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)loueu E.E. 11 ap. 
MuoroMepmrn N = 4 cynepCIIMMeTpll'IHall KBaHTOBall MexaHIIKa, 
'IaCTll'IHOe Hapywe1111e cynepCHMMeTpllH 
II cynepKoncpopMHall KBa!ITOBall MeXaHIIKa 

E2-99-218 

MnoroMepHru! N = 4 cynepcHMMeTpll'IHall KBa!ITOBall MeXaHHKa paccMOTpeHa c HC­
IIOJlb3OBa1111eM cynepnonesoro noaxoaa. B pe3yJJhTaTe no11yqeHhl KOMIIOHeHTl!ble cpopMbl co­
OTBeTCTBY!OlllllX KJJaCCll'leCKIIX II KBaHTOBblX Jlarpam1maHOB II raMHJlbTOHllaHOB. B pac­
CMaTp11saeMOH Teop1111 KJJaCCll'leCKall II KBaHTOBall N = 4 anre6pb1 coaep)KaT ue1npaJJbHhie 
3ap51/lb! II 3TO OTKpbIBaeT pa3JJll'!Hb!e B03MO)KHOCTII /l1151 '!aCTll'IHOro liapyrneHll51 cynepCHM­
MeTpllH. IloKa3aHO, '!TO KBaHTOBOMexaHH'!eCKlle MO/leJJH C O/lHOH '!eTBepTblO, IIOJJOBIIIIOH 
H TpeM51 '!eTBeprnMH He11apyrne11Hb!X (11apywemlb1X) cynepCIIMMeTplltt MOryT cymecrnoBaTb 
B paMKax M!!Of0Mep11oii N = 4 cynepcHMMeTpH'IHOH KBaHTOBOH MexaHHKII, TOraa KaK COOT­
BeTCTBYIOlilall O/l!IOMepHru! Teopna, IIOCTpoe1111all pauee, aonycKaeT TOJlbKO IJOJJHOe HJJII IIO­
JlOBHHHOe 11apyweu11e cynepCIIMMeTp1111. I1011yqeHHblH o6mHii cpopMaJJH3M npOIIJJJJIOCTpHpo­
BaH 11a TO'IHO pewaeMOM I!pHMepe, KOTOpb!H eCTb I!p51MOe MHOfOMepuoe 0606meu11e N = 4 
0/lHOMepHOH cynepKOHcpopMHOH KBaHTOBOMexaHH'leCKOH MO/leJJH. BKpaTue o6c~eHbl He­
KOTOpb!e OTKpb!Tbie BOI!pOCbl H BO3MO)KHbie I1pHJJO)Kel!H51 K H3BeCTHbIM TO'IHO pewaeMbIM CII­
CTeMaM, a TaK)Ke K npo611eMa\l KBaHTOBOH KOCMOJJOrHH. 

Pa6oTa sunom1e11a B Jla6opaTop1rn TeopeTn'!ecKoii cpn3HKH HM. H.H.Eoro11106osa 
II B Jla6oparnpn11 Bb!COKIIX 3Heprnii 01151H. 
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The multidimensional N = 4 supersymmetric quantum mechanics (SUSY QM) is con­
structed using the superfield approach. As a result the component form of the classical 
and quantum Lagrangian and Hamiltonian is obtained. In the considered SUSY QM both 
classical and quantum N = 4 algebras include central charges and it opens various possibili­
ties for the partial supersymmetry breaking. It is shown, that the quantum mechanical models 
with one quarter, one half and three quarters of the unbroken (broken) supersymmetries can 
exist in the framework of the multidimensional N = 4 SUSY QM, while the one-dimension­
al N = 4 SUSY QM, constructed earlier, admits only the one half or total supersymmetry 
breakdown. We illustrate the constructed general formalism, as well as all possible cases 
of the partial SUSY breaking on the example, which is the direct multidimensional general­
ization of the one-dimensional N = 4 superconformal quantum mechanical model. Some 
open questions and possible applications of the constructed multidimensional N = 4 SUSY 
QM to the known exactly integrable systems and to the problems of quantum cosmology are 
briefly discussed. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics and at the Laboratory of High Energies, JINR. 
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I. INTRODUCTION 

The supersymmetric quantum mechanics (SUSY QM), being introduced first in Refs. 
[1] - [2] for the N = 2 case turns out to be a convenient tool for investigating problems of 
the supersymmetric field theories, since it provides the simple and at the same time quite 
adequate understanding of various phenomena, arising in the relativistic theories. 

The important question of all modern theories of fundamental interactions, including su-­
perstrings and M - theory is the problem of the spontaneous breakdown of supersymmetry. 
Supersymmetry, as a fundamental symmetry of the nature, if exists, has to be spontaneously 
broken at low energies, since particles with all equal quantum numbers, except the spin, are 
not observed experimentally. The several (rather different) mechanisms of the spontaneous 
breakdown of supersymmetry have been proposed in particle physics in order to resolve this 
problem. One of them is to add to the supersymmetric Lagrangian the so called D -, or F -
terms, which are invariant under supersymmetry transformations as well but break the su­
persymmetry spontaneously due to the nonzero vacuum expectation values or, alternatively, 
to introduce into the theory some soft breaking mass terms "by hand"; the latter procedure 
does not spoil the nonrenormalization theorem of the supersymmetric field theories and was 
successfully applied for constructing the Minimal Supersymmetric extension of the Standard 
Model (see Ref. [3] and Refs. therein). The next mechanism of SUSY breaking is the dy­
namical (nonperturbative) breakdown of the supersymmetry, caused by instantons (see, for 
example, [4] and Refs. therein). In this case the energy of tunneling between topologically 
distinct vacua produces the energy shift from the zero level, hence leading to the sponta­
neous breakdown of supersymmetry. And, finally, the mechanism of the partial spontaneous 
breaking of the N = 2 supersymmetry in the field theory was proposed recently in Ref. 
[5]. This mechanism is based on the including into the Lagrangian two types of the Fayet -
Iliopoulos terms - electric and magnetic ones and it leads to the corresponding modification 
of the N = 2 SUSY algebra of Ref. [6]. 

