Nq oN. = 0 ==> 4V2if - Nq1L = O. 

q q 

(32) 

The integration of of equation (32) over the space coordinates determines the global mo­
mentum Po in action (26) 

1 (! 3 - oWE) V d xNq «5Nq · = 0 =⇒. (Po)±= ±2v'VH = ±HR (H = j d3x'Nqit. ). (33) 

as the functional of all other variables. It is the generator of evolution with respect· to 
the dynamic evolution parameter cp0 • Thus, the global part of equation (32) removes the 
global momentum ·Po, in the correspondence with the diffeomorphism group (19). The 
orthogonal to (33) (local) part of the same equation (32) 

(
- oWE 1 J 3 - oWE) - - H 

Nq 8N - V d xNq 8N = O ==> Nq1L- NV= O, 
q . q q 

(34) 

together with six eq~ations for the transverse space metric components if{;, ¢i, determines 
the lapse function Nq with an arbitrary time-dependent factor f3(t) 

Nq(t,x) = [✓it.(t,x)]- 1 f3(t). (35) 

This factor represents the Lagrange multiplier. The generator of the dynamic evolu­

tion (33) 

HR= 2J'v]l = 2 j d3x✓ft.(t,x) (36) 

does not depend on this factor f3(t.). , 
In accordance with .the diffeomorphism group (19), we consider as constraint only 

equation (33) which is the equation for the Lagrange multiplier f3(t). 
The global constraint (33) has two solutions which correspond to two reduced systems 

with the actions 
<P2=<Po(t2) 

wf = .. J dcp { ( -f d3x1f{;a,,,¢i) ~ HR} 
'Pl =,po (ti) . 

(37) 

where _HR .is .the. Hamiltonian of evolution (36) · of the reduced phase space variables 
· (if[;, ¢i) with respect to the dynamic evolution parameter cp = cp0 • 
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Following to Dirac [6], we' call the sector of the reduced phase space described by 
action (37) the Dirac "observables". These variables are kinemetric invariarits by the 
construction. The equations of ~otion of the reduced unconstrained system are 

6WR O'ir;·T · 6HR -_- = 0 => __ J_ = ±~, 
61r;;T · : · Otp · · · 6q•J 

(38) 

6WR . _ a¢; 6HR . 
,-;· = 0 => -0 =,::: ,-T. (39) 
uq J tp o7r;; 

Solutions of equations (38), (39) d~termine the dependence ofthe Dirac observables with 
on the dynamic evolution parameter tp. 

The main problem is to construct the·time-reparametrization invariant Faddeev- Popov 
generating functional for the unitary perturbation theory. 

3. The invariant version· of the Dirac perturbation theory 

The reparametrization-invariant version of the perturbation theory_ begins from the non­
perturbative backg~ound metricwith t~e homogeneous p~rt of t'he space metric (22) (which 
gives the dynamic· evolution parameter) a~d the global component .of the lapse function 
No (35) which defines th~ reparametrization~irivari~rit conformal time · 

Nq =NoN; dT = N0 (t)dt ( dT' = N~dt' = dT). 

For the local part of metric, we use the version of th~ Dirac· perturbation theory [2] 

-I/3-.. -• .. +hT· -1/3_1+4 +. ·N--1+ + q q,3_ - o,3 ij• q - Z ••• , - V •••• 

(40) 

(41) 

Asymptotic states will be considered in the neglect of interactions, in accordance with the 
standard suppositions of quantum field theory. 

