


Houeu E.E. u np. E2-99-218
MuoromepHas N = 4 cynepcHMMeTpHYHas KBAaHTOBas MeXaHHKa,

YacTHYHOE HapylleHHe CYNePCHMMETPHH

H CylepKOH(GOPMHad KBaHTOBas MeXaHHKa

Muoromepnas N = 4 CynmepcuMMeTpHYHas KBaHTOBasS MeXaHHKa pacCMOTpeHa ¢ Hc-
HOJIB30BAHHEM CYTIEPNONIEBOTO Noaxona. B pesynsrare nonyyeHs! KOMIOHEHTHBIE HOPMBI CO-
OTBETCTBYIUIMX KIACCHYECKMX M KBaHTOBbIX JlarpamxuanoB U amunsroHHanos. B pac-
CMaTpHBaeMOit TEOPUHU KilaccHYecKas M KBaHToBas N = 4 anreGpel comepxar LeHTpaTbHbie
3apsfbl ¥ 9TO OTKPbIBaeT Pa3iKuHbie BOIMOXHOCTH AN YACTHYHOTO HapylLIEHUs Cynepcum-
meTpun. [TokasaHo, YTO KBaHTOBOMEXAHMYECKHE MONENH C OXHOM YeTBepThIO, NONOBHHOM
H TpeMs YEeTBEPTAMH HCHAPYIUEHHBIX (HApyIIEHHBIX) CYIEPCHMMETPHIT MOTYT CyLIeCTBOBATh
B paMKax MHoromepHoil N = 4 cynepcuMMeTpHYHOH KBaHTOBOI MeXaHHKH, TOLAA KaK COOT-
BETCTBYIOLIAA OQHOMEPHas TEOPH:, MOCTPOEHHAas paHee, JOMYCKaeT TOJNbKO IOHOE WIH Mo-
JIOBUHHOE HapylleHHe cynepcummeTphu. [TonyueHHsI o6umil hopManusM NpoHSIICTPHPO-
BaH Ha TOYHO pELaeMOM IIpHMepe, KOTOPbIH ecTh npiMoe MHoroMepHoe o6o6uteHne N = 4
ONHOMepPHOI1 CynepKoH(pOPMHOI KBaHTOBOMeXaHUYeCKOi Molenu. Bkpatue oGcyxneHsl He-
KOTOpBIE OTKPBITBIE BOMPOCH! K BO3MOXHbIE MPHIOKEHHS K H3BECTHBIM TOYHO peluaeMbIM CH-
cTeMaM, a Takxe K npo6aeMaM KBaHTOBOIl KOCMOJIOTHH.
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N = 4 Supersymmetric Multidimensional Quantum Mechanics,
Partial SUSY Breaking and Superconformal Quantum Mechanics

The multidimensional N = 4 supersymmetric quantum mechanics (SUSY QM) is con-
structed using the superfield approach. As a result the component form of the classical
and quantum Lagrangian and Hamiltonian is obtained. In the considered SUSY QM both
classical and quantum N = 4 algebras include central charges and it opens various possibili-
ties for the partial supersymmetry breaking. It is shown, that the quantum mechanical models
with one quarter, one half and three quarters of the unbroken (broken) supersymmetries can
exist in the framework of the multidimensional N = 4 SUSY QM, while the one-dimension-
al N = 4 SUSY QM, constructed earlier, admits only the one half or total supersymmetry
breakdown. We illustrate the constructed general formalism, as well as all possible cases
of the partial SUSY breaking on the example, which is the direct multidimensional general-
ization of the one-dimensional N = 4 superconformal quantum mechanical model. Some
open questions and possible applications of the constructed multidimensional N = 4 SUSY
QM to the known exactly integrable systems and to the problems of quantum cosmology are
briefly discussed.
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I. INTRODUCTION

The supersymmetric quantum mechanics (SUSY QM), being introduced first in Refs.
[1] - [2] for the N = 2 case turns out to be a convenient tool for investigating problems of
the supersymmetric field theories, since it provides the simple and at the same time quite
adequate understanding of various phenomena, arising in the relativistic theories.

