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1 Introduction 

Since the first N = l supersymmetric generalization of the bosonic KP hi­
erarchy _:the Manin-Radul N = l supersymmetric KP hierarchy [1]- ~nd 
its reduction -the Manin-Radul N = l supersymmetric KdV hierarchy­
appeared this subject has attracted permanent attention both for purely 
academic reasons and because of various applications. Let us mention, for 
example, the problem of finding a supersymmetric hierarchy relevant for 
the longstanding yet unsolved problem of constru~ting supermatrix mod­
els which differ non-trivially from bosonic ones. During past years several 
generalizations of the Manin-Radul supersymmetric KP hierarchy were 
proposed. They possess a new type of fermionic flows [2, 3], an enlarged 
number of bosonic and fermionic flows [4], or additional supersymmetries 
(see, e.g. the recent paper [5] and references therein)., Recently, .a large 
class of new reductions of the Manin-Radul N = l KP hierarchy was 
discussed in the important work [6] where bosonic and fermionic flows 
respecting thei original algebraic structure .were constructed. Even more 
recently [5], an N = 4 supersymmetric KP hierarchy was proposed and a 
wide class of its reductions was described in the Lax-pair framework It 
is remarkable that the supersymmetric .KP hierarchy in .N = 2 superspace 
actually displays an N = 4 supersymmetry. This doubling of supersym­
metry also occurs in N = l superspace where the supersymmetric KP 
hierarchy is actually N = 2 supersymmetric' [4]. It is an interesting ques­
tion to find different reductions of the latter hierarchy which preserve its 
N = 2 algebraic structure. This is tµe ~ain goal of the present paper. 

· Using a dressing formalism, we describe a wide class of N =:= 2. reduc­
tions of the supersymmetric KP hierarchy in N = 1 superspace. One.such• 
reduction is considered in considerable detail: we derive its bosonic and 
fermionic flows, Hamiltonians, Hamiltonian structures; recursion operator, 
finite and infinite discrete symmetries, aµd ,its. reduction to a.new !v = 2 
supersymmetric modified KdV hierarchy. As a byproduct' we obtain a new 
version of the N = 2 supersymmetric Toda chain equation which is related 
with the infinite discrete symmetries of the reduced N = 2 KP hierarchy. 

We point out·that, our-construction of a new class of N.= 2 supersym­
metric integrable hierarchies in,N ==: 1 superspace builds upon some recent 
results on supersymmetric hierarchies [4, 7, 6, 8, 5] .. Let. us describe the 
content of this paper. In section 2 we review the supersymmetric KP hier- · 
archy in N = l superspace· within the framework oft~e dr~ssi~g approach 



and demonstrate that it is N = 2 supersymmetric. In section 3 we discuss a 
consistent reduction of the N = 2 supersymmetric KP hierarchy preserving 
its algebraic structure. We find its finite and infinite discrete symmetries 
and use them to obtain the new Lax operators. Finally, we construct its 
local and nonlocal Hamiltonians, first two Hamiltonian structures and re­
cursion operator. Section 4 then describes its secondary reduction to a new 
version of the N = 2 supersymmetric modified KdV hierarchy. Section 5 
presents generalizations of the reduced N = 2 KP. hierarchy to the matrix 
case and closes with some open questions. An appendix contains the new 
version of the N = 2 supersymmetric Toda chain equation, includes its 
zero-curvature representation and explains the origin of the Lax operators 
of section 3. 

2 N=2 supersymmetric KP hierarchy 

In this section we discuss the hierarchy which is usually called the Manin­
Radul N = 1 supersymmetric KP hierarchy and focus on the remarkable 
fact that it actually possesses an N = 2 supersymmetry. This section is 
essentially based on the results obtained in [4]. 

Our starting object is the N = 1 supersymmetric dressing operator W 
00 

W = 1 + L (wib) + w~lD) a-n, (1) 
n=l 

where the all functions Wn = wn(Z) involved into the W are the N = 
1 superfields depending on coordinates Z = (z, 0). Further, D is the 
fermionic covariant derivative which, together with the supersymmetry 
generator Q, form the algebra1 

{D,D} = +28, {Q,Q} = -28 (2) 

with the standard superspace realization: 

a 
D = 

80 
+ea, a 

Q = 80 -08. (3) 

Our aim now is to construct a maximal set of consistent Sato equations 
for the dressing operator W which represent the flows of the extended 
supersymmetric KP hierarchy in N = 1 superspace. 

1 We explicitly present only non-zero brackets in this paper. 
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We begin by choosing a basis { D, Q, [0, D], 8} of first-order differential 
operators which are point-wise (z) linearly independent. We then consider 
arbitrary powers of these and dress them by the dressing operator W, 
obtaining the operators 

Li = w Diw-1, M1 = wQiw-1, 

with the obvious properties: 

N1 = w![0, DJa1w-1 
2 

(4) 

Li= (L1)i, Mi= (M1)1, L2i = (-1)1M21 = wa1w-1. (5) 

Using the operators (4) we construct consistent Sato equations for W, 

!, W = -(L21)-W, 

D1W = -(L2i-1)-W, 

U1W = -(N1)-W, 

Q1W = -(M21-1)-W, (6) 

where the subscript - ( + ) denotes the purely pseudo-differential ( differ­
ential) part of an operator. The bosonic (fermionic) evolution derivatives 
{ 

8
~

1 
, Ui} ( { D1, Qi} ) generating bosonic ( fermionic) flows of the hierarchy 

under consideration have the following length dimensions: 

[!
1

] = [Ui] = -l, 
1 

[Di] = [Qi] = -l + 2. (7) 

We would like to recall that the subset of flows U!,, Di} by itself 
forms a hierarchy which is usually called the Manin-Radul N = 1 super­
symmetric KP hierarchy [1]. The extra flows {U1, Qi}, when added to the 
N = 1 KP hierarchy, produce an extended hierarchy possessing a richer 
algebraic structure. This extended supersymmetric hierarchy was called 
the maximal SKP hierarchy in [4]. 