In the lowest order of this theory equation (34) determines z = (log ij)/12 

2 2 -
_:f!__t::,.z = 1io - Po - 3 J d3

xil.o_ Vo= jd3x) • (po= Vo' (42) 

A solution of this equation recalls the FP gauge [4] where the internal evolution parameter 
is changed by µ and instead of the massive matter we have the non-zero Fourier harmonic 
part of the Hamiltonian for two transverse and trace-less gravitons 

- 6 T 2 'P2 
T 2 · -2 - 2 -

1io := cp2 (1r );; + 
24 

(ok(h );;) := '{) 1iK + tp 1iR. (43) 

The solutions of E:qua:tion ( 42) is usually treated as the Newton interaction of particles, i.e. 
of the transverse and trace-less gravitons hT; which form the asymptotical physical states, 
similar to photons in QED. These transverse gravitons hT; are considered in paper [18] in 
context of the invariant Hamiltonian quantization. The trace component of the graviton 
momentum ifi1t;; = Pz/12 disappears from the kinetic part of the Hamiltonian (43) flK 
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as a result of the solution of the space constraints. Nevertheless, the momentum Pz is not 
equal to zero as it follows from the equations of the initial extended system for Pz 

2tp2 (z' - OkNk) = Pz (z' = oz _ 8T - '1Po8,pz), (44) 

and for FJk = Nk /No 

2 2 . 

-+(ad - l::,.Nk) = P[ == (1rT);;8k(hT);;, (45) 

in contrast with the Dirac gauge [2]. The perturbation part of the lapse function v is 
determined from the motion equation of the reduced system for z unambiguously 

v= 0. (46) 

One can see that the range of applicability of the Dirac perturbation theory (41) is the 
region where derivatives are far less than the internal evolution parameter !::,.f / f < < tp2

• 

In the opposite limit 'Po -➔- 0, we got the local version of the model of an anisotropic 
universe considered by Misner [22]. 

4. Measurable quantities 

4. 1. Geometry 

The dynamic sector of the imconstrained GR restricted by the Dirac" observables" (37-39) 
is not sufficient to determine evolution of the Einstein invariant interval 

(ds.) 2 = (f )2q116 (dsc)2. 
µ 

here dsc is the conformal invariant interval 

· (dsc) 2 = q1f3 [dT2N2 - ij;;JxiJxi]; (Jxi = dxi + feidT) 

(47) 

(48) 

which does not depend on the global variable tp. These intervals characterize the mea­
surable geometry of the space-time and contain the shift vector fek and invariant time 
parameter (40). The latter is well-known in the classical Friedmann cosmology [14, 17] 
as th~ conformal time connected with the world Friedmann time by the relation 

dT1 = tp(T) dT. 
Jl 

(49) 

Measurable geometrical quantities go out from the set of the Dirac "observables", and 
can be determined by invariant equations of the initial extended system for the global 
variables Po, tp and the. local ones 'ir;1 which are omitted by the reduced action (37). In 
particular, the evolution of the Universe is not also included in the dynamic.sector of the 
Dirac "observables". 
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4.2. Evolution ofa universe 

The evolution· of a universe is the depend.ence of the measurable time (40) on the internal 
evolution parameter given by the equation of the extended system 

aWE (dcp) (Po)± ~ 
6P

0 
= O => dT ± = 2iT = ±y p(cp); 

The integral form of the last equation 

'PO 

T(cpo) =/ dcpp-:1f2(cp). 
0 

f d3xfl fl 
p=---=-· 

Vo Vo' 
(.50) 

(51) 

is.well-known as the Friedmann-Hubble law in the Friedmann-Robertson-Walker cosmol­
ogy. It is natural to call the Hamiltonian if the "measurable" one, as it determines the 
evolution of the Dirac observables with respect to the. measurable time T 

I BJ ' .· . - . 
f := {)T = ..Jpa,.,J = {H,f}. 