The problem of the spontaneous breakdown of supersymmetry could be investigated in 
the framework of the supersymmetric quantum mechanics as well. The conjecture, that 
supersymmetry can be spontaneously broken by instantons [1] - [2] was investigated in 
details by several authors for the case of N = 2 SUSY QM [7] - [9]. However the most 
physically interesting case is provided by the N = 4 supersymmetric quantum mechanics, 
since it can be applied to the description of the systems, resulted from the "realistic" N = 1 
supersymmetric field theories (including supergravity) in four (D = 4) dimensions after the 
dimensional reduction to one dimension. 

One-dimensional N = 4 SUSY QM was constructed first in Refs. [10] - [11]. The 
partial breaking of supersymmetry, caused by the presence of the central charges in the 
corresponding superalgebra was also discussed in Ref. [11]. It was the first example of 
the partial breaking of supersymmetry in framework of SUSY QM and the corresponding 
mechanism is in full analogy to that in Ref. [5] in the field theory. The main point is that 
the presence of the central charges in the superalgebra allows the partial supersymmetry 
hrcakdown, whereas according to Witten 's theorem [1], no partial supersymmetry breakdown 
is possible if the SUSY algebra includes no central charges. The main goal of our paper is 
further generalization of the construction, proposed in Ref. [11] for the multidimensional 
case and investigation of partial breaking of supersymmetry under the consideration. 



The question of the particular importance is to consider the supersymmetric algebra with 
the central charges for the several reasons. First, it provides a good tool to study the dyon 
solutions of quantum field theory since in such theories the mass and electric and magnetic 
charges turns out to be the central charges [12]. Second, the presence of the central charges 
produces the reach structure of supersymmetry breaking. Namely it is possible to break a 
part of all supersymmetries, leaving all others exact [13]. In fact, the invariance of a state 
with respect to the supersymmetry transformation means the saturation of the Bogomol'ny 
bound and this situation takes place in N = 2 and N = 4 supersymmetric Yang - Mills 
theory [14] - [15] as well as in theories of an extended supergravity [16]. 

The investigation of supersymmetric properties of branes in M - theory also revealed 
that the partial breakdown of supersymmetry takes place. Namely the ordinary branes break 
half of the supersymmetries, while "intersecting" and rotating branes can leave only 1/4, 
1/8, 1/16 or 1/32 of the supersymmetries unbroken [17]. The known examples of the break­
down of the supersymmetries in supersymmetric quantum mechanics are the cases, where 
either all the supersymmetries are broken( exact) or only half of all the supersymmetries are 
broken(exact) [11]. In this paper we demonstrate the possibility of the three - quarters or 
one - quarter of the supersymmetry breakdown in the framework of multidimensional N = 4 
SUSY QM. The later case (3/4 of the supersymmetries are exact) has not been observed 
befor~ neither in supersymmetric field theories nor in SUSY QM and seems to be quite 
interesting by itself even without specifying the physical origin of the phenomena. 

The paper is organized as follows. In Sec. II we present a formal construction of N = 4 
multidimensional supersymmetric quantum mechanics: classical and quantum Hamiltonian 
and Lagrangian, SUSY transformations, supercharges algebra and so on. In Sec. III partial 
supersymmetry breaking is investigated and all possible cases of the partial SUSY break­
down are listed. In Sec. IV we give an exactly solvable example, which illustrates main 
properties of the introduced formal constructions. This example is interesting by itself since 
we consider the multidimensional generalization of the N = 4 superconformal quantum me­
chanics [11], [18], which is naturally related to the extremal RN black holes in "near horizon" 
limit and adS/CFT correspondance [19]. In Sec. V we conclude with some open questions 
and further perspectives. 

II. D - DIMENSIONAL N = 4 SUSY QUANTUM MECHANICS 

In this section we describe the general formalism of D - dimensional (D 2: 1) N = 4 
supersymmetric quantum mechanics, starting with the superfield approach and concluding 
with the component form of the desired Lagrangian and Hamiltonian. 

Consider N = 4 SUSY transformations 

cSt = '!..( £"Ba + ("0.), 
2 

Ji}.= la, 

c50"=£", (2.1) 

in the superspace, spanned by the even coordinate t and mutually complex conjugated odd 
coordinates 0" and Ba, The parameters of N = 4 SUSY transformations £" and fa are 

2 

:;, 

complex conjugate to each other as well. 1 The generators of the above supersymmetry 

transformations 

a i - a 
Q. = a0a + 28"at' 

-a - _i_ ~ea!!_ 
Q - ae. + 2 at' 

(2.2) 

along with the time translation operator H -if, obey the following 

( anti )commutation relations: 
{Q.,(?} = -cS!H, 

[H,Q.] = [H,Q"] = 0. (2.3) 

The automorphism group for a given algebra is 5'0(4) = SU(2) x SU(2) and the generators 
of the N = 4 SUSY transformations are in the spinor representation of one of the SU(2) 
groups. 

The next step is to construct irreducible representations of the algebra (2.3). The usual 
way of doing this is to use the supercovariant derivatives 

a i - a 
D. = a0• - 28"at' 

- a i a 
D" = ae. - l" at' (2.4) 

and impose some constraints on tlie general superfield. Hereafter we deal with the superfield 
<I>' (i = 1, ... , D), subjected to the following constraints: 

[D., D"]<I>; = -4m\ 
D" D.<I>; = -2n\ 

D.D"<I>; = -2n\ (2.5) 

where m; are real constants, while n; and ii; are mutually complex conjugated constants. 
The explicit form of the superfield <I>; is the following: 

<I>;= q/ + 0"{;! - B.lj/" + 0" B!;Bb + 
. - 1 . 1 . --

+ m'(00) + 2n'(00) + 2n'(00) + 
i - _. i -- · 1 -- .. 

+ 4(00)0a1P"; - 4(00)0"'1!'~ + 
16

(00)(00) cf,', (2.6) 

( · = at). Note, that in the case when all the constants m;, n\ n; are equal to zero, the 
superfield (2.6) represents D "trivial" copies of .the superfield <I>, given in Ref. [20], which 
describes the irreducible representation of one-dimensional N = 4 SUSY QM. The latter 
superfield contains one bosonic field ¢, four fermionic fields 'Ii'" and {;. and three auxiliary 
bosonic fields B! = (a1)~B1, where (a1)~ (I= 1,2,3) are ordinary Pauli matrices. 