The important question of all modern theories of fundamental interactions, including su-
perstrings and M - theory is the problem of the spontaneous breakdown of supersymmetry.
Supersymmetry, as a fundamental symmetry of the nature, if exists, has to be spontaneously
broken at low energies, since particles with all equal quantum numbers, except the spin, are
not observed experimentally. The several (rather different) mechanisms of the spontaneous
breakdown of supersymmetry have been proposed in particle physics in order to resolve this
problem. One of them is to add to the supersymmetric Lagrangian the so called D —, or F' —
terms, which are invariant under supersymmetry transformations as well but break the su-
persymmetry spontaneously due to the nonzero vacuum expectation values or, alternatively,
to introduce into the theory some soft breaking mass terms "by hand”; the latter procedure
does not spoil the nonrenormalization theorem of the supersymmetric field theories and was
successfully applied for constructing the Minimal Supersymmetric extension of the Standard
Model (see Ref. [3] and Refs. therein). The next mechanism of SUSY breaking is the dy-
namical (nonperturbative) breakdown of the supersymmetry, caused by instantons (see, for
example, [4] and Refs. therein). In this case the energy of tunneling between topologically
distinct vacua produces the energy shift from the zero level, hence leading to the sponta-
neous breakdown of supersymmetry. And, finally, the mechanism of the partial spontaneous
breaking of the N = 2 supersymmetry in the field theory was proposed recently in Ref.
[5]. This mechanism is based on the including into the Lagrangian two types of the Fayet —
Iliopoulos terms — electric and magnetic ones and it leads to the corresponding modification
of the N = 2 SUSY algebra of Ref. [6].

The problem of the spontaneous breakdown of supersymmetry could be mvestlgated in
the framework of the supersymmetric quantum mechanics as well. The conjecture, that
supersymmetry can be spontaneously broken by instantons [1] - [2] was investigated in
details by several authors for the case of N = 2 SUSY QM [7] - [9]. However the most
physically interesting case is provided by the N = 4 supersymmetric quantum mechanics,
since it can be applied to the description of the systems, resulted from the "realistic” N =1
supersymmetric field theories (including supergravity) in four (D = 4) dimensions after the
dimensional reduction to one dimension.

One-dimensional N = 4 SUSY QM was constructed first in Refs. [10] - [11]. The
partial breaking of supersymmetry, caused by the presence of the central charges in the
corresponding superalgebra was also discussed in Ref. [11]. It was the first example of
the partial breaking of supersymmetry in framework of SUSY QM and the corresponding
mechanism is in full analogy to that in Ref. [5] in the field theory. The main point is that
the presence of the central charges in the superalgebra allows the partial supersymmetry
breakdown, whereas according to Witten’s theorem [1], no partial supersymmetry breakdown
is possible if the SUSY algebra includes no central charges. The main goal of our paper is
further generalization of the construction, proposed in Ref. [11] for the multidimensional
case and investigation of partial breaking of supersymmetry under the consideration.
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The question of the particular importance is to consider the supersymmetric algebra with
the central charges for the several reasons. First, it provides a good tool to study the dyon
solutions of quantum field theory since in such theories the mass and electric and magnetic
charges turns out to be the central charges [12]. Second, the presence of the central charges
produces the reach structure of supersymmetry breaking. Namely it is possible to break a
part of all supersymmetries, leaving all others exact [13]. In fact, the invariance of a state
with respect to the supersymmetry transformation means the saturation of the Bogomol'ny
bound and this situation takes place in N = 2 and N = 4 supersymmetric Yang - Mills
theory [14] - [15] as well as in theories of an extended supergravity [16].

The investigation of supersymmetric properties of branes in M - theory also revealed
that the partial breakdown of supersymmetry takes place. Namely the ordinary branes break
half of the supersymmetries, while “intersecting” and rotating branes can leave only 1/4,
1/8, 1/16 or 1/32 of the supersymmetries unbroken [17]. The known examples of the break-
down of the supersymmetries in supersymmetric quantum mechanics are the cases, where
either all the supersymmetries are broken(exact) or only half of all the supersymmetries are
broken(exact) {11]. In this paper we demonstrate the possibility of the three ~ quarters or
one - quarter of the supersymmetry breakdown in the framework of multidimensional N = 4
SUSY QM. The later case (3/4 of the supersymmetries are exact) has not been observed
before neither in supersymmetric field theories nor in SUSY QM and seems to be quite
interesting by itself even without specifying the physical origin of the phenomena.

The paper is organized as follows. In Sec. Il we present a formal construction of N =4
multidimensional supersymmetric quantum mechanics: classical and quantum Hamiltonian
and Lagrangian, SUSY transformations, supercharges algebra and so' on. In Sec. 1II partial
supersymmetry breaking is investigated and all possible cases of the partial SUSY break-
down are listed. In Sec. IV we give an exactly solvable example, which illustrates main
properties of the introduced formal constructions. This example is interesting by itself since
we consider the multidimensional generalization of the N = 4 superconformal quantum me-
chanics [11], [18], which is naturally related to the extremal RN black holes in "near horizon”
limit and adS/CFT correspondance [19]. In Sec. V we conclude with some open questions
and further perspectives.