Another global equation of the extended system 

awE d' · · 
~ = 0 => Pfi = V dcpp(cp) 

leads to the conservation law for the measurable Hamiltonian fl (16] 

-2 - i ' . 2 - , ' 
cp HK+ cp Hn = o, 

(52) 

(53) 

(54) 

where symbols I<, R mean the kinetic and potential ·parts (see eq. (43)). The shift vector 
is determined by the equation 

6 E -
~ =0 => Drif'+vifl'+v'fli= 12

N
2 

(,iii/!rr;k-if1rr). (5.5) 
urrjl cp 

.. 
4,3. Standard13 of measurement 

As it was shown in papers· [16, t7], GR with the Einstein-Hibert action can be also treated 
as the scalar version of the Wey! conformal theory' [19]. with the scalar field <I>w considered 
as the measure of a change of the length of a vector in its parallel transport. In this case 
the role of the metric scale field cp9 = µq 1l 12 in GR is played by the Lichnerowich [23, 11] 
conformal invariant variable 'Pc = <l>wq1l 12 of the scalar field. Dynamics of both the 
Einstein GR and the Wey) theory is the same (including the matter sector where the scalar 
field forms masses .of fermion and boson ,fields), btit not standards of'measurem'ent. An 
Einstein observer measures'the absolute lengths•(ds) 0 ,·while a Wey) observer can measure 
only the ratio of lengths of two vectors (ds),,; =· (dsi),;/(ds2)e = (ds1)c/(ds2)c which 
is conformal-invariant. Thus, a classical state of the universe in GR (with the Einsteiri­
Hilbert action) is determined both by the dynamic sector of the Dirac" observables" in the 
reduced phase space and the geometrical sector of" measurables"; the latter are determined 
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I 

1) 
I? \ I 
\ 

l 

not only by inv;uiant dynamics of the Einstein-1:Iilbert action , but also by standards of 
measurem_ents.' ., . . . . . ·' . . . · .... · ' ., .. : . ·. . . .. . 

The same GR dynamics'·corresponds to different cosm~logical pictures for different 
observers: an Einstein observer; who ·suppos~ that lie measures an. absolute interval, 
obtains the Friedmann-Robertson-Walker (FRW) cosmology where the red shift is treated 
M expansion of the universe; a Wey! observer, who'supposes that he measures a relative 
interval De, obtains the Hoyle-Narlikar cosmology [24]. The red shift and the Hubble law 
fit the Hoyl~Narlikar cosmology [24] 

cp(T) c • c 1 dcp(T) VPlT) 
Z(Dc) = cp(T _ Dc/c) - 1 :::::'.1lHv.bDc/c; 1liiv.b = cp(T) ~ = cp(T) (56) 

reflect the change of the size of atoms in the process of evolution of masses [24, 15, 16, 17]. 
Equation (56) gives the relation between the present-day value of the scalar field and 

cosmological observ:ations (the density of. matte_r and the Hubble paraipeter) 

. cp(T) = VPlT) 
1l'ifv.b(T). 

Note that the present-day observational data [27] on the matter density 

P =Pb= iloPcri ( _ 31l'ifubM2 ) 
Per- -

8
-- Pl 

. . rr 
0.1<!20 <·2 

(57) 

(58) 

give the value of the dynamic evolution parameter which coincides with the Newton con­
stant (or the Planck mass) 

cpo(To) = µ!2~12 . (59) 

Both the standards of measurement of the present day value. of cp0 i_n observational cos_mol­
ogy give. the value of. the Planck mass (59). Nevertheless, only for the relative standard 
ofa .Wey) observer,· local measurements of the invariant inter.val do not depend on the 
parameters of global evolution of the universe. 

5. "Measurable" Quantum Universe 

·we calcuiat~ the generating functional for the unitary perturbation the~ry as the S-matrix 
element in the standard interaction representation applied in quantum fiel? theory . 

S[cp1, cp2] = a+ < out (cp2)ITexp {-ildcp(Hf)} l(cp1) in>+ 

a- < out (r;o1)l'.I'exp {+i] dr;o(Hf)} !(~2) in>, 
'Pl . 

where rr, Tare symbols of ordering and anti-ordering, Hf is the Hamiltonian of.interaction 
of the reduced system 

Hf=HR-Hf; (60) 
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HR is the reduced Hamiltonian defined by equation (36), Hf is a free part of this Hamil­
tonian HR in the perturbation theory (41), (43), and l(<p) in(out) > is the in (out) - state 
of Quantum Universe which· satisfies the Schrodinger equation 