Another irreducible representation of the algebra (2.3) can be constructed after making 
the appropriate generalization of the constraints given in Ref. [10]: 

1Our conventions for spinors are as follows: 0. = 0bE:ba, 0" = E:"b0b, iJa = iJbE:ba, iJ• = E:abiJb, iJ. = 
(0")*, iJa = -(0.)*, (00) = 0"0a = -20102

, (iJiJ) = iJ.iJ• = (00)*, E:
12 = 1, E:12 = 1. 
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(c:ac DJi + [be DJJa)iJi = o. (2.7) 

The technique of constructing N = 4 SUSY invariant Lagrangians is absolutely the same 
for both cases and therefore we shall not consider the second one separately. 

The components of the superfield (2.6) transform under the N = 4 transformations as 

follows: 

<H/} = £"¢~ - la'ip"\ 

81/;ai = lb Bt + ~£" ,j,i + £"mi - l"r/' 
2 

. i-•.isi•i•. 
8B't,' = --q1/J"' - -£a1/;b - -l0 1/;b - -lb'!/;"'. 

2 2 2 2 
(2.8) 

Now one can write down the most general form of the Lagrangian, invariant under the 
above-mentioned N = 4 SUSY transformations: 

L = -s(j d20d20(A(4';)) + 
1
1
/•'t;B!;), (2.9) 

where A(4';) is an arbitrary function of the superfield 4'\ called the superpotential. The 
second term is the Fa yet - Iliopoulos term and A't; = ( <TJ )~Af are just constants. The 
expression for the Lagrangian (2.9) is the most general one in the sense, that any other 
N = 4 SUSY invariant terms added will lead with necessity to the higher derivatives in the 

component form. 
After the integration with respect to the Grassmanian coordinates 0" and 00 one obtains 

the component form of the Lagrangian (2.9): 

L=K-V, (2.10) 

where 

K=~~·;· . 8
2
A -··. 0 

2 8qi8</) <p </l + l 8q,i8q,i ( 1/J: 1/J"J + 1/;"'1/J~), (2.11) 

and 

~A . . . . ~A .. 
V = 2-.-. (m'm1 + n'n1 ) + -.-B"' Bb1 + 

8q,'8q,J 8q,'8</) b a 

+ 8
3 
A (2¢' 1/;aimk + 1/;"i'!/;ink + ¢; ;jy•ink) + 8

3 

A (·'·; .1,bi + .7.•b.1,i)B"P + 
8q,•8¢18q,k a a a 8q,i8q,i8q,P '//a'// '// 'Pa b 

l 84A -; - ·• bk I 1 a bi 
+ 2 8q,i8q,i8q,k8q,1(1/J.1/J1 )(1/J 1/Jb)-ibiBa · (2.12) 

Expressing the auxiliary field B!' in terms of the physical fields 

82 -1 83 
3ai _ ( A ) ( l _xa l A ( -k.1,bp .7.bk.1,P)) 

b - 8</>'8</) 4 bj - 2 8</)8q,k8q,P 1Pa '// + '// 'Pa ' 
(2.13) 

using it's equation of motion and inserting it back into the Lagrangian (2.10), one obtains 
the final form of the potential term: 

4 

"' 

~ '.H~.~:;i 
.. ~ 

,. _ l >." _xb ( iJ2A )-i 2 8
2A ( ; i i-i) 

. - lG bi aj i)<fia<J,i + a,J,ia<J,i mm + n n + 
a3 A - . k . k - · - · k + -,--c,--,c--c('!,1J.•'1/•"1 m· + d• 0 '1J.•1 n + i!•'iJ, 01 fi )-

i)d)• i)<f>J iJ</>k a a a 

1 a2 A -I a3 A - b. 
--A"(--) . if•'ij,l+ 

'!, bp i)<f,Pi}q}· /)d)•i}<J>l/)cj/ a 

J i}' A . ; - ja bk ' I i]2 A - I j-)3 A i]3 A 
+ 2 i)<f,irJ<J,iiJcH)<f,,(~·al/' )( 1/' 1/'b) - ( i),J,Pf)q,q) ( 8<f,i84>k8<f,P 8q,q8cj,i8<!,1 + 

] iJ3
.·\ iJ3A ·1 Jk bl ai 

+ 2 iJq,ii)<J>l/)cpP i)<f,•i)q,kiJq,l )l/'a'!'b ij• 1f• , (2.14) 

wlwre the identity 

( 
a2A -1 83A cPA -•- . 

-~,1.. 8"' ) 8 . ---•'•' .1,al.1,1b.1 k (/<pp <pq q,•8q,k8<f>P 8</>•8<f>J8q,l ¥a¥ V V'b = 

- a2 A _, a3 A a3 A .. . . -
- ( i)q,P8<f,•) 8<f,i8q,k8q,P 8<f,•i}q,iiJ<f>'(l/':1J,"1 i/.•ti/.•bk + ;t,:1,•ki/{¢,bj) (2.15) 

was used. 
The formulae given above, can be rewritten in a different and more natural form, using 

tlw geometrical notations. Let us introduce the metric of some ''target" manifold in the 

following way: 

82 A 
9ij = 8q,i8q,i' 

along with the corresponding Christoffel connection and the Riemann curvature 

,; 1 83 A 82A -I 

J jk = 2 8<f>Pi)cj,Ji)q,k ( i)q,P8q,i) ' 

1 82 A -I 83 A 83 A 
R;j,k/ = --;.( 8q,Pi)q,q) ( iJq,iiJq,li}q,P iJq,qi)q,J8q,k 

83 A iJ3,1 
8q,iiJq,k8q,P i)q,qi)q,Ji}q,l ). 

(2.16) 

(2.17) 

(2.18) 