II. D - DIMENSIONAL N =4 SUSY QUANTUM MECHANICS

In this section we describe the general formalism of D - dimensional (D > 1) N =4
supersymmetric quantum mechanics, starting with the superfield approach and concluding
with the component form of the desired Lagrangian and Hamiltonian.

Consider N = 4 SUSY transformations

8t = %(e“éa +E%0,),
80, = &,
00° = ¢, (2.1)

in the superspace, spanned by the even coordinate ¢ and mutually complex conjugated odd
coordinates ° and 0,. The parameters of N = 4 SUSY transformations ¢* and ¢, are

complex conjugate to each other as well.! The generators of the above supersymmetry

transformations

a i 0 = a i,,0
=t =0, = C= 40—, 2.2
Qe 80“+20”8t’ @ a0, "3 ot 22)
along with the time translation operator H = —i% obeyv the following
(anti)commutation relations: B
{Qaa Qb} = _JZHv
[H,Q.)=[H,@"]=0. (2.3)

The automorphism group for a given algebra is 50(4) = SU(2) x SU(2) and the generators
of the N = 4 SUSY transformations are in the spinor representation of one of the SU(2)

groups.
The next step is to construct irreducible representations of the algebra (2.3). The usual

way of doing this is to use the supercovariant derivatives
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and impose some constraints on the general superfield. Hereafter we deal with the superfield
&' (i = 1,..., D), subjected to the following constraints:

[Dm Dalq)i = —'4mi’
D°D, ' = —2n',
D,D*®* = 27, (2:5)

where m* are real constants, while n’ and 7' are mutually complex conjugated constants.
The explicit form of the superfield ®* is the following:

q>i - ¢i +0a1/;‘i1 _ 501/)1'0._*_ gaB:io_b +
. 1 . 1 . -
+ m'(86) + 5n'(09) + 57°(00) +
y o . .. 1 e
+H(00)0.5% — Z(B0)0°% + 1£(00)(80) &, (26)

("= 8;). Note, that in the case when all the constants m', n', ' are equal to zero, the
superfield (2.6) represents D ”trivial” copies of the superfield @, given in Ref. [20], which
describes the irreducible representation of one-dimensional N = 4 SUSY QM. The latter
superfield contains one bosonic field ¢, four fermionic fields ¥* and ¥4 and three auxiliary
bosonic fields B2 = (a7)2 B, where (o)} (I = 1,2,3) are ordinary Pauli matrices.

Another irreducible representation of the algebra (2.3) can be constructed after making
the appropriate generalization of the constraints given in Ref. [10]:

10ur conventions for spinors are as follows:

, = Bepq, 0% = £%g,, 8, = ébeb,,, g% = by, 0, =
(6%)", 6° = —(6,)", (06) = 6°0, = —26'92, (08) = 0,6°

= (00)‘, el2 = 1, €12 = 1.



(e**D.D® + &*D.D*)® = 0. (2.7)

The technique of constructing N = 4 SUSY invariant Lagrangians is absolutely the same
for both cases and therefore we shall not consider the second one separately.

The components of the superfield (2.6) transform under the N =4 transformations as
follows:

6¢i — ca_d_)i _ €a_¢)ai,
szm' — EbB;i + _;_Cuq‘gi + Eami _ Eaﬁi’
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Now one can write down the most general form of the Lagrangian, invariant under the
above-mentioned N = 4 SUSY transformations:

L= —8([ FOPTA®)) + 11—6/\‘;,-33*), (2.9)

where A(®') is an arbitrary function of the superfield @', called the superpotential. The
second term is the Fayet — Iliopoulos term and Af; = (o1)2 Al are just constants. The
expression for the Lagrangian (2.9) is the most general one in the sense, that any other
N = 4 SUSY invariant terms added will lead with necessity to the higher derivatives in the
component form.

After the integration with respect to the Grassmanian coordinates 0 and 8, one obtains
the component form of the Lagrangian (2.9):

L=K-YV, : (2.10)
where
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Expressing the auxiliary field BY in terms of the physical fields

0%A )_‘(l,\a 124
¢agi’ 47 204704894
using it’s equation of motion and inserting it back into the Lagrangian (2.10), one obtains
the final form of the potential term:

By = ( (BE'P + $P90)), (2.13)
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where the identity
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was used.

