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1 Introduction

This article is the third in a series [1, 2] devoted to contractions of rotation groups O(n+1) to
Euclidean groups E(n) and the separation of variables in Laplace-Beltrami equations. In the
first one [1] we considered the sphere S; on which the equa.tion

Apg¥ = =AY, Arg = \/—66 \/—g"‘ af g = detgix (1.1)
allows the separation of variables in two coordinate systems: spherical and elliptic ones.
The contraction parameter was the radius R of the sphere. For B — oo the sphere S, ~
O(n +1)/0(n) goes into the Euclidean space E, ~ E(n)/O(n). For n = 2 the two separable
coordinate systems on S; go into 4 separable coordinate systems on E,, namely Cartesian,
polar, parabolic and elliptic ones. Depending on how the limit is taken, spherical coordinates
go into polar, or Cartesian ones. Elliptic coordinates on S; go into elliptic, or parabolic coor-
dinates on F,. Via a two-step procedure, through spherical coordinates, they also contract to
Cartesian and polar coordinates on 3. The contraction was followed through on several levels:
the coordinates, the complete sets of commuting operators, the separated equations and the
eigenfunctions and eigenvalues.

In the second article [2] the dimension of the space was arbitrary, but only the simplest
types of coordinates were considered, namely subgroup type coordinates. These are associated
with chains of subgroups of O(n+1), or E(n), respectively.

Vilenkin, Kuznetsov and Smorodinsky [3, 4] developed a graphical method, the “method of
trees” to describe subgroup type coordinates on S,. The corresponding separated eigenfunctions
are hyperspherical function (also called polyspherical functions) [5, 6, 7]. Their relation to
subgroup chains and subgroup diagrams was analyzed in Ref.2, as were their contractions to
subgroup type separated basis functions for the groups E(n).

In many body theories if is often necessary to expand one type of hyperspherical functions
in terms of other ones. The expansion coefficients have been called T-coefficients, or overlap
functions. The corresponding coefficients for functions on S, were calculated by Kildyushov
{7}

-The purpose of this article is a study the B — oo contraction limit of the interbases
expansions and overlap functions for the different spherical and hyperspherical functions on S;
and S;. The mathematical motivation is to obtain asymptotic limits of various expansions and
of the overlap functions. These are objects of considerable physical interest: Wigner rotation
matrices, Clebsch-Gordan coeflicients, Racah coefficients, etc. The physical motivation goes
back to the original work of Inénii and Wigner [8]. Typically, a Lie group, or Lie algebra
contraction relates two different theories. The contraction parameter in our case is not the
speed of light, so we are not relating relativistic and nonrelativistic theories. Rather, we are
relating theories in flat and curved spaces, or theories of spherical and highly elongated objects,
c.g. nuclei [9].

The contractions we use are analytical ones: the radius of the sphere is built into the
infinitesimal operators and into the sets of commuting operators, not only into the structure
coustants. The contractions can be viewed as singular changes of bases, as was the case of
the original Inénii-Wigner ones. They are also "graded contractions” [10,11], in this case
corresponding to a Zz - grading of o(3), o(4) and more generally o(n+1).

The overall point of view of the separation of variables that we are taking is an operator one
[12-17]. Thus, let (7 be the isometry group of the considered Riemannian or pseudo-Riemannian
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space and L its Lie algébra. Let {X1, X3,...., Xn} be a basis of L and

Y, = Z AL Xi Xy, Y., Y] =0, A = AL (1.2)
a complete set of commuting second order operators in the envelopi‘ng algebra of L. The
separated eigenfunctions will be the common eigenfunctions of such a complete set

YU =-x9 - ¥=][f(&), (1.3)
where §; are the separable coordinates. For subgroup type coordinates all the operators Y, are
Casimir operators of subalgebras of L (the Laplace—Beltraml operator Ay pis included in the

set {Yo})-

2 Contractions of overlap functions for the group O(3)

Two type of tree diagrams exist for the sphere Sa, both shown on the (Fig.1a). Both correspond
to the subgroup chain O(3)>0(2), however one priviliges the pair (0,1), the other the pair (1,2).
In other words, the complete sets of commuting operators consist-of the rotation operator Lo
and L in the first and second case, respectively (in addition to the Laplace-Beltrami operator
that is always present). On the subgroup diagrams (Fig.lc) the circles correspond to O(n)
subgroups (with the value of n indicated in the circle). Rectangles correspond to Euclidean
subgroups E(n), again with the values of n in the rectangle.

The spherical functions. corresponding to the two trees are connected by the interbases

eXpanSlOn
Yir, (

so that the overlap functions are the Wigner rotation matrices D}, (o, 8,7) = e”™2°d! m (B)
e~™17 {7,18,19]. The angles in both sides of the expansions are connected by the relations

7r m ’
Z Dmg my 5 5 ))/lm;(91702),‘ v (2.1)

Commp=-!

e’,,e')

up = Rcost = R cos 0} cos 8,
uy = Rsinfcosf; = Rcosf)sinb)
u; = Rsinfsinf; = Rsind;.

The expansion (2.1) corresponds to an "elementary” transformation of the O(3) trec diagram
on Fig.1: the branch leading to the Cartesian coordinate u; is "transplanted” from the. ug
branch to the u; one. ’