Now t.he Lagrangian (2. 10) is rewritten in terms of tlwse geometrical quantities as follows: 

and 

I ·. ·. - . . . . a /\. = 2YiJ</>'</l + ig;j(ij,:ij,•J + 4,••4,~), 

V = /6xi,,>.~jij + 2g;j{m'm1 + 71iil
1

) + 
+ 4i/,~i/.'.i D;m1 + 2y,a'i/.•aJD;n1 + 2¢! i/,'J D;n1 + i/,!1/•b.i D;Abj + 
+ (D;I\!I + nik,1J;t,~i/•"J4,bk4,t + Rj,,kd•!i/.•"1 i/,tv,b1

, 

5 

(2.19) 

(2.20) 



where D; is a standard covariant derivative, defined with the help of the introduced Christof­
fel connection (2.17). Using Noether theorem technique one can find the classical exprPssions 
for the conserving supercharges, corresponding to the SUSY transformations (2.8), leaving 

the invariance of the Lagrangian: 

Q- - Ti . - 2·J,i j~ •J· ,i J D2A 
a - 1PaP• l'i'am D,J;iacjy + -li/an Ddiacj,J + 

l-;,ci•k i:)3A 1. c -i 
+ 21i'c'9 1/Ja 8¢/8d;Ji:)cpk - 2z),ailf',, (2.21) 

. b a2A 2·Jbi-j 82A + 
Qb = 1/J'bPi + 2i1j_, 'ml i:)cpii:)cJ,J +. z.,,, n 8di8d>1 

03 A 1. b di 
+ !_,1,bi,1,c•.1.k . . + -z>.d '!p · 

2 o/ o/ o/c i:)cjJ•8cj,J8cjJk 2 ' 
(2.22) 

These formulae for the conserved supercharges complete the classical description of the 
desired N = 4 SUSY multidimensional mechanics and now to quantize it we should analyze 

it's constraints. 
Following the standard procedure of quantization of the system with bosonic and fermi­

onic degrees of freedom [21], we introduce the canonical Poisson brackets: 

{i,P1} = o;, N"',Pc,i,J.bil = -obo;, {iJ;:,P~~iJ = -obo;, (2.23) 

where p;,P(,t,),ai, and P(~),i are the momenta, conjugated to <f,i, IPai and iJ;~. From the explicit 

form of the momenta: 

Pi= gi1¢i, (2.24) 

P(,J,),ai = -ig;1iJ;~, P(~),i = -ig;11/J"1, (2.25) 

with the metric g;1 given by (2.16), one can conclude , that the system possesses the second 

- class fermionic constraints: 

X(,J,),ai = P(,t,),ai + igijiJ;~, and X(~),i = P(~),i + i%1P
0 1, (2.26) 

smce 

{X(~),i>X(,t,J.bi} = -2ig;10b- (2.27) 

Therefore, the quantization has to be done using the Dirac brackets, defined for any two 

functions Va and ½ as 

1 
{V., ½}Dirac= {V., ½}- {V.,x,}-{ --}{Xd, ½,}. 

Xc,Xd 
(2.28) 

As a result we obtain the following Dirac brackets for the canonical variables: 

{<f,i,pj}Dirac = oj, 
· 82 A -t i a ;1 . - . l~(~~.) =--~g, {1/Ja', IPn D,rac = -2 b f)q/i:)cjJJ 2 

6 

"' 

2 -1 
1 83 A a A ) - _.1,akri. · .1,aP_--,-----;:-;-,(--. - o/ 3k> { ,t,a,, P1} Dime = -2 o/ EJ<f,Pi:)cpm8¢1 8<f,m84>• 

2 -1 
1 _ 83A 8A -kr• 

{iJ;:,pj}Dirac = - 2 1/J!8</,P8</,m8cjJJ(8</,mEJ<f,;l = -'!pa jk> 
(2.29) 

and, finally, 

i 82 A -l 83 A 83 A 83 A a3A -k al 
84>i8¢18¢P 84>q8¢184>k )IP. IP {p;,pj}Dirac = -2(8</,P8</,q) (84>i84>kEJ<jJP8<f,q8¢18<f,1 

= 2iRij,kliJ;!1/J"1
• 

(2.30) 

The classical Hamiltonian, obtained after the usual Legendre transformation from the 

Lagrangian (2.10) has the form: 

H 1 82A -1 

class. = 2( 8</>'8¢1) PiPj + V. (2.31) 

The supercharges and the Hamiltonian form the following N = 4 SUSY algebra with 

respect to the introduced Dirac ~rackets: 

{CJa,Qb}Dirac = -io!Hc1ass. - i>.~;m\ 

{Qa,Qb}Dirac = -i>.abini, {Qa,Qb}Dirac = iXtn•. (2.32) 

Note the appearance of the central charges in the algebra. This fact is extremely important 
especially for the investigation of partial supersymmetry breaking, given in the next Section. 

Replacing the Dirac brackets by (anti)commutators using the rule 

i{,}Dirac = {,}, 

one obtains the quantum algebra: 

{CJa,Qb} = O~Hquant. + >.~;mi, 

{CJa,Qb} = >.ab;n', {Qa,Qb} = ->.rbni, 

(2.33) 

(2.34) 

provided the definite choice of operator ordering in the supercharges (2.21) - (2.22) and in 

the Hamiltonian (2.31): 

_ _ -; . -; 1 82 A . i 1 82 A 1. C :r.; 
Qa - IPaR; - 2ZIP0 ffi 

84
,.
8

¢1 + 2l1P0 n 
84

/ 8¢1 - 2z>.aio/c, 

b bi . bi j 82A --bi-j 82A 1. b d, 
Q = L;IP + 211P m 

84
/ 8¢1 + 2zlP n 84>i8¢1 + 2 z>.d;IP , 

7 

(2.35) 

(2.36) 



1 a2 A -I 1 a2 A -I a2 A . . . 
Hquant. = 2L;(o</>'o</) Rj + 16,\bi,\~j(o</ioq,_;l + 2 oq,'oq,1(m'm

1 

+ n'i\1) + 

+ 03 
A ([

0
T.i 0 ;,aj]mk + ,;,ai,;,jnk + 0 1,i,T,ajic/) _ 

oq,ioq,ioq,k 'Pa'!-' 'I-' '1-'a '1-'a'I-' 

1,\. ( a2A l-1 o3A -; b. 1 o
4
A -, -• bk, 

- 4 bp oq,Poq,k a4>io¢io4>k[,;,.,,;, 
1l + 2 a4>io¢io4>ko4>'(1/.•a1/.•

1
"l(f ,;,b)-

a2A -I o3A o3A 
- ( o</>1'o4>q l ( a4i•a4>ko</>1' a4iqaq,Ja4>1 + 

a3A a3A -· -k bl . 