The formulae given above, can be rewritten in a different and more natural form, using
the geometrical notations. Let us introduce the metric of some “target” manifold in the
following way:

A

o= 2
Gij a¢,a¢1w (-16)
along with the corresponding Christoffel connection and the Riemann curvature
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Now the Lagrangian (2.10) is rewritten in terms of these geometrical quantitics as follows:
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where D; is a standard covariant derivative, defined with the help of the introduced Christof-
fel connection (2.17). Using Noether theorem technique one can find the classical expressions
for the conserving supercharges, corresponding to the SUSY transformations {2.8), leaving
the invariance of the Lagrangian:
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These formulae for the conserved supercharges complete the classical description of the
desired N = 4 SUSY multidimensional mechanics and now to quantize it we should analyze
it’s constraints.

Following the standard procedure of quantization of the system with bosonic and fermi-
onic degrees of freedom [21], we introduce the canonical Poisson brackets:

(#,p} =8 (0% past = =685 Bty ;) = —65, (2.23)

where p;, p(y),«i» and ph” are the momenta, conjugated to &', v® and zz;; From the explicit
form of the momenta:

pi = 954, ‘ (2.24)

Pwyai = —igWly  Plgs = —195%™, (2.25)
with the metric g;; given by (2.16), one can conclude , that the system possesses the second
— class fermionic constraints:

X(o)ai = Puyai + 19593, and  x{gs = Plgit igi; ™, (2.26)

since

{X(g).60 X(w)45} = — 2194505 (2.27)

Therefore, the quantization has to be done using the Dirac brackets, defined for any two
functions V, and W, as '

(Vos Vi piree = (Vi Vo) — {v,,,xc}{—xixﬁm, ). (2.28)

As a result we obtain the following Dirac brackets for the canonical variables:
i, 0°A TV
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and, finally,
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.

The classical Hamiltonian, obtained after the usual Legendre transformation from the
Lagrangian (2.10) has the form:

1, 824 !

= 5(w) pip; + V. (2.31)

Hclass.

The supercharges and the Hamiltonian form the following N = 4 SUSY algebra with
respect to the introduced Dirac brackets: -

{Qay Qb}Dirac = _i(sZHcluss. i i/\’;;mi,
{Qtu Qb}Dira.c = —iAabiniy {Qa’ Qb}Dirac = iA?bﬁi- ’ (2.32)

Note the appearance of the central charges in the algebra. This fact is extremely important
especially for the investigation of partial supersymmetry breaking, given in the next Section.
Replacing the Dirac brackets by (anti)commutators using the rule

i{, }pirac = {, 1> (2.33)
one obtains the quantum algebra:
{Qa, QY = 62anant. + A,
{Qay @) = dasin’,  {Q%, Q") = 27, (2:34)

provided the definite choice of operator ordering in the supercharges (2.21) - (2.22) and in
the Hamiltonian (2.31):
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The momenta operators are Hermitean with respect to the integration measure

qub,/ldet(ﬁ?—;—ﬁ)_l] if they have the following form:

(2.38)
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with the new fermionic variables 1 and ¥%#, connected with the old ones via the tetrad eff
(e2efnap = 9is):
P = el and P = €fPl, (2.40)

and wiag in (2.39) is the corresponding spin connection. Therefore, the quantum super-
charges (2.35) - (2.36) are mutually Hermitean conjugated and the resulting quanturn Hamil-
tonian Hyyent. is a Hermitean self — adjoint operator as well.

As a result, the equations (2.34) — (2.40) completely describe the general formalism of
N = 4 SUSY D - dimensional quantum mechanics and this provides the basis for the analy-
sis of it’s main properties.

III. PARTIAL SUSY BREAKING

Let us investigate in details the question of the partial supersymmetry breakdown in the
framework of the constructed N = 4 SUSY QM in an arbitrary D number of dimensions.
As it was mentioned in the Introduction, the problem of partially broken supersymmetry is
very important for applications in supergravity, superstring theories and in M - theory as
well, and supersymmetric quantum mechanics turns out to be an adequate mighty tool for
investigating of the corresponding problems in supersymmetric field theories.

Wo shall sce that in contrast to the one-dimensional N = 4 SUSY QM, the multidimen-
sional one provides also the possibilities when either only one quarter of all supersymmetries
is exact (for D > 2). or one quarter of all supersymmetries is broken (for D > 3).