'dd l(<p) in(out) >= H!}l(<p) in(out) > . 
I <p 

(61) 

As we have seen above, the desc~iption of both the Dirac dynamics (in the reduced phase 
space) and the measurable geometry, i.e. the invariant interval 

(dsc) 2 = dT2 - (o;j + h;j)dx;dxi (62) 

can be given only by the constrained system with the extended action 

. t2 { ' [ 2 ] } E 3 T'T · . . Po · -
W0 = j dt [J d xrr;jhij] - Po<p- No - Vo + Ho , 

It -

(63) 

where - J 3 (6(1rT,.i)2 <p
2 

T 2) T T Ho= d x -r + 
24 

(fJ;h ) ; (h;; = 0; fJihi; = 0), (64) 

is the "measurable" Hamiltonian of "free" gravitons. This action includes the world time 
interval dT = Nodt measured by an Wey) observer. · · 

The dependence of the. world time on the internal evolution parameter <p is treated as 
evolution of a classical Universe. Quantization of the extended constrained system with 
the "free" gravitons (63) was performed in paper [18] where the holomorphic variables 
of "particles" (a+, a) were defined as variables which diagonalize the measurable Hamil­
tonian (64), and "quasiparticles" (b+; b), as variables which diagonalize the classical 
and quantum equations of motion and lead to the equivalent oscillator-like system with 
the set of conserved "quantum numbers". For the latter system there is the canonical 
transformation [25, 26, 18] of the extended system (63) to a new set of variables 

(a+, al Po, <p) => (b+, bill, 77), (65) 
, . ' 

so that the new internal evolution parameter 77 coincides, in the equation of motion for the 
new momentum TI, with the invariant time measured by a Wey! observer in the comoving 
frame of references 

oW,E 

0
; = 0 => d17 = Nodt = dT. (66) 

Thus, after the canonical transformations the states of the measurable Quantum Universe 
(with a conserved number of "quasiparticles") are determined by the Schrodinger equation 

i:Tl<p(T) in>= ~wb(n, T)½(b!bn + bnb!)l<p(T) in>= E!}lrp(T) in>, (67) 

where n denotes a set of parameters of gravitons (projections of spins, and momenta), and 
E/j- is an eigenvalue of the oscillator-like Hamiltonian. 
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The state of"nothing" is the squeezed vacuum (without quasi particles) bn(T)lrp(T) in >= 
0. It was shown [18] that for small <p, and a large H.ubble parameter, at the beginnii;ig of 
the Universe, the state of vacuum of quasiparticles leads to the measurable density 

_o_+--' .· 1 ( 'P2 cp2(T)). 
b < p(a+, a) >F Po 2 cp2(T) <p5 (68) 

where cpo is the initial value, and Po= ½ I;w0 (ii) is the density of the Kasimir vacuum 
n 

of" particles". The first term corresponds to the ·rigid state equation (in accordance with 
the classification of the standard cosmology) and it leads to the Kasner anisotropic stage 
T±(cp) ~ ±cp2 (described by the Misner wave function [22]). l,From the point of view of -
fields of matter for which <p forms masses, the negative solution <p2 (T_) < O (anti-Universe) 
is not stable, in this stage. The second term of the squeezed vacuum density (68) leads to 
the stage with the' inflation of the scale cp with respec't to the time measured by a Wey) 
observer · - - · · · ' · · · : 

cp(T):::: ~xp(T~/cpo), 

It is the stage of intensive creat_ion of "measurable particles". After the inflation, the 
Hubble parameter goes to zero, and gravitons convert into photon-like oscillator excitations 
with the conserved number of particles. 

At the present-day stage, we can describe in- and out -states in terms of the "measur­
able" time T and the Hamiltonian Ho (64) where cp is changed by Jt,_ in agreement with 
the data of the observational cosmology <p(T0 ) = Jt discussed above. 