+ a4i•a¢ia¢P a4iqa4>ka4>' )1/J!1/Jb 1/J 1/J"', (2.37) 

where 

.-· ak o3A i o2A -I 83A 
L, =Pi+ i1/J!1/J a4i,aq,Ja4>k - 2( aq,Jaq,k l a4i,aq,Ja4>k' 

· - ak 83 A i 02 A -I a3 A 
R, = P, - i1/J!1/J 84>i84>184>k + 2( aq,Joq,k l 8¢'0¢i84>k · 

The momenta operators are Hermitean with respect to the integration 

dD ¢)1det( a;~:¢' )-1
1 if they have the following form: 

. a i a l (Id I) 2· ,T,o,;,a/3 Pi = -i 
8

4>i - 4 84>i n etg,k - ZWio/3'1-'a 'I-' , 

(2.38) 

mPasure 

(2.39) 

with the new fermionic variables '!fa~ and ip•/3, connected with the old ones via the tetrad ef 
(efeJ'T/o/3 = %): 

if;~ == ef i/;: and 1P; == ef 1/;~, (2JIO) 

and Wia/3 in (2.39) is the corresponding spin connection. Therefore, the quantum super­
charges (2.35) - (2.36) are mutually Hermitean conjugated and the resulting quantum Hamil­
tonian Hquant. is a Hermitean self - adjoint operator as well. 

As a result, the equations (2.34) - (2.40) completely describe the general formalism of 
N = 4 SUSY D - dimensional quantum mechanics and this provides the basis for the analy­

sis of it's main properties. 

III. PARTIAL SUSY BREAKING 

Let us investigate in details the question of the partial supersymmetry breakdown in the 
framework of the constructed N = 4 SUSY QM in an arbitrary D number of dimensions. 
As it was mentioned in the Introduction, the problem of partially broken supersymmetry is 
very important for applications in supergravity, superstring theories and in M - theory as 
well, and supersymmetric quantum mechanics turns out to be an adequate mighty tool for 
investigating of the corresponding problems in supersymmetric field theories. 
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\\',• shall S<'!' that in contrast to the one-dimensional N = 4 SUSY QM, the multidimen­
sional one provides also the possibilities when either only one quarter of all supersymmetries 
is exact (for D 2: 2), or one quarter of all supersymmetries is broken (for D 2: 3). 

In order to study partial SUSY breaking it is convenient to introduce a new set of real 

Yaltwd supercharges: 

S" = Q. + Q", (3.1) 

T" = i(Q. - Q0
). 

(3.2) 

In the equations abow t.he Sl/(2) covariance is obviously damaged. This is the price WP pay 
for passing t.o the real-valued superchargPs. Howpver, for thP furthPf discussion the loss of 
the covariance does not cause any problems. The label "a'' has to be considered now just 
as t.lw number of the supercharges, denoted as S and T. 

The new supercharges form the following N = 4 superalgebra with the central charges: 

{S", Sb}= ll(o'i, + 0~) + (,\~; + ,\~;)n/ + (,\ab,11' - ,\fbii'), 

{7"', Tb}= IJ(01, +. o:) +(,\bi+ ,\~;)m' - (,\abin' - ,\fb11'), 

{S", Tb}= i(,\'i,, - ,\~,)m' + i(,\abin' + >.fb11i). 

(3.3) 

(3.4) 

(3.5) 

The algebra (3.3) - (3.5) is still nondiagonal. However, some particular choices of the 
constant parameters m', n' and >.~, bring the algebra to the standard form, i.e., to the form 
when the right hand side of (3.5) vanishes and thP right hand sides of (3.3) and (3.4) are 
diagonal with respect to the indexes "a" and "b". 

Now we considPr several cases separately. 

A. Four supersymmetries exact / Four supersymmetries broken 

If we put equal to zero all central charges, appearing in the algebra., then no partial 
breakdown of supersymmetry is possible. In this case all supersymmetries are pxact, if tlw 
energy of the ground state is zero; otherwise all of them are broken. This stat.Pment is 
obviously independent of the number of dimensions D. 

B. Two supersymmetries exact 

The case of the partial supersymmetry breakdown, when the half of t.h<' supersy111111et.rirs 
arc exact, have been considered earlier [I I] in the framPwork of one-dimensional N = -1 SllS\' 
QM, but we shall describe it for completeness as well. Consider 011P-dimensional (D = I) 
N = 4 SUSY QM and put all constants entered to the right hand sicks of (3.:l) - (:1.5) eqnal 

to zpro, excPpt 

m 1 and Af. (:1.6) 

Then the algebra. (3.3) - (:l.5) takes the form 
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{51,51
} = 2H +2m 1Ai, 

{52,52
} = 2l/-2m 1Ai, 

{T 1 ,T1
} = 2H + 2m 1A;, 

{T2, T2
} = 2H - 2m 1 Af. (:3.7) 

It means that if the energy of the ground state is equal to m 1 Af and the last-mentioned 
product is positive, then 52 and T 2 supersymmetries arc exact, while the other two arc 
broken. If m 1Af is negative, then 5 1 and T 1 supersymmetries are exact, providf'd tlw 
energy of the ground state is equal to - m 1 Ay. 

C. One supersymmetry exact 

The case of the three - quarters breakdown of supersymmetry is possible if the dimension 
of N = 4 SUSY QM is at least two (D 2 2). Indeed, let us keep for D = 2 the following set 
of parameters nonvanished: 

Then one obtains 

Further choice 

A;,A1,m 1 and Re(n 2 )=N2
• 

{5'1,5' 1
} = 2H + 2m 1Af- 2A1N2, 

{5'2 , 5'2 } = 2H - 2m 1 A;+ 2A~N2
, 

{T 1
, T1

} = 2H + 2m I Ai + 2A~N2
, 

{T2
, T2

} = 2H - 2m1 Ai - 2A~N2
• 

m 1Ai = A1N2
, 

(3.8) 

(3.9) 

(3.10) 

leads to the case, when only T 2 supersymmctry is exact, while all others are broken if the 
energy of the ground state is equal to 2m1 Af, and m 1 Af > 0. If m 1 A; is negative, then T 1 

is exact, provided the energy of the ground state is equal to - - m 1 Af. 