In order to study partial SUSY breaking it is convenient to introduce a new set of real

valued supercharges:

§°=Qa+ Q. (3.1)

T° = i(Qa— Q") (3.2)

In the equations above the SU(2) covariance is obviously damaged. This is the price we pay
for passing to the real-valued supercharges. However, for the further discussion the loss of
the covariance does not cause any problems. The label “a” has to be considered now just
as the number of the supercharges, denoted as S and T.

The new supercharges form the following N = 4 superalgebra with the central charges:

(5%, 8%) = H(8; + 82) + (A + Mm' + Qasint’ — A7), (3.3)
(T, T%) = H(8: + 62) + (M5 + Mm' = Qapint’ = A7), (3.4)
(85, TP} = (A% — A )m' + i(Aapin® + AP0 (3:5)

The algebra (3.3) - (3.5) is still nondiagonal. However, some particular choices of the
constant parameters mi,n* and /\zi bring the algebra to the standard form, i.e., to the form
when the right hand side of (3.5) vanishes and the right hand sides of (3.3) and (3.4) are
diagonal with respect to the indexes “a” and “b".

Now we consider several cases separately.

A. Four supersymmetries exact / Four supersymmetries broken

If we put equal to zero all central charges, appearing in the algebra, then no partial
breakdown of supersymmetry is possible. In this case all supersymmetries are exact, if the
energy of the ground state is zero; otherwise all of them are broken. This statement is
obviously independent of the number of dimensions D.

B. Two supersymmetries exact

The case of the partial supersymmetry breakdown, when the half of the supersymmetrics
are exact, have been considered earlier [11] in the framework of one-dimensional ¥ = 4 SUSY
QM, but we shall describe it for completeness as well. Consider one-dimensional {D = 1)
N = 4 SUSY QM and put all constants cntered to the right hand sides of (3.3) - (3.5) equal
to zero, except

m' and Af (3.6)

Then the algebra (3.3) - (3.5) takes the form



{54, 8} = 2H + 2m'A3,
{52,5%) = 2H — 2m' A,
{T', T} = 2H 4 2m'A},
{T% T?) = 2H - 2m'Ad. (3.7)

It means that if the energy of the ground state is equal to m'A} and the last-mentioned
product is positive, then 5? and T? supersymmetries are exact, while the other two are
broken. If m'A? is negative, then S' and T! supersymmetries are exact, provided the
energy of the ground state is equal to - m'A}.

C. One supersymmetry exact

The case of the three — quarters breakdown of supersymmetry is possible if the dimension
of N = 4 SUSY QM is at least two (D > 2). Indeed, let us keep for D = 2 the following set
of parameters nonvanished:

A3 AL m' and Re(n?) = N, (3.8)
‘Then one obtains

{5, 5} = 2H + 2m*A} — 20} N7,
{52,5%) = 2H — 2m'A3 + 2A;N?,
{T', T'} = 2H + 2m' A} 4 2A}N?,
(T%,T%} = 2H — 2m' A — 20 N?. (3.9)
Further choice
m'A = AJN?, (3.10)
leads to the case, when only T2 supersymmetry is exact, while all others are broken if the

energy of the ground state is equal to 2m’A}, and m?A} > 0. If m'A} is negative, then T"
is exact, provided the energy of the ground state is equal to — — m'A3.

D. Three supersymmetries exact

The situation of the one — quarter breakdown of supersymmetry can exist, if we add
to the consideration one more dimension i.e., consider three dimensional D = 3 N = 4
supersymmetric quantum mechanics.

Keeping the following set of the parameters nonvanished

A AL AL mI N and Im(n®) = M3, (3.11)

the following algebra is obtained :
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{S',5'} = 2H + 2m' A — 203 N? — 2A3M°,
(S%. 52} = 2H — 2m' A% + 203 N? — 2A3M°,
(T',T'} = 2H + 2m'A? + 2A}N? + 2A3M°,

(T2, 7%} = 2H — 2m'A} — 203N + 20 M°. (3.12)
If
miAd = ALN?, ' (3.13)
AIN? = =AMP, (3.14)
and
m!A? <0, (3.15)

then T2 supersymmetry is broken, while all others are exact under the condition, that the
energy of the ground state is equal to m!A2. If the last-mentioned product is positive, then
T? supersymmetry is exact, while all others are broken, provided that the energy of the
ground state is 3m'A} and we arrive to the three-dimensional generalization of the case C.