The internal evolution parameter can be connected with the time measured by an 
observer of a quantum state of the Universe lout > in terms of the conserved quantum 
numbers of this state: energy Eout and density Pout = E 0 ut/Vo 

dcp 
dT=~. (69) 

It is natural to suppose that Eout is a tremendous energy in comparison with possible 
deviations of the free Hamiltonian in the laboratory processes 

Ho= Eout + oHo, < outloHolin ><< Eout• (70) 

6. Infinite volume limit of Quantum Gravity 

We consider the infinite volume limit of the S-matrix element in terms of the measurable 
time T for the present-day stage T = T0 taking into account only the contribution of thl' 
Universe o+ = 1,·0- = 0 . 

S[T1 = To - LlTIT2 =To+ LlT] =< out (T2)ITexp -i j dcp(Hf) l(Ti) in> . (71) 
{ 

..,(T2) } --

..,(Tt) 

·One can exp_ress this matrix element in terms of the time measured by an observer of an 
out-state with the tremendous number of particles in the Universe using equation (69) 
and the approximation (70). 
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In the infinite volume limit, we get 

dcp[Hfl] = dT[FfI~ + 0(1/Vo) + 0(1/ Eout)] (72) 

where fl1 is the Hamiltonian of interaction. in GR, and 

F'= Eout 
Eout +oHo 

(73) 

is the multiplier which plays the role of a form factor for physical processes observed at the 
"laboratory" conditions when the cosmic energy Eout is much greater than the deviation 
of the free energy 

oflo = Ho - Eout; (74) 

due to.creation and annihilation of real-and virtual particles in the laboratory experiments. 
The measurable time of the laboratory experiments T2 - T1 is much smaller than the age 
of the Universe To, but it is much greater than the reverse "laboratory" energy o, so that 
the limit 

l ⇒ i00 

T1 -oo 

is valid. We can get the conventional quantum field theory representation of matrix 
element (71) 

{ 

+oo . } 

S[-ooJ + oo] =< outJTexp, -i_l dTH1 Jin>, (75) 

if we neglect the form factor (73) which removes a set of ultraviolet divergences. This 
matrix element corresponds to the FP functional integral 

ZQFT = j D(ij,ir,Nk)[FP].e?Cp{iWE[qJµ]+sources}, · (76) 

where WE[qJµ] is the initial action (1) in terms of the conformal-invariant time T for 
N = l (40). 

The main difference of the obtained generating functional from the Faddeev-Popov­
DeWitt one [4, 5] is the absence of the fourth gauge which fixes the determinant of the 
space metric [4] or its momentum [2]. In both the cases, these gauges contradict the 
motion equations for these variables, as we have seen above, in the context of the Dirac 
perturbation theory [2]. . . 

The result (76) could be predicted from the very beginning, the problem was to show 
the range of validity of the conventional quantum field perturbation theory [3, 4] and its 
possibilities for solution of problems of the Early Universe. 

The relativistic covariance of the considered scheme of quantization can be proved in 
the infinite space-time on the level of algebra of commutation relations of the generators 
of the Poincare symmetry in perturbation theory by analogy with QED [28]. 

;,From the-point of view of.the quantum field theory limit, the conformal variables 
and measurable quantities, including the conformal time, are favorable, and the Einstein 
General Relativity looks like a scalar version of the Wey! conformal invariant theory, 
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where the Wey! scalar field forms both the Planck mass (in agreement with the present~ 
day astrophysical data) and masses of elementary ·particles [17] (in agreement with the 
principle of equivalence). 

in. the Wey! theory, the Higgs mecha~ism of the formation of particle masses becomes 
superfluous and, moreover, it contradicts the equivalence principle, as, in· this case, the 
Planck mass and masses of particles are formed by different scalar fields. . · · 

In the c~nformal theory [16, 17], we got the u-version of the Standard Model [19] 
without Higgs particles, and with the prescription (73) to .be free from the ultra-violet 
divergences for the precision calculations. 