D. Three supersymmetries exact 

The situation of the one - quarter breakdown of supersymmetry can exist, if we add 
to the consideration one more dimension i.e., consider three dimensional D = 3 N = 4 
supersymmetric quantum mechanics. 

Keeping the following set of the parameters nonvanished 

A;,A~,Atm1,N2 and Im(n
3

) = M 3
, 

the following algebra is obtained : 
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(3.11) 

~ 

\ 
I 

If 

and 

{51 , 5 1 } = 2H + 2m1 Ai - 2A~N2 
- 2A;M

3
, 

{52 , 5 2 } = 2H - 2m1Ai + 2A~N2 
- 2A;M3, 

{T1, T 1
} = 2H + 2m1 Ai+ 2A~N2 + 2A;M

3
, 

{T2 , T2 } = 2H - 2m1 Ai - 2A~N2 + 2A;M
3

• 

m 1Ai = A~N2, 

AW2 = -'A~M3, 

m 1Ai < 0, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

then T 2 supersymmetry is broken, while all others are exact under the condition, that the 
energy of the ground state is equal to m 1 Af. If the last-mentioned product is positive, then 
T 2 supersymmetry is exact, while all others are broken, provided that the energy of the 
ground state is 3m 1 Af and we. arrive to the three-dimensional generalization of the case C. 

Obviously, when considering three-dimensional N = 4 SUSY QM one can either keep 
the parameters (3.8) under the condition (3.10), or the parameters (3.6), or put all of 
them equal to zero, and therefore obtain all particular cases of spontaneous breakdown of 
supersymmetry, discussed earlier. It is also obvious, that all this cases can be obtained from 
higher dimensional (D 2 3) N = 4 supersymmetric quantum mechanics. 

To summarize this section one should note, that according to the given general analysis 
of partial SUSY breaking in N = 4 multidimensional SUSY QM, there exist possibilities to 
construct the models with ¼, ½ and ¾ supersymmetries unbroken, as well as models with 
totally broken or totally unbroken supersymmetries. However, the answer on the question 
which one of these possibilities can be realized for the considered system, depends crucially 
on the form of the chosen superpotential and on the imposed boundary conditions of the 
quantum mechanical problem. 

IV. EXPLICIT EXAMPLE 

For the better illustration of the ideas of the previous Section it is useful to consider a 
particular choice of the superpotential A( <I>} As it was mentioned before for considering all 
possible cases of the partial supersymmetry breakdown the minimal amount of the superfields 
needed is three. Therefore let us take three superfields of the type (2.6) and choose the 
constants mi,ni,fii and>.:;; in accordance with the expressions (3.6), (3.8) and (3.11). 

The simple and at the same time interesting example is the case, when the superpotential 
is the direct sum of terms, each being a function of only one superfield. This gives the 
possibility of the considerable simplification of the classical and quantum Hamiltonians and 
the supercharges as well [11]. We choose the explicit form of the superpotential as 

A(<I>;) = <I>;ln<I>;, i = 1,2,3 (4.1) 
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and consider the physical bosonic components of the superfields <I>; as the functions of the 

new variables xi, namely: 

<1} = (xi)2. 

Making the following redefinition of the fermionic variables 

iJ2A 
("' = l/,"\\2(84>•)2' 

82 A t: =iJ;:,l\a4>i)2' 

(4.2) 

(4.3) 

where no summation over the repeated indices is assumed, one obtains the canonical com­

mutation relations between fermions 

{("i,{t} = s;:fi_ (4.4) 

Inserting the expressions (4.1), (4.2) and (4.3) into (2.37), one obtains three-dimensional 

superconformal N = 4 quantum mechanics [18] with 

llquant. = 1!1 + 1!2 + 1!3, (4.5) 

i.e., as it could be concluded from the fact that the superpotential is diagonal with respect to 
the superfields considered, the total Hamiltonian is also the direct sum of three Hamiltonians, 
each of them containing the bosonic and fermionic operators of only one type. The explicit 

form of the Hamiltonians l!', ( i = 1, 2, 3.) is 

1 d2 1 1 Hl = ____ + -A3(a )bElt,al + -(A3)2(xl)2 
8(dxl)2 41 3aW, 8 1 

+ (x~ )2(2(m1 )2 + :2 - m1([!C1 
- 1) - ¼t!("

1 
+ ~(f!("1

)([te
1
)), 

(4.6) 

}!2 = _!~ + !A'(a )bi2t•2 + !(Al)2(x2)2 
8(dx2)2 4 2 I a'>b', 8 2 

+ (x;)2(2(N2)2 + 332 -½N2((~(a2 + [~[•2)- ¼~,•2 + i(t~C2Hmb2)), (4.7) 

}!3 _ 1 d2 1 2 b '3 a3 1 2 2 3 2 - -8 (dx3)2 + 4A3(ai).M + 8(A3) (x ) 

+ (x;)2(2(M3)2 + 332 -½M3((~C3 + ~[•3) - ¼~e•3 + i(~C3)me3)). (4.8) 

The next step is to find the energy spectrum of the quantum Hamiltonian ( 4.5). 
Since the bosonic and fermionic variables of each type are completely separated, the 

eigenfunctions of the Hamiltonian ( 4:5) is the direct product of the eigenfunctions of the 
Hamiltonians ( 4.6) - ( 4.8) and the total energy is just a sum of the energies, corresponding 

to the Hamiltonians J!i. 
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Ld us find the energy spectrum of the Hamiltonian H 1
• Consider the general state in 

the "reduced"' Fock space, spanned by the ferrnionic creation and annihilation operators [~ 
and ( 01 • obeying the anticornmutation relations (4.4) with i = 1: 

fp) = X1(,r1)fO) + Y{'(.r1)[;fO) + Zt(.r1)[!["1fO). (4.9) 