Obviously, when considering three-dimensional N = 4 SUSY QM one can either keep
the parameters (3.8) under the condition (3.10), or the parameters (3.6), or put all of
them equal to zero, and therefore obtain all particular cases of spontaneous breakdown of
supersymmetry, discussed earlier. It is also obvious, that all this cases can be obtained from
higher dimensional (D > 3) N = 4 supersymmetric quantum mechanics.

To summarize this section one should note, that according to the given general analysis
of partial SUSY breaking in N = 4 multidimensional SUSY QM, there exist possibilities to
construct the models with 1, 1 and 3 supersymmetries unbroken, as well as models with
totally broken or totally unbroken supersymmetries. However, the answer on the question
which one of these possibilities can be realized for the considered system, depends crucially
on the form of the chosen superpotential and on the imposed boundary conditions of the
quantum mechanical problem.

IV. EXPLICIT EXAMPLE

For the better illustration of the ideas of the previous Section it is useful to consider a
particular choice of the superpotential A(®%). As it was mentioned before for considering all
possible cases of the partial supersymmetry breakdown the minimal amount of the superfields
needed is three. Therefore let us take three superfields of the type (2.6) and choose the
constants m’,n‘, it and AY; in accordance with the expressions (3.6), (3.8) and (3.11).

The simple and at the same time interesting example is the case, when the superpotential
is the direct sum of terms, each being a function of only one superfield. This gives the
possibility of the considerable simplification of the classical and quantum Hamiltonians and
the supercharges as well [11]. We choose the explicit form of the superpotential as

A(D) = ¥lnd’, i=1,2,3 (4.1)
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and consider the physical bosonic components of the superfields @ as the functions of the
new variables z*, namely:

& = (@) (4.2)

Making the following redefinition of the fermionic variables

: ) %A P %A
ai _ 0l L 2____’ 43)
5 ’L/) 2(6¢;)23 53 wa (8¢')2 (

where no summation over the repeated indices is assumed, one obtains the canonical com-
mutation relations between fermions

(€&} = 6387 (4.4)

Inserting the expressions (4.1), (4.2) and (4.3) into (2.37), one obtains three-dimensional
superconformal N = 4 quantum mechanics [18] with

}Iquant. = Hl + H2 + Has (45)

i.e., as it could be concluded from the fact that the superpotential is diagonal with respect to
the superfields considered, the total Hamiltonian is also the direct sum of three Hamiltonians,
each of them containing the bosonic and fermionic operators of only one type. The explicit
form of the Hamiltonians H*, (i =1,2,3.) is

2 1
B = e + gD
3 PRI P
+ ) 4 gy - (@6 1) - g8+ SEENEE, (1)
2 —
= MG AN
i 3 1 2 a2 F2pa2y _1_—2 a2 l £2pa2\(F2¢b2 4.7
N+ g - NEE + 86 - 8T+ HEENEE), (0D
? 1
Yo B
1 3 1 303 , F3gady _ Lzsgas 103y 3003 8
SO0 + 35 - MRS+ 88 — R+ NG 6

The next step is to find the energy spectrum of the quantum Hamiltonian (4.5).

Since the bosonic and fermionic variables of each type are completely separated, the
eigenfunctions of the Hamiltonian (4.5) is the direct product of the eigenfunctions of the
Hamiltonians (4.6) - (4.8) and the total energy is just a sum of the energies, corresponding
to the Hamiltonians H'.
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Let us find the energy spectrum of the Hamiltonian H!. Consider the general state in
the “reduced” Fock space, spanned by the fermionic creation and annihilation operators £}
and £°!. obeying the anticommutation relations (4.4) with / = 1:

o) = X1 (e1)]0) + Y7 (" JENO) + Z («)ENE™0). (4.9)

‘T'he operator H' acting on the state vector (4.9} gives the following four Shrodinger equations
on the unknown functions Xy(o), Y#(2!) and Zy(z!):

:(A:l)' ('Y + B(m1)? +4m' + g—)).\'l(.r') =4E; X;(2"). {4.10)

1
(x")?