7. Conclusion 

We have obtained the generalization of the unitary S-matrix in General Relativity [5, 4, 20] 
for a finite space-time in agreement with the group of invariance of the Hamiltonian 
dynamics in GR. This group contains reparametrizations of the coordinate time (t) and 
gauge transformations with three local parameters. We have shown that the solution 
of one global constraint (with respect to the zero Fourier harmonic of the space metric 
determinant cpo) and three local constraints remove all ambiguities from the perturbation 
theory for transverse gravitons, so that the fourth gauge [2, 4] for fixation of the space 
metric determinant is superfluous and can contradict equations of motion. 

As a result of the solution of these constraints, we got the unconstrained version of 
GR which describes the dynamics of the Dirac "observables" in the reduced phase space 
with the dynamic evolution parameter. Besides the unconstrained dynamics, the extended 
Hamiltonian GR contains the geometry of "measurable quantities" (which depend on all 
components of metric including those which cannot be defined by complete set of equations 
in the sector of the Dirac "observables"). 

The geometric sector .of "measurable intervals" is a specific_ feature of GR which 
strongly distinguishes it from classical unconstrained systems where the dynamic evo­
lution parameter coincides with the measurable time. 

In particular, the evolution of the universe is the evolution of the Dirac sector of"oh­
servables" (together with their dynamic evolution parameter) with respect to the "mea­
surable" interval (including the invariant proper time), and this "measurable" evolution 
goes beyond the scope of the sector of the Dirac "observables". This fact is the main 
difficulty for the standard quantization. 

To emphasize the autonomy of the "measurable" geometrical sector in GR, we pointed 
out two different standards of measurement (relative and absolute) which correspond to 
two theories with the same dynamics: GR and the scalar version of the Wey! geometry 
of similarity (with a scalar field as the measure of a change of the length of a vector 
in its parallel transport). In terms of the conformal invariant variables, actions ofboth 
these theories coincide, but the measurable intervals are different. An Einstein observer 
(who measures lengths by the absolute standard} sees the Friedmann-Robertson-Walker 
evolution of a universe, 'While a Wey! observer (who treats the determinant of the three­
dimensional metric multiplied by the Planck constant as a measure of a change of the 
length of a vector in its parallel transport) sees the Hoyle-Nadikar evolution. 

We have considered the phenomenon of Quantum Universe mainly "with a view to 
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its measurement describing the methods of measurement and defining the standards on 
which they depend" [29]. 

The phenomenon of Quantum Universe can be described by two measurable quantities: 
the time in the comoving frame, and the red shift of spectral lines of the cosmic object 
atoms in terms of the dynamic evolution parameter (i.e. the scale factor). Both these 
quantities determine the background metric of the considered perturbation theory for the 
unconstrained GR and measurable density. 

Now, we can define the Quantum Universe as the universe filled by "free" quantum 
fields in the space-time with the considered background metric and standard of the mea­
surement of the invariant time intervals. The evolution of the Quantum Universe is ex­
pressed in terms of the measurable time by canonical transformations which convert the 
dynamic evolution parameter into the measurable time and the variables of particles (di­
agonalizing the measurable density) into the quasiparticles (diagonalizing equations of 
motion) with the squeezed vacuum. • 

• The Quantum Gravity is the theory of S-matrix between the states of the Quantum 
Universe. 

The infinite space-time limit of this S-matrix leads to the standard quantum field 
theory S-matrix provided the measurable time is the conformal time of a Wey! observer 
and General Relativity is the scalar version of the Wey! conformal invariant theory with 
the set of prediction, including 

the Hoyle-Narlikar version of observational cosmology, where the physical reason of 
red-shift is changing masses of elementary particles in the process of evolution of the 
Universe, 

the cosmic mechanism of the formation of both the masses of elementary particles 
and the Planck mass by the Wey! scalar field (which does not contradict the present-day 
astrophysical data), 

the squeezed vacuum inflation from "nothing" at the beginning of the Universe, 
and the negative result of CERN experiment on the search of Higgs particles. 
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