Tlw operator H 1 acting on the state vector (4.9) gives the following four Shrodinger equations 
on the unknown functions Xi(.r1), };"(.r1) and Zt(.r1): 

I d2 I ;i2 12 I '12 I 3 'I ], I (-?--
1

- 2 + ?(i\i) (.r) + -( 1 ) 2(8(m) +4m + -:;)).\'. 1 (.r) = 4E1 .\'.i(.r ). 
- ( d.r ) - .r 8 

] d
2 

A 3 J ")2 I 2 J , I 2 J ·I I I ·I I (-?--
1
-2 +1\ 1 +?(:\ 1 (.r) +-( 1)2(/-\(rn) --:;-))} 1 (.r)=4E11 } 1 (.r), 

- (d.r ) - .r 8 

1 d2 
3 I 3 2 I 2 I ' I 2 1 ' I I .-2 I (-:y--1-2 -A1 + :y(,\) (.r) + -( _1)2(8(m) - -:;-)).\'. 1(.r) = 4Em} 1 (.z· ). 

- (d.r ) - · .1 (; 

J d
2 

1 ;J 2 I )2 J n I 2 I 3 ) I) £1 Z ( I) (-;---2 + ;-(A 1 ) (.r + -)2(8(m ) -4m + -:;-) Z 1 (.r = 4 n· 1 .r . 
2(dJ-l) 2 (x 1 8 

Tlw wave functions and t.lw energy spedrum of tlw Hamiltonian of the type 

I d I 2 I 
1i = -?-d .2 + ?.r + 9--:,j• 

- ,I - .I 

(4.10) 

(-1.11) 

(.-1.12) 

(4.13) 

(·1.14) 

hav<' b~en investigated in details for the nonsupersymmetric theory in Hefs. [22] [23] and 
in the framework of N = 2 supersymmetric quantum mechanics in Hefs. [23] - [26] as Wf'll. 
The most detailed and complete study has been done by Das and l'ernicf' [2:!], whf're thf' 
eigenfunctions and the energy spectrum of the Hamiltonian of th<' type (4.14) wl]('re found 
aft.er appropriate regularization of the potential and superpotential. depending 011 either 
on<' considNs nonsupersymmct.ric or N = 2 supersymmet.ric problem. However, as it call 
lw seen from (4.1) and (-1.2) the supcrpot.ential in our N = -1 case fort.he IJa111ilto11ia11 with 
-f, term in the potent.ial energy is regular in contrast. to the case of N = 2 sup,•rsy111nl<'t rir 
quantum mechanics and therf'fore we use the results of paper [2a], which arc obtai11C'd after 
the regularization of the potential, but. not of t.!w superpot<-nt.al. 

For the problem considered one obtains (we take the value of the paramct.cr .\'/ wit hont 
loss of generality to be t'qual +l ). 

For m 1 < -¼, 
4E] = 2k] - 4m 1

, 

-1E]1 = 2k:1 - 4m 1 + 2, 

4E]11 = 2k]11 - ,1m 1
, 

-1E]v = 2k:v - 4m 1 + 2, 
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where k1
1 
= 0, 1,2, ... ,, (.4 = 1,2,3,4) and (M = I, I I, I I I, l\i). Each energy level Ef..\ cor­

responds to the couple (even and odd) of wave functions and therefore is doubly degenerate. 
The minimal energy corresponds to the minima of E} and E) 11 for k) = k) 11 = 0 and rquals 
to -m 1• Let us denote the corresponding states by rr}± and rr}fi· 

For -¼ < m 1 < 0 one has: 

4E} = 2k} +4m 1 +2, 

4E]1 = 2k]1 - 4m 1 + 2, 

4E}u = 2k}u - 4m 1
, 

4E)v = 2k)v - 4m 1 + 2. 

The minimal energy corresponds to the minimum of E}u for k}u 
-m1 . We denote the corresponding ground states by rrJTi· 

For O < m 1 < ¼ one has: 

4EJ = 2k} + 4m 1 + 2, 

4E}1 = 2k}1 + 4m 1 + 2, 

4E]u = 2k}u + 4m 1
, 

4E}v = 2k}v - 4m1 + 2. 

(4.16) 

0 and equals to 

(4.17) 

The minimal energy is m 1 for k}u = 0, the corresponding ground state is again rr}f1. 

And finally, for m 1 > ¼: 

4E] = 2k] + 4m 1 + 2, 

4E)1 = 2k}1 + 4m 1 + 2, 

4E]u = 2k}u + 4m1
, 

4E]v = 2k}v + 4m1
, (4.18) 

The minimal energy is m 1 for k}u = k}v = 0, the corresponding ground states are rr}11 

and rr}$. 
The points ±¼, and O are the branching points and when m 1 gets these values, then the 

corresponding energies and wave functions of the system in the regions of the parameter, 
divided by these points just coincide. 

If we also choose A1 = J\5 = 1, the energy spectra of the Hamiltonians H 2 
and H

3 
are 

absolutely the same as in (4.15) - (4.18). The only difference is, that the parameter m
1 

should be replaced by N 2 or M 3 respectively. However, the eigenfunctions, corresponding 
to E; and E;v are the linear combinations of the states of zero and two fermionic sectors, 
since the fermionic number operator (~("2 does not commute with the Hamiltonian H2

. The 
energies E; 

1 
and E; ll are also the linear combinations of the both states of one fermionic 

sector, because the matrix (ai)~ is not diagonal. The analogous situation takes place for the 

Hamiltonian H3
• 

Now we are in a position to describe partial supersymmetry breaking following the lines 

of the previous Section. 
First, let us consider the one dimensional case, with m 1 equal to zero. As it was mentioned 

above, zero value of m 1 is the branching point a.nd therefore the energy spectra ('1.16) a.nd 
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(4.17), as well as the wa.vefunctions in these regions completely coincide. Therefore, one has 
thr couple of supersymmetric ground states rr}f1 and a.11 supersymmetries are exact. 