1 d? a3, baz, 1 U L, 21yl d

(=g gy + AT D St = ) = 4B ()
1 d? I ! ;1 .

gy~ A AN e = N = 4B ()
1 & 1 .. ; 1 3

(—Em + 5(/\‘5)2(1")1 + (11)2(8(7"‘)2 —4m" + g))zl(-l") = 4E;\'Zl(-"‘)- (1.13)

The wave functions and the energy spectrum of the Hamiltonian of the type
td 1, 1
H= =5+ 30 +om (1.14)

have been investigated in details for the nonsupersymmetric theory in Refs. [22] - [23] and
in the framework of N = 2 supersymmetric quantum mechanics in Refs. [23] - [26] as well.
The most detailed and complete study has been done by Das and Pernice [23]. where the
eigenfunctions and the energy spectrum of the Hamiltonian of the type {4.14) where found
after appropriate regularization of the potential and superpotential, depending on cither
one considers nonsupersymmetric or N = 2 supersymmetric problem. llowever, as it can
be scen from (4.1) and (4.2) the superpotential in our N = 1 case for the Hamiltonian with
;% term in the potential energy is regular in contrast to the case of N = 2 supersymmetric
quantum mechanics and therefore we use the results of paper [23], which arc obtained after
the regularization of the potential, but not of the superpotental.

For the problem considered one obtains (we take the value of the parameter A] without
loss of generality to be equal +1).

For m! < —}I,

4E} =2k} - am',
4E}, = 2k} — A4m' + 2,
AL}, = 2k, — Am',
4K}, = 2k}, — 4m' +2, {(1.15)
13



where kfy =0,1,2,...,, (A=1,2,3,4) and (M = I,11,111,1V). Each energy level E3; cor-
responds to the couple (even and odd) of wave functions and therefore is doubly degenerate.
The minimal energy corresponds to the minima of E} and E}y for k} = kjpp = 0 and equals
to —m!. Let us denote the corresponding states by 71t and 35

For —1 < m' <0 one has:

AE! = 2k} + 4m' + 2,
AE}, = 2k}, —4m' +2,
4E}y = 2kyyy — 4m',
4E}, = 2k}y —4m' + 2. (4.16)

The minimal energy corresponds to the minimum of E};; for ki, = 0 and equals to
—m!. We denote the corresponding ground states by T,
For 0 < m' < } one has:

4E} = 2k} +4m' + 2,
4E}, = 2k}, + 4m' + 2,
4E}y = 2k + 4m',
4EY, = 2k}, —4m' + 2. (4.17)

The minimal energy is m! for k};; = 0, the corresponding ground state is again .
And finally, for m* > %:

4E} = 2k} + 4m* + 2,
4E}, = 2k, +4m' + 2,
4B}, = 2kjyp + 4m',
4EL, = 2k}, 4+ 4m', (4.18)
I 14

The minimal energy is m! for k};; = kjy = 0, the corresponding ground states are i
and mit.

The points +1, and 0 are the branching points and when m! gets these values, then the
corresponding energies and wave functions of the system in the regions of the parameter,
divided by these points just coincide.

If we also choose A} = AZ = 1, the energy spectra of the Hamiltonians H? and H? are
ahsolutely the same as in (4.15) - (4.18). The only difference is, that the parameter m!
should be replaced by N* or M? respectively. However, the eigenfunctions, corresponding
to E? and E%, are the linear combinations of the states of zero and two fermionic sectors,
since the fermionic number operator £2¢*? does not commute with the Hamiltonian H2. The
energies E2; and E?;; are also the linear combinations of the both states of one fermionic
sector, because the matrix (a1)2 is not diagonal. The analogous situation takes place for the
Hamiltonian H>.

Now we are in a position to describe partial supersymmetry breaking following the lines
of the previous Section. ) ‘

First, let us consider the one dimensional case, with m! equal to zero. As it was mentioned
above, zero value of m! is the branching point and therefore the encrgy spectra (4.16) and
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(4.17), as well as the wavefunctions in these regions completely coincide. Therefore, one has
the couple of supersymmetric ground states 7+ and all supersymmetries are exact.

As it was mentioned in the previous Section, in order to describe the halfbreaking of
supersymmetry it is enough to consider only the spectrum of the Hamiltonian H'. Inserting
the corresponding eigenvalues of the operator H! for each range of the parameter m' into
equations {3.7), one obtains that half of supersymmetries are always broken.

Considering the spectra of the Hamiltonians ' and H? one can obtain the three —
quarter breakdown of supersymmetry. Indeed, from the equations (3.9), (3.10) and (4.15) -
(4.18) one can conclude, that either T1 or T? supersymmetries are exact, depending on the
range of parameter m'. The corresponding ground state wavefunctions obviously are
for m!' < —L: .

o x 7 aft xonif, g x ¥, nlE x i, (4.19)

for —% <m! <0

i X i (4.20)
for 0 < m! < :—
7"}?:1 X "%:Ikl’ (4.21)
for m! > §:
mi xndh, miE xR, T XL T X T (4.22)

In order to study the possibility of the one-quarter breakdown of supersymmetry one
has to consider the three-dimensional case, i.e., the spectra and the wavefunctions of the
Hamiltonians H?, H? and H3. Using the equations (3.12), (3.13) — (3.15) and (4.15) - (4.18)
one can conclude, that for the considered model the one-quarter supersymmetry breakdown
is impossible, since the energy of the ground state equals to 3m!, rather than to m!, as
it is required for the annihilation of the ground state by the operators S, 8% and T
This obviously does not mean that one-quarter supersymmetry breakdown is impossible in
principle, it means instead that this effect is impossible for the simple model we considered.