In order to calculate the flow algebra of the extended hierarchy, one can 
use a supersymmetric generalization [9, 4] of the Radul map [10] which is a 
homomorphism bet')'een the flow algebra we are looking for and the algebra 
of the operators Li, M1 and N1 (4). The resulting nonzero brackets are 

a 
{Dk, Di} = - 2 atk+i-1' 

[ Uk , Di] = Qk+h 

3 

a { Q} -+2- , Qk , l - 8tk+i-1 
(8) 

[Uk, Qi] = Dk+l· (9) 



The algebra (8-9) may be realized in the superspace { tk, 0k, Pk, hk}, 

a 00 a a 00 a 
Dk=--E0i--, Qk=-+Epi--, 

a0k l=l atk+i-1 apk i=1 atk+i-1 
a 00 a a 

Uk= ah - L(0i-a- + Pi80), 
k i=1 Pk+i k+i 

(10) 

where tk, hk (0k, Pk) are bosonic (fermionic) abelian evolution times with 
length dimensions 

[tk] = [hk] = k, 
1 

[0k] =[Pk]= k - 2· (11) 

A simple inspection of the superalgebra (8-9) shows that the flows 
8
~

1
, 

U0 , D 1 and Q1 form a finite-dimensional subalgebra which is isomorphic 
to the well-known N = 2 supersymmetry algebra including its u(l) auto­
morphism. For this reason the maximal SKP hierarchy may also be called 
the N = 2 supersymmetric KP hierarchy. 

It is instructive to introduce a new basis, 

{D, Q, Di, Qi}==> {D, D, Di, Di}, 

1 
D = v'2(Q + D), 

- 1 
D = v'2(Q - D), 

1 
Dk= v'2((-1l-1Qk +Dk), 

- 1 
Dk= v'2((-1l-1Qk - Dk) 

in which the algebras (2) and (8-9) read 

{D,D} = -28, 

[uk' D,] ~ Dk+i, 

- a 
{Dk' Di} = +2 -at ' 

k+l-1 
[uk, Di] = -Dk+i-

(12) 

(13) 

(14) 

In this basis the flows (6) take the form 

;!, w = -(wa1w-1)_w, 

DiW = -(wDai- 1w-1)_w, 

U1W = -(W0 :0aiw-1)_W, 

DiW = -(WDa1
-

1w-1)_w, (15) 

4 

and one can easily recognize that the subflows ci,, Di} form the Mulase­
Rabin N = 1 supersymmetric KP hierarchy [2,, 3]. As we have already 
seen earlier, the maximal SKP hierarchy includes the Manin-Radul N = 1 
supersymmetric hierarchy as well. Therefore, we come to the conclusion 
that it actually comprises both the Manin-Radul and Mulase-Rabin N = 1 
supersymmetric KP hierarchies. 

It is easy to see that the flows (15) are form-invariant with respect 
to the U(l) automorphism transformation of the N = 2 supersymmetry 
algebra (14), 

a 
(at,' U1) 

(D, Di) 
(D, D1) 

==> 

==> 
==> 

a 
(at1' U1), 

exp (+i¢) (D, Di), 
exp (-i¢) (D, Di), (16) 

where ¢ is an arbitraJy parameter. Nevertheless, it is a very non-trivial 
task to find a realization of ,these transformations for the superfunctions wf. 
and w~ involved in the 'dressing operator W (1). We will return to discuss 
this point for the case of the reduced N = 2 KP hierarchy (see paragraph 
after eqs. (76)). Let us finally emphasize that the U(l) covariance of the 
flows was hidden in the basis (3), (10), while it becomes manifest in the 
new basis (13). 

b 

., 
i. 

3 

3.1 

Reduction of the N==2 KP hierarchy 

Bosonic and fermionic flows 

In this subsection we consider a reduction of the N = 2 supersymmetric 
KP hierarchy which preserves its flow algebra (8-9). 

Let us introduce the following constraint on the operator M1 ( 4): 

M1 = M = Q + vD-1u (17) 

(its nature is explained in the appendix). The operator M possesses the 

5 



following important property2 : 

1-1 

(M 1
)_ = L(Ml-k-1v)D:;: 1((Mkf u), l = 0, l, 2... , (18) 

k=O 

which can be proved by induction similarly to analogous formula in the 
bosonic case [11]. Equation (18) coincides with formula of ref. [6] where 
other reductions of the ¥anin-Radul supersymmetric hierarchy [1] were 
discussed. 

Substituting the expression ( 4) for M1 in terms of the dressing operator 
W (l) into the constraint (17), the latter becomes 

WQw- 1 = Q + vD- 1u (19) 
r, 

and gives an equation for W which can be solved iteratively. The unique"::} 
solution W (1) is determined by , 

wV) = -Q-1(uv), wlb) = -Q-1(vDu +1uvQ- 1(uv)), "v 

w~f) = -Q-1(vu '+ uvDQ- 1(uv)) 

+(Q-1(uv))Q- 1(vDu + uvQT1(uv)), . . . . (20) 

Replacing W by Win eqs. (4) one can obtain the reduced operafllrs /J1 and 
Ni as well. As an example, we present a few terms of the D- 1 expansion 
of £ 1 , CJ ~ 

£1 = WDw-1 = D + 2wVl - (DwVl)D-1 - ((Dwlb)) - 2w~n 

+wV) DwV) + 2wVlwlb))D-2 

-((D(w~f) - wlnwlb))) .,- (DwVl)2)D-3 + ... , (21) 
,.. 

where the functions w~b) and w<;fl are defined in eqs. (20). 
The most complicated task now is to construct a consistent set of Sato 

equations for the reduced W, generalizing the unreduced equations .(6) 
and preserving their algebraic structure (8-9). · Recently,"a similar task 

2Let us recall the operator conjugation rules: DT = -D, (OP)T = (-l)dodp pror, 
where O (P) is an arbitrary operator with the Grassmann parity do (dp ), and do = 0 
(do = 1) for bosonic (fermionic) operators 0. All other rules can be derived using 
these. Hereafter, we use the notation ( 0 f) for an operator O acting only on a function 
J inside the brackets. 
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C 

was carried out in [6] for some reductions of the Manin-Radul N = l 
supersymmetric KP hierarchy [1] as well as in [5] for the reduced N = 4 KP 
hierarchy, and we essentially use the ideas developed there. We succeeded 
in this construction only for the reduced ti,, D1, and Q1 flows. Nevertheless, 
as will be clear in what follows, the remaining U1 flows can be restored using 
the zero flow U0 (28) and the recurrence relations (71) (see the paragraph 

after eqs. (7 4)). 
The resulting Sato equations have _the following form: 

ti,w = -(£21)-W, D1W = -(£21-1)-W, 

Q1W = -((M21-1)- - M21-1)W, (22) 

where a new operator M 21-i has been introduced, 

1-2 
M21-1 = 2 I:(M2(!-kl-3v)D-1((M2k+lf u), (23) 

k=O 

which is necessary for the consistency of the equations. The flows can 
easily be rewritten in Lax-pair form, , 

ti,M = -[(£21)-,Ml = [(£21)+,Ml, 

D1M = -{(£21-1)-, M} = {(£21-1)+, M}, 
Q1M = -{(M21-1)- - M21-1, M} 

= {(M21-i)+ + M21-1, M} - 2M21 , (24) 

and, with the help of equation (18), lead to the following flow equations 
for the superfields v and u: 

ti, V = ((£21)+v), ti, U = -((£21)ru), 

Div= ((£21-i)+v), D1u = -((£21-1)ru), 

Q1v = (((M21-1)+ + M21-1 - 2M21-1)v), 
T - T Qiu= -(((M21-1)+ + (M21-1 - 2M21-i) )u). (25) 

Using eqs. (25) for the bosonic and fermionic flows, we present the first 
few of them, for illustration3

, 

.JL ( V ) _ ( +v ) .JL ( V ) _ {) ( V ) ato u - -u ' ati u - u ' 

3We have rescaled some evolution derivatives to simplify the presentation of some 

formulae. 
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at v = +v 11 
- 2uv(DQv) + (DQv 2u) + v2(DQu) - 2v(uv)2, 

8~
2 
u = -u 11 

- 2uv(DQu) + (DQu2v) + u2 (DQv) + 2u(uv)2
, (26) 

Div= -Dv + 2vQ-i(uv), Diu = -Du - 2uQ-i(uv), 

Qiv = -Qv - 2vD-i(uv), Qiu= -Qu + 2uD-i(uv), 

D2v = -Dv '+ 2v 'Q-i(uv) + (Dv)Q-i D(uv) + vQ-i[uv '+ (Dv)(Du)], 

D2u =+Du' + 2u 'Q-i(uv) + (Du)Q-i D(uv) + uQ-i[vu '+ (Du)(Dv)], 

Q2v = -Qv ' - 2v 'D-i(uv) + (Qv)D-iQ(uv) - vD-i[uv ' - (Qv)(Qu)], 

Q2u = +Qu ' - 2u 'D-i(uv) + (Qu)D-iQ(uv) - uD-i[vu' - (Qu)(Qv)], 

Uo ( ~ ) = 0 D ( ~ ) , (28) 

where the zero flow U0 was constructed by hand so that it satisfies the 
algebra (8-9). 

We would like to close this subsection with a few remarks. 
First, observing eqs. (25) we learn that the reduced N = 2 KP flows 

(except for 8~,) are nonlocal in general (for an example, see eqs. (27) ). 
This property of flows is just the result of the reduction. 

Second, the flows {8~
1

, U0 , Di, Qi} forming the N = 2 supersymmetry 
algebra are non-locally and non-linearly realized in terms of the initial 
superfields v and u. However, there exists another superfield basis {v, u}, 
defined as 

v=vexp{+[0,D-i](uv)}, u=:uexp{-[0,D-i](uv)}, (29) 

which localizes and linearizes the N = 2 supersymmetry realization into 

8~
1 

= 8, Di = -D, Qi= Q, U0 = 0D. (30) 

However, in this basis even the flows ;:
1 

for l 2: 2 are nonlocal. 
Let us finally stress that, in distinction to all known Lax operators 

used before in the supersymmetric literature, the Lax operators proposed 
in this subsection do not respect supersymmetry because they contain both 
the fermionic covariant derivative D and the supersymmetry generator Q. 
Nevertheless, the resulting hierarchy is N = 2 supersymmetric. 

8 
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3.2 Discrete symmetries, Darboux-Backlund trans-
formations and solutions 

In this subsection we discuss finite and infinite discrete symmetries of the 
reduced hierarchy, and use them to construct its solutions and new Lax 
operators. 

Direct verification shows that the flows (26-28) admit the two involu-

tions: 

(v, u)* = i(u, v), (z, 0)* = (z, 0), 

(tp,Up,Dp,Qp)* = (-l)P-i(tp,-Up,Dp,Qp), (31) 

(v,u)t = (u,v), (z,0)t = (-z,0), 

. (tp, Up, pp, Qp)t = (-tp, Up, Qp, Dp), (32) 

which are consistent with their algebra (2), (8-9). A third involution can 
easily be derived by multiplying these two. 

It is a simple exercise to check that all the flows (24) (or (25) ) also 
possess the involution (31), using the following involution property of the 
dressing operator W: 

W* = (w-if (33) 

which results from eq. (19) and its consequences 

(.Ci)*= (-1)l(lt)(.C1f, (Mi)*= (-1/
1t 1

)(M1f, 
- • l - T (M21-i) = (-1) (M21-i) , (34) 

for the operators entering eqs. (24). As regards to the involution (32), we 
do not have a direct proof for it due to the very complicated transformation 
property of the dressing operator. However, a simple proof can be given 
using the recurrence relations (71), to be derived later. 

Besides the involutions (31-32) the flows (26-28) possess an infinite­
dimensional group of discrete Darboux transformations (see eq. (A.14) of 
appendix) 

1 
(v, u)i = ( v(QD ln v - uv), - ), 

V 

(z, 0)i = (z, 0), (tp, Up, Dp, Qp)i = (tp, Up, -Dp, -Qp), (35) 
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Mt= -T MT- 1
, T = vDv- 1. 

Let us remark that formula (36) represents the Darboux-Backlund 
transformation4 of the Lax operator M (17). 

(36) 

Applying involutions (31-32) and the discrete group (35) to the Lax 
operator M (17) one can derive other consistent Lax operators 

M* = Q - uD- 1v = -Mr, Mt = D + uQ- 1v, (37) 

M((j+I)t) = D_ + vW+I)t) D+Iu((j+I)t) = _ 7Utl MUtl7Utl-1, 

7Utl = vUt) D+vcm-1 (38) 

which generate isomorphic flows. MUt) is obtained from M by applying 
j times the discrete transformation (36), e.g. M(3t) = ((Mt)t)t, M(ot) = 
M. 

Generalizing results obtained in [8, 5] one can construct an infinite 
class of solutions for the reduced hierarchy under consideration. We briefly 
present this construction and refer to [8, 5] for details. 

The simplest solution of the hierarchy corresponds to 

u = 0, (39) 

in which case the bosonic and fermionic flows for the remaining superfield 
v = -T0 are linear and have the following form: 

at To= akTo, DkTo = -Dak-lTo, QkTo = Qak-ITo. Uk To= 0D8kTo. (40) 

To derive these equations it suffices to take into account the length dimen­
sions (7) of the evolution derivatives, their algebra (8-9) and the invariance 
of all flows (24) with respect to the U(l) transformations 

( v, u ) => ( exp ( +i,B) v, exp (-i,B) u ) (41) 

which is obvious due to the invariance of the reduction constraint (19). 

4For the reduced Manin-Radul N = I supersymmetric KP hierarchy the Darboux­
Biicklund transformations were discussed in (6] (see also references therein). 
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For technical reasons, we restrict the analysis of the hierarchy to the 
case when only the flows a~k, Dk and Qk (but not Uk) are consider_ed. 
Then, using the realization (10), the solution of eqs. ( 40) is 

To = f d>. dry cp(>., ry) exp{x>.- ry0+ I: [tk-t1J(0k - Pk)>.-
1 + 0(0k + Pk) 

k=l 

00 

0k L PnAn~l] >.k }, (42) 

n=l 

where cp is an arbitrary fermionic function of the bosonic (>.) and fermionic 
( T/) spectral parameters with length dimensions 

[>.] = -1, 
1 

[11] = -2· (43) 

Applying the discrete group (35) to the solution constructed {u = 0, v = 
-To}, an infinite class of new solutions of the hierarchy is generated through 
an obvious iterative procedure [8] 

v<(2J+1Hl = +(-l)j T2j ' V(2(j+l}t) = ( -1 )j T2(j+l) ' 

T2j+l T2j+I 

u<(2J+1)t) = -(-l)jT2J-1, u<2(J+1Hl = (-1)JT2J+1' (44) 
T2j T2j 

where the Tj are5 

T2J = sdet( 
(-l)qap+qro (-1rap+mQro )OS,p,qS,j 
(-l)qak+qDro (-1rak+m DQro OS,k,mS,j-1' 

T2j+1 = _sdet ( 
(-l)qap+qro (-1rap+mQro )OS,p,qS,j 

(-l)q8k+qDr, (-l)mak+m DQri _. (
45

) 0 . O O$k,mS,J 

3.3 Hamiltonian structure 

In this subsection we construct local and nonlocal Hamiltonians, first two 
Hamiltonian structures and the recursion operator of _the reduced hierar-

chy. 

· . ( A B) 5 The superdeterminant is defined as sdet C D = det(A -

Bn-1c)(det n)-1 • 
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Let us first present our notations for the N = 1 superspace measure 
and delta function 

dZ = dzd0, c5N=1(Z) = 0c5(z), (46) 

as well as the realization of the inverse derivatives 

11+00 -1 _ -1 -1 _ -1 -1 -D = Daz , Q = -Qaz , az = - dxt(z - x), 
2 -oo 

t(z - x) = -t(x - z) = 1, if z > x (47) 

which we use in what follows. We also use the correspondence: 

a~,a = U!,, U,, Di, Q,} {:} 1-£1 = {1-lL 1-lf, 1-lf, 1-l~} (48) 

between the evolution derivatives 8
8a and Hamiltonian densities 1-l't, and, 
Tl 

consequently, the latter ones have the length dimensions 

[1-lfj = [1-lf] = -l, [1-lf] = [1-l~] = -l + t- (49) 

Let us remark that the length dimensions of the Hamiltonian H?, 

Ht = j dZ1-l1, (50) 

and its density 1-l't are different. They are related as 

[Ht] = [1-£1] + t (51) 

because the length dimension of the N = 1 superspace measure is not 
equal to zero, [dZ] = ½- Moreover, their Grassmann parities, dna and d1la, 
are opposite, 

dna = d1la + 1, (52) 

due to the fermionic nature of the N = 1 superspace measure (46). 
We define the residue of a pseudo-differential operator 'V with respect 

to the fermionic covariant derivative D+ according to the rule: 

w = ... + (Qres(w))D- 1 + ... (53) 

12 

,; 
! 

which will be justified a posteriori. Then, bosonic Hamiltonian densities
6 

can be defined as 

1-lf = res(.C21). (54) 

Using these formulae and the relation (18) one can derive the general 
formulae for the Hamiltonians Hf in terms of the Lax operator M (17) 

21-3 

Hf-1 = j dZD-1 L (-l)k(M2l-3-kv)((Mkf u). 
k=O 

(55) 

We present, for example, the explicit expressions for the first few bosonic 

Hamiltonians 7 , 

Hf= j dZuv, H~ = j dZuv ', 

H1 = j dZ [ ~v 11 
- vu[u(DQv) - v(DQu)]...:. l(uv)

3 ], (56) 

Hf= j dZ u0Dv, 

and the first few fermionic ones, 

Hf= Hf= j dZD- 1(uv), 

(57) 

(58) 

Hf= j dZ [ vDu + uvQ-1(uv)], H~ = j dZ [ vQu - uvD-
1
(uv) ], 

Hf= j dZ [ vDu '+ 2vu 'Q-1(uv) + v(Du)[0, D](uv)], 

Hf= j dZ [ vQu '+ 2vu 'D-1(uv) + v(Qu)[0, D](uv) ]. (59) 

' : ' i The Hamiltonians (57~59) were found manually by requiring that they are 
conserved with respect to the flows' :i, (26). 

6 Let us recall that Hamiltonian densities are defined up to terms which are fermionic 
or bosonic total derivatives of an arbitrary functional J(Z) of the initial superfields 
subjected to the constraint: J(+oo,0) - f(-oo,0) = 0. 

7When deriving eqs. (55-59) we integrated by parts and made essential use of 
realizations (47) for the inverse derivatives and of the relationship Q = D - 208. We 
also used the following definition of the superspace integral: J dZ J(Z) = J dz(D f)(z, O). 
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We should add that the Hamiltonians in eqs. (54) for l 2: 4 are only 
conjectured to be conserved under the bosonic flows Ji, (24). This conjec­
ture was checked explicitly for a few of them. 

It is well known that a bi-Hamiltonian system of evolution equations 
can be represented as: 

a ( v ) _ ( 8/Jv ) a _ ( 8/Jv ) a ar,a u - J1 8/Ju H1+1 - J2 8/Ju H,, (60) 

where J1 and J2 are the first and second Hamiltonian structures. In terms 
of these the Poisson brackets of the superfields v and u are given by the 
formula: 

{ ( :~~:~ ) ' ( v(Z2), u(Z2) ) }i = J1(Z1)0N=1(z1 - Z2). (61) 

An important remark is in order. In N = l superspace the varia­
tional derivatives f;, and /u are Grassmann odd because of the definition 
dv{~I) v(Z2) = JN=1(Z1 - Z2) and the fermionic nature of the N = l delta 
function ( 46). 

Using flows (26-28) and Hamiltonians (56-:--59), we have found the 
Hamiltonian structures to be 

J1 = ( ~1 ~) ( 
Ju J12 ) 

and J2 = J
21 

J22 

with 

Ju = +vD-1vQ - (Qv)D- 1v - 2vD-1uvD-1v 

+vQ-1vD - (Dv)Q- 1v + 2vQ-1uvQ-1v, 

J22 = -uQ....,1uD + (Du)Q- 1u + 2uQ-1uvQ- 1u 

-uD-1uQ + (Qu)D- 1u - 2uD-1uvD- 1u, 

(62) 

J12 = -8 + {Q, vD-1u} + 2vn-1uvD-1u + {D, vQ-1~} - '2vQ- 1uvQ-1u, 

J21 = -8 - {D, uQ-1v} - 2uQ-1uvQ- 1v - {Q, ~D-1~} + 2uD-1uvD-1v. 

(63) 

We would like to note that, other than for the N = 4 Toda chain hierarchy 
[5], the Hamiltonian structures (6i-63) are Grassman~ ~dd due to the 
bosonic character of the· matrices ,J1 and J2 (62-63) and the fermionic 

t:.'./ 
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nature of the N = l delta function (46). Odd Hamiltonian structures 
were also used earlier in the description of some supersymmetric integrable 
systems (for recent papers, see [12, 13, 14, 15, 16] and references therein). 

The second Hamiltonian structure J2 (63) is rather complicated, non­
linear and nonlocal. It becomes linear and local in terms of the original 
Toda-chain superfields b and f (see eq. (A.13) of appendix) 

b=:uv, f=Dlnv. (64) 

The corresponding Hamiltonian structures Jfb•f) and Jt,J) can be ex­
pressed via J 1 and J2 (62-63) by the following standard relation: 

J?,f) = F J1FT, 
F = ( ;i ~)' (65) 

where F is the matrix of Frechet derivatives corresponding to the trans­
formation {b,J} => {v,u} (64). One finds: 

i(b,f) = ( 0 D ) 
1 D O ' 

(b,f) ( Ji~,!) Jg,!) ) 
J2 = J(b,f) J.(b,f) , 

', 21 22 

J(b,f) 
U 

J(b,f) 
12 

J(b,f) 
21 

J.(b,f) 
. 22 

-ab- ba, 

aD + Qb + Db[0, D] - (D J)D, 

= -aD +bQ- [0,D]bD-D(Dj), 

-2QD + 2b- 2(QJ) - [(DJ), [0, Dl] + 2[0, D]b[0, D]. (66) 

Using equations (58), (60) and (62), we obtain, for example, the 0-th 
fermionic flow, 

Qov = v0, Qou = -u0. (67) 

Knowledge of the first and second Hamiltonian structures allows us to 
construct the recursion operator of the hierarchy, 

R = J 2 J 11 = ( J12, -Ju ) 
122, -121 ' 

_a ( V ) = R~ ( V ) 
OT{1:tl U · OT1a U ' 

(68) 

-a- · = R1..JL · I 8 (V) (V) ar,+i u arr u '· J1+1 = R Ji. (69) 
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The Hamiltonian structures J[bJ) and J~b,f) (66) (and, consequently, the 
original Hamiltonian structures J 1 and J2 (62-63) ) are obviously mutu­
ally compatible: a deformation of the superfield f to f + 10, where 1 is 
an arbitrary parameter, transforms J~b,f) into the Hamiltonian structure 
defined by the algebraic surri · 

J~b,f+,0) = Ab,/) + 11?·/). (70) 

Therefore, the recursion operator R (68) is hereditary as the operator 
obtained from the compatible pair of the Hamiltonian structures [17]. 

Applying formulae (68) we obtain the following recurrence relations for 

the flows: 

_a __ v - a ' 
8Ti°+i - + 8Ta V l 

+ (-l)dra vD-1 a~a Hf - [(Qv) + v(D-1uv)]D- 1 a~a Hi 
l l 

+ (-l)dravQ-1 a~t Hf - [(Dv)-: v(Q-1uv)]Q-1 a~t HL 
_a_u- a ' 
8Ti°:+! - - 8Tt U 

(-l)drauQ- 1 a~a Hf - [(Du)+ u(Q-1uv)]Q-1 a~a Hi 
l l 

(-l)draun-1 a~t Hf - [(Qu) - u(D-luv)]D-1 8~t Hi 
+ 2u[0, D] 8

8
a HL (71) Tl 

where dTa is the Grassmann parity of the evolution derivative 8
8
a and Tl 

Hi= uv, Hf= vDu + uvQ-1(uv), Hf= vQu - uvD-
1
(uv) (72) 

are the densities of the Hamiltonians Hf (56) as well as Hf and H:} (59), 
respectively. 

Taking into account the involution properties 

-(Hi)*= (Hi)t = Hi, 
(Hf)*= -QHi +Hf, (Hf)*= -DHi +Hf, 
(Hf)t = DHi - Hf, (Hf)t = QHi - Hf (73) 

of the Hamiltonian densities (72), one can verify that the recurrence re­
lations (71) possess the involutions (31-32). Together with the already 
verified fact that the first flows (26-28) also admit these involutions one 
concludes that the all other flows of the hierarchy under consideration 
admit them as well. 

Using eqs. (71) and (27), we obtain, for example, the third bosonic 
flow 
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8~3 
v = v 111 + 3(Dv) '(Quv) - 3(Qv) '(Duv) + 3v '(Du)(Qv) 

-3v '(Qu)(Dv) + 6vv '(DQu) - 6(uv)2v ', 

8~3 
u = u "' + 3(Qu) '(Duv) - 3(Du) '(Quv) + 3u '(Qv)(Du) 

-3u '(Dv)(Qu) + 6uu '(QDv) - 6(uv)2u' (74) 

which coincides with the corresponding flow that can be derived from the 
Lax-pair representation (24). Let us l!nderline that all U1 flows for l 2'.: 1 
can also be derived in this way starting from the zero flow U0 (28) as an 
input. 

Finally, let us transform the first bosonic and fermionic flows from eqs. 
(26-28) and recurrence relations (71) to the basis (12), where they become 

.JL ( V ) _ 8 ( V ) U, ( V ) ___ i 0V ( V ) 
8t1 u - ~ , 0 u - ~ u ' 

V 1v = -Vv - 2v8-1V(uv), 

Viv= -Vv + 2va-1V(uv), 

V1u =-Vu+ 2u8- 1V(uv), 

V 1u = -Vu - 2ua-1V(uv), (75) 

+v = +-i;-v I+ (-l)dra[va- 1v-i;-(vVu - uva-1vuv) 8Tl+I 8T1 8T1 

-va- 1V 8
8a (vVu + uva- 1Vuv)] - [(Vv) + v(a- 1Vuv)]a- 1v "a" (uv) 
~ 0~ 

+[(Vv) - v(a- 1Vuv)]a- 1V 8
8a (uv), Tl 

+u = --i;-u I - (-l)dTa [ua- 1v-i;-(uVv - uva-1vuv) 8Tl+l 8T1 8Tz 

-ua-1V 8
8

0 (uVv + uva-1Vuv)] +[(Vu)+ u(a- 1Vuv)Ja- 1V 8
8a (uv) 

~ ~ 

-[(Vu) - u(a-1Vuv)]a- 1V 8
8a (uv). (76) Tl 

These equations are obviously invariant under the U(l) transformation 
(16). Consequently, all higher flows admit this automorphism as well. 
Despite of this, the Lax operator M (17) is not invariant with respect 
to the U(l) transformation. Hence, applying it to M one can derive a 
one-parameter family of consistent Lax operators, 

M ==> M,:, =cos¢> M +sin¢> (Mtf (77) 

with Mt defined in eq. (37). The flows generated in this way are all isomor­
phic. We remark that the superfields v and u have trivial transformation 
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properties under the U(l) transformation (16), while the superfunctions wl 
and w~ (20) expressed in terms of these transform in a rather complicated 

manner. 

4 Secondary reduction: a new N ==2 super­
symmetric 
modified KdV hierarchy 

In this section we derive a new N = 2 supersymmetric modified KdV 
hierarchy by means of the secondary reduction. 

Let us investigate the secondary reduction of the hierarchy considered 
in the preceding sections. We impose the following secondary constraint

8 

on the Lax operator£ (17): 

MT =DMD-1 (78) 

which can easily be resolved in terms of the superfield v entering M, 

V = 1. 

Then, the reduced Lax operator Mred becomes 

Mred = D-' + D+lU. 

Condition (78) by means of eq. (19) induces the secondary constraint 

(w-1f = DwD-1 

(79) 

(80) 

(81) 

on the dressing operator W (20) which in turn induces the following sec­
ondary constraints on the operators Li ( 4): 

(£21f = (-1)1DL21D-i, (£21-1f = (-1)1
D£21-1D-

1 
, (82) 

which are identically satisfied if constraint (78) (or (Si)) is imposed. Im­
portantly, eqs. (82) imply that 

. (£2(2k-1))0 = (£2(2k):._1)0 = 0, k = 1, 2 ... ' (83) 

8 See also refs. [18, 19, 20], where a similar reduction of the Manin-Radul [1] and 
Mulase-Rabin (2, 3] N = 1 supersymmetric KP and KdV hierarchies has been discussed. 
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where the subscript 0 refers to the constant part of the operators. Conse­
quently, the equations: 

((£2(2k-1))+l) = ((£2(2k)-1)+l) = 0 (84) 

are identically satisfied as well. Using these relations, the involution (32), 
and the algebraic structure (8-9) we are led to the conclusion that only 
half of the flows (25) are consistent 'Yith the reduction (78-79), namely 

{ 8t2:-1, U2k, D2k, Q2k }. (85) 

In order to understand better what kind of reduced hierarchy we have in 
fact derived, one might analyze its Hamiltonian structure via Hamiltonian 
reduction of the first and second Hamiltonian structures (62-63) we started 
with. However, it is easier.to reduce the less complicated expressions (66). 
In this basis, the constraint (79) becomes 

f =0, (86) 

and the superfield b coincides with the superfield u on the constraint sur­
face. 

Let us start with the first Hamiltonian structure J?•f) (66). In this 
case, the constraint (86) is a gauge constraint, and a gauge can be fixed 
by the condition b = 0. As the result, the trivial reduced Hamiltonian 
structure is generated. 

In the case of the second Hamiltonian structure Jtn (66), the con­
straint (86) is second class, and we can use Dirac brackets in order to 
obtain the second Hamiltonian structure for the reduced system. The re­
sult is 

J
(Dirac) _ J(u,0) _ J(u,O)J(u,o)-1J(u,O) 
11 - 11 12 22 21 

1 - 2(8DQ + QuQ- DuD +Wu+ 2u8), (87) 

where we have exploited the relations 

Jg,o)Q = !QJJ~,o)Q = QJJ~,o) = -8DQ - QbQ + DbD 
2 

which can easily be read off eqs. (66). 
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From eqs. (87) we see that the second Hamiltonian structure of the 
secondary reduced hierarchy displays the reduced N = 2 superconformal 
structure, and its flows (85) possess a global N = 2 supersymmetry with 
an unusual length dimensions of its generators, 

[a~
3

] = -3, [Uo] = 0, 
3 

[D2] = [Q2] = -2. (89) 

Substituting the constraint (79) into the third flow equations (74) of the 
reduced hierarchy, they become 

8
~

3 
u = (u 11 

- 3(Du)(Qu) + 2u3
) ', (90) 

and one can easily recognize that this equation reproduces the modified 
KdV equation in the bosonic limit when the fermionic component is put 
equal to zero. Equation (90) does not coincide with any of the three 
known N = 2 extensions [21] of the modified KdV equation. Therefore, 
we summarize that the secondary reduced hierarchy gives a new type of 
N = 2 supersymmetric generalization of the modified KdV hierarchy. 

5 Generalizations, Conclusiori and Outlook 

In this section we discuss possible generalizations of the reduced N = 2 
KP hierarchy to the matrix case and some open problems. 

The hierarchies discussed in the preceding sections admit a natural 
generalization to the non-abelian case. One may consider the N = 2 su­
persymmetric matrix KP hierarchy generated by a matrix-valued dressing 
operator Win N = l superspace, 

00 

w =I+ L (wib) + wVlD) a-n, (91) 
n=l 

which can be treated as a reduction of the analogous operator in N = 2 
superspace considered in [5]. Its consistent reductions are characterized by 
the reduced operator 

M1 =IQ+ vD-1u. (92) 

Here, Wn = (wn)An(Z), v = VAa(Z) and u = UaA(Z) (A, B = l, ... , k; 
a, b = l, ... , n + m) are rectangular matrix-valued superfields, and I is the 
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identity matrix, I = <SA,B· In (92) the matrix product is understood, for 
example (vu),w = I;~~;n VAaUaB· The matrix entries are bosonic super­
fields for a = I, ... , n and fermionic superfields for a = n + l, ... , n + m, 
i.e., VAaUbJ3 = (-l)da db11bBVAa, where da and <hare the Grassmann pari­
ties of the matrix clements VAa and ubB, respectively, d0 = 1 (da = 0) for 
fermionic (bosonic) entries. The grading choosen guarantees that the Lax 
operator M 1 is Grassmann odd [22]. 

A detailed analysis of the emerging hierarchies is, however, beyond the 
scope of the present paper. Without going into more details, let us only 
present a few non-trivial bosonic and fermionic flows in this noncommuta­
tive case (compare with the abelian flows (26-27) ): 

at v = +v 11 
- 2{Q, vDu}v - 2v(uv) 2

, 

8~
2 
u = -u 

11 + 2{_D, uQv }u + 2(uv) 2u, 

Div= -Dv + 2(Q- 1viu)v, D1u = -Du - 2uQ-1(vu), 

Q1v = -Qv - 2vD-1(uv), Q1u = -Qu + 2I(D-1uv)u (93) 

which are derived using Lax-pair representations (24) with M 1 (92) and 

(.Ci)+= ID - 2(Q-1(viu)), 

and the matrix I is defined as 

I= (-l)da<5ab· 

(94) 

(95) 

It is crucial that the existence of these two different fermionic first flows, D 1 

and Q1 (93), guarantees the N = 2 supersymmetry of the corresponding 
hierarchies. 

For the particular case when the index A takes only the value A = I, 
the matrix reduced Lax operator (92) becomes a scalar operator generating 
a reduced hierarchy with n + m pairs of scalar superfields Va, u

0
• In the 

more special case A = I, a = l and n = l, m = 0, the Lax operator (92) 
reproduces the Lax operator (17). 

The results described in the previous sections can also be generalized 
to the case of some other known reductions of the supersymmetric KP 
hierarchy in N = l superspace. For example, a wide class of the following 
reductions 

m 

L1 = L = D + L VaD- 1ua, m E N (96) 
a=l 
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was proposed in [6]. It is quite obvious that one can generalize them by 
replacing 'the superfunctions Va and Ua by supermatrices with the above­
described grading. A less obvious fact is that one can consistently extend 
in an N = 2 supersymmetric fashion the number of bosonic and fermionic 
flows of the reduced hierarchies obtained in [6]. To simplify the consider­
ation let us concentrate on the simplest example of the reduced hierarchy, 
characterized by the Lax operator (96) at m = 1. Then, as it was shown in 
[6], the Lax operator C, (96) satisfies an equation which can be read from 
eq. (18) by replacing the operator M by C there, and the flows 

:i, W = -(C2i)-W, D1W = -((£21-1)- - L\1_i)W (97) 

can consistently be introduced. Here, the operator £21-1 can be read off 
eq. (23) by replacing the operators M 2,_1 and M there by the operators 
£21_1 and £, respectively. Now, one can easily observe that the operators 
C, (97) and M (17) possess the same properties in spite of their different 
appearance, and for this reason one can construct the same set of consistent 
Sato equations (22) for each of them. Comparing equations (97) with (22) 
shows that at least one more series of fermionic flows, namely 

Q,W = -(M21-1)-W (98) 

can consistently be added to the Sato equations (97) and, consequently, 
the extended hierarchy of the flows are indeed N = 2 supersymmetric. 

The hierarchies proposed in this paper may appear to have come out 
of the blue. It is time to explain how we were lead to their construction by 
relating them to previously known hierarchies. Forerunners of the present 
paper are refs. [4, 7, 8] and especially refs. [6, 5]. As one might suspect, 
there is a correspondence between the N = 2 supersymmetric hierarchies 
defined above and the N = 4 supersymmetric hierarchies proposed in [5], 
but this correspondence is rather non-trivial and indirect. The heuristic 
analysis of the N = 4 flows constructed in [5] shows that among them 
exist flows which contain only the operators D+ and D_ (and not Q+ 
and Q_) and which are in some sense N = 2 like. Restricting the whole 
hierarchy to only these flows, one can consistently reduce them by the 
constraint 0+ = i0_ = 0 which leads to the correspondence D+ = D and 
D_ = iQ with the fermionic derivatives of the present paper, where i 
is the imaginary unity and 0± are the Grassmann coordinates of N = 2 
superspace. This constraint is consistent for the algebra of the fermionic 
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derivatives D±, but it is surely inconsistent for the algebra extended by 
any of the two fermionic derivatives Q±. Without going into details we 
would like to stress that this reduction is a rather nontrivial one, and the 
whole construction given in [5] must properly be adjusted. For illustrative 
purposes consider the product D+D=1 which appears when constructing 
the consistent Sato equations. This product has no differential piece before 
the reduction, but it becomes a purely differential{!) operator by virtue of 
the reduction constraint, drastically changing the construction. Moreover, 
our U1 flows cannot be derived by reducing the N = 4 flows, so they must be 
added by hand in order to complete the hierarchy. To close this discussion 
let us state two unsolved questions whose answering should yield a deeper 
understanding of the proposed hierarchies: 

1. What is the consistent Lax-pair representation of the U1 flows? 
2. What are proper general formulae for the Hamiltonians Hf, HP 

0 and Hi° analogous to formula (54) for the Hamiltonian Hf? 
We hope to return to this questions elsewhere. 
Finally, we would like to briefly comment on some unusual properties 

of our hierarchy. 
1. Our hierarchy flows in N = l superspace contain both the N = l 

fermionic derivative D and the N = l supersymmetry generator Q, never­
theless they are N = 2 supersymmetric. The resolution of this sophism is 
hidden in the nonlocal character of the N = 2 transformations. 

2. The equations for the bosonic components of our bosonic flows 

8~1 
do not contain the fermionic components at all. Nevertheless, the 

supersymmetrization of these equations is non-trivial9 because it involves 
the fermionic operators D and Q. 

3. The residue (53) we used for pseudo-differential operators in N = l 
superspace is not the usual N = l residue which is the coefficient of the 
operator D-1. We obtained this unusual definition for the residue by the 
above-explained reduction of the residue introduced in [5]. 

4. Grassmann-odd Hamiltonian structures appear at the Hamiltonian 
description of our supersymmetric hierarchy. To our knowledge, this is 
the first example of a non-trivial supersymmetrized hierarchy with odd 
bi-Hamiltonian structure. It is interesting to speculate whether an even 

9By trivial supersymmetrization of bosonic equations we mean just replacing func­
tions by superfunctions. In this case the resulting equations are N = 2 supersymmetric 
as well, but they do not contain the fermionic derivatives at all. 
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bi-Hamiltonian structure exists as well. 
5. The secondary reduced hierarchy is a new N = 2 supersymmetric 

modified KdV hierarchy with unusual length dimensions of the N = 2 
supersymmetry generators (see, eqs. (89)). 

All these peculiarities once more demonstrate the rich structure en-

coded in supersymmetry. 
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Appendix. A new N==2 supersymmetric Toda 

chain 

In this appendix we present a new version of the supersymmetric Toda 
chain equation and derive its zero-curvature representation which lies at 
the origin of the reduction constraint (17). 

Let us introduce the new equation 

QD ln bi = bi+i - bi-1 (A.I) 

written in terms of the bosonic N = I superfields bi = bi(z, 0) defined 
on the chain, i E Z. This equation represents a one-dimensional N = 
1 generalization of the two-dimensional N = {Ill) superconformal Toda 
lattice equation. It can be rewritten as a system of two equations 

Qfi =bi+ bi+1, Dlnbi = Ji - h-1 

which admits the zero-curvature representation 

{D-A~,Q-A~}=0 

with the fermionic connections 

(A~)ij = fi8i,j + 8i,j-1, (A~)ij = -bi8i,j+l, 
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(A.2) 

(A.3) 

{A.4) 

where f; = f;(z, 0) are fermionic N = I chain superfields. One can define 
the bosonic connections Az± by 

8 +Ab= (D - A~)2' 8 + AQ = -(Q - A~)2
. (A.5) 

More explicitly, they read 

(AQ)ij = -Qb;8i,j+l + ~;b;-16i,j+2, 

(Ab);j = -D+fi8i,j + (f; - f;+1)8;,j-l - 8i,j-2 

an,d due to (A.3), obviously satisfy the zero-curvature condition 

[8 + AQ , 8 + Ab] = o 

which is a consistency condition for the linear system 

(8 + AQ)w = .\w, 

(8 + Ab)w = o, 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

where W = W; is the. chain wave function and ,\ is a spectral parameter. 
Taking into account the first relation of eqs. (A.5), equation (A.9) can 
equivalently be rewritten in the form 

(D-A~)w = 0. (A.IO) 

The linear system (A.8), (A.IO) is a key object in our consideration. 
In order to derive the Lax operator we are looking for, we follow a trick 

proposed in [23] and express each chain function entering the spectral 
equation (A.8) in terms of chain functions defined at the single chain point 
i, using eqs. (A.2) and (A.IO). In this manner we obtain the new spectral 
equation 

(Q + D ~ Ji b;)2w; = .\wj. (A.11) 

For each fixed value of i, it represents the spectral equation of the dif­
ferential hierarchy, i.e. of the hierarchy of equations involving only the 
superfields bi, f; at a single lattice point. Applying the discrete chain shift 
(i.e., the system of eqs. (A.2)) to the differential hierarchy generates the 
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discrete hierarchy. Thus, the discrete hierarchy appears as a collection of 
an infinite number of isomorphic differential hierarchies [23]. 

It is well known that a spectral equation is just an equation for a Lax 
operator. For a fixed value of i one can coihpletely omit the chain index 
in the spectral equation (A.11), and it is obvious that the operator 

l b )2 
M = (Q+ D-f (A.12) 

is just the Lax operator which is responsible for the bosonic flows of the 
differential hierarchy. In the new superfield basis { v;, u;} defined by 

bi = u;v;, f; = D In vi, (A.13) 

in which the system (A.2) becomes an N = l supersym_metric generaliza­
tion of the Darboux transformation (35) 

1 
=-, Ui+l V; Q D In vi = u;+1 Vi+1 + uivi, (A.14) 

the Lax operator (A.12) simplifies to 

M = (Q + vD- 1u) 2
• (A.15) 

Let us remark that the operator M ( 17) is just the square root of the 
operator M (A.15). This Lax operator has been used in secti<;m 3 for 
constructing a consistent reduction of all other flows of the N = 2 super­
symmetric KP hierarchy. 
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