As it was mentioned in the previous Section, in order to describe the halfbreaking of 
supersymmetry it is enough to consider only the spectrum of the Hamiltonian H 1

. Inserting 
the corresponding eigenvalues of the operator H 1 for each range of the parameter m

1 
into 

equations (3.7), one obtains that half of supersymmetries are always broken. 
Considering the spectra of the Hamiltonians H1 and H 2 one ca.n obtain the three -

quarter breakdown of supersymmetry. Indeed, from the equations (3.9), (3.10) a.nd (4.15) -
( 4.18) one ca.n conclude, that either T 1 or T 2 supersymmetries are exact, depending on the 
range of parameter m 1 . The corresponding ground state wavefunctions obviously are 

foi- m 1 < -¼: 
rr)± x rr;±, rrJ± x rrJTi, rr]T1 x rr;±, rr}f1 X rrJT1, ( 4.19) 

for -¼ < m 1 < 0: 

rr]11 x rrJfr, (4.20) 

for 0 < m 1 < ¼ 

rr}11 x rrJfr, (4.21) 

for m 1 > ¼: 

rr}f1 x rrITr, rr}f1 x rr;t, rr}t x rrIT1, rr}$ x rr;t. (4.22) 

In order to study the possibility of the one-quarter breakdown of supersymmetry one 
ha.s to consider the three-dimensional case, i.e., the spectra a.nd the wa.vefunctions of the 
Hamiltonians H 1 , H 2 a.nd 113. Using the equations (3.12), (3.13) - (3.15) and (4.15) - ( 4.18) 
one can conclude, that for the considered model the one-quarter supersymmetry breakdown 
is impossible, since the energy of the ground state equals to 3m1

, rather than to m1, as 
it is required for the annihilation of the ground state by the operators S1

, S2 and T 1
• 

This obviously does not mean that one-quarter supersymmetry breakdown is impossible in 
principle, it means instead that this effect is impossible for the simple model we considered. 

Indeed, let us consider the same three-dimensional problem, but restricting ourselves 
now with the nonnegative values of coordinates, i.e., x 1 2'. 0, x 2 :2: 0 and x3 2'. 0. 

The spectrum of 1i (4.14) when x belongs to the nonnegative ha.If-axis is slightly differ­
ent [22] 2 and it opens the possibility to construct the ground state, invariant under three 
unbroken supersymmetries. According to Ref. [22] we have 

Ei±a) = 2k ±a+ 1, (4.23) 

where a is given by 

2Jn fact, a.s it wa.s recently shown by A. Da.s and S. Pernice [23], the energy spectrum, obtained 
in [22] is correct, if one considers the problem only on the half-axis. 
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a= +~✓1 + Sg, (4.24) 

and k is the nonnegative integer. If a ~ 1 then the energies Ek-a) must be excluded from 
the spectrum since the corresponding wavefunctions are no longer normalizable. Otherwise 
one has to consider both sets of solutions. Applying these results to the problem under 
consideration, and putting again Ai = A~ = A1 = 1 one obtains for H

1
: 

a}= l4m1 + 11, 

a}1 = l4m1I, 

a}u = l4m11, 

a}v = l4m1 
- 11. 

And therefore the energy spectra have the form 

4E}'(±) = 2k} ± l4m1 + 11 + 1, 

4E}}±l = 2kh ± l4m1 I, 

4E;i~±) = 2k}u ± l4m1 1 + 2, 

4E:J±l = 2k}v ± l4m1 -11 + 1, 

(4.25) 

(4.26) 

and the same expressions for the spectra of H 2 and H3, with m 1 substituted by N
2 

and M
3 

respectively. The both signs before the second terms has to be taken for E1, if-¼::; m
1 

< 0; 
for Eu and for Eu1, if0::; m 1 <¼;for E1v, if¼::; m 1 < ½- Let us further restrict the value 
of the parameter to belong to the open interval -¼ < m 1 < 0. Then due to the equations 
(3.13) - (3.15) and ( 4.26) the minimal energy of the system with k} = kj = kfu = 0 is: 

Em,n. = E}·- + E;-- + Ei'ii = -m1
, (4.27) 

and according to (3.12) we have the supersymmetric ground state with three supersymme­

tries being unbroken. 
In this Section we have considered quite schematically the one-, two- and three­

dimensional N = 4 supersymmetric versions of the quantum oscillator with an additional 
-!, term in the potential energy. However we believe, that even this simple analysis gives a 
good illustration of all possible cases of the partial supersymmetry breakdown in multidi­
mensional N = 4 SUSY QM. One should also stress the crucial meaning of the boundary 
conditions in the question of the partial supersymmetry breakdown, as it was shown for the 
case of the one-quarter supersymmetry breakdown in the considered example. 

V. DISCUSSION 

In this paper we have described the general formalism of multidimensional N = 4 super­
symmetric quantum mechanics and studied the various possibilities of partial supersymmetry 
breaking, illustrating them by the exactly solvable example. 

However, the several questions, which seem to be of a particular importance are left still 
opened. Indeed, it would be interesting to investigate other possibilities of changes of the 
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bosonic Pnd ff'rmionic \·ariabks. namely for the cases, when in contrast with (4.1) and (4.2), 
t 11(' stq)('rpotential .-\(<!>') is not a direct sum of the terms, each containing only one superfield 
<I>' and wlwn thP bosonic components of these superfields depend on several variables :ri. 

Thl' d!'tailPd study oft his problem can lead to the possible N = 4 supersymmetrization and 
q11ant izat ion of various pur<' bosonic integrable systems, such as n -particle Calogero and 
Calogero -- l\loser motkls. which are related to the HN black hole quantum mechanics and to 
/) = 2 SY.\! theory [2i]. This approach also can answer the question about the general class 
oft lw potPntials, which !Pad to the superconformal N = 4 theories in higher dimensions. 

A not her topic which has been left unrnvered in this paper is the possible application of 
t.h,· constructed multidimensional N = 4 SUSY QM to the problems of quantum cosmology. 
The possible embedding of pure bosonic dfective Lagrangians, derived from the homogeneous 
cosmological models to the N = 4 SUSY QM can shed a new light on the old problems of 
boundary conditions and spoutaneom SllS'{ breaking in quantum cosmology. which were 
investigated recently in the framework of 1\" = 2 supersymmetric sigma - model approach 
[28] - [29]. 

All these questions are under intensive study now and will be reported elsewhere. 
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