Indeed, let us consider the same three-dimensional problem, but restricting ourselves
now with the nonnegative values of coordinates, i.e., ' > 0, z? >0and z° > 0.

The spectrum of # (4.14) when z belongs to the nonnegative half-axis is slightly differ-
ent [22]? and it opens the possibility to construct the ground state, invariant under three
unbroken supersymmetries. According to Ref. [22] we have .

EF =%k +a+1, (4.23)

where « is given by

2[5 fact, as it was recently shown by A. Das and S. Pernice [23], the energy spectrum, obtained
in {22] is correct, if one considers the problem only on the half-axis.
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1
and k is the nonnegative integer. If o > 1 then the energies E,(:_a) must be excluded from
the spectrum since the corresponding wavefunctions are no longer normalizable. Otherwise
one has to consider both sets of solutions. Applying these results to the problem under
consideration, and putting again A} = A} = A = 1 one obtains for H':

of = [4m' +1],
a}l = l4m1|’
gy = [4m'],
oty = |4m' ~1]. (4.25)

And therefore the energy spectra have the form

AEM® = okl & J4m! + 1] + 1,

AEL® = 2k}, £ 14mY),

4B = 2kfyy + 4m'[ 4 2,

AEND =2k}, + JAm! — 1] + 1, (4.26)

and the same expressions for the spectra of H? and H®, with m! substituted by N2 and M>
respectively. The both signs before the second terms has to be taken for Ey, if ——% <m! <0;
for Epy and for Eppp, 0 < ml! < % s for Eqv, if% <m!< % Let us further restrict the value
of the parameter to belong to the open interval —1 < m' < 0. Then due to the equations
(3.13) - (3.15) and (4.26) the minimal energy of the system with k} = k} = k3;; =0 is:

Epin. = BV + EP™ 4+ Ejy; = —m!, (4.27)

and according to (3.12) we have the supersymmetric ground state with three supersymme-
tries being unbroken.

In this Section we have considered quite schematically the one-, two- and three-
dimensional N = 4 supersymmetric versions of the quantum oscillator with an additional
L term in the potential energy. However we believe, that even this simple analysis gives a
;;ood illustration of all possible cases of the partial supersymmetry breakdown in multidi-
mensional N = 4 SUSY QM. One should also stress the crucial meaning of the boundary
conditions in the question of the partial supersymmetry breakdown, as it was shown for the
case of the one-quarter supersymmetry breakdown in the considered example.

V. DISCUSSION

In this paper we have described the general formalism of multidimensional N = 4 super-
symmetric quantum mechanics and studied the various possibilities of partial supersymmetry
breaking, illustrating them by the exactly solvable example.

However, the several questions, which seem to be of a particular importance are left still
opened. Indeed, it would be interesting to investigate other possibilities of changes of the
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hosonic end fermionic variables, namely for the cases, when in contrast with (4.1) and (4.2).
the superpotential A(d') is not a direct sum of the terms, each containing only one superfield
@' and when the bosonic compenents of these superfields depend on several variables r
The detailed study of this problem can lead to the possible N' = 4 supersymmetrization and

- uantization of various pure bosonic integrable systems, such as n -particle Calogero and

(‘alogero — Moser models, which are related to the RN black hole quantum mechanics and to
D =2 SYM theory [27]. This approach also can answer the question about the general class
of the potentials, which lead to the superconformal N = 4 theories in higher dimensions.

Another topic which has been left uncovered in this paper is the possible application of
the constructed multidiniensional ¥ = 4 SUSY QM to the problems of quantum cosmology.
The possiblc embedding of pure bosonic effective Lagrangians, derived from the homogeneous
cosmological models to the N = 4 SUSY QM can shed a new light on the old problems of
boundary conditions and spountaneous SUSY breaking in quantum cosmology, which were
investigated recently in the framework of N = 2 supersymmetric sigma - mode! approach
[28] - [29].

All thesc questions are under intensive study now and will be reported elsewhere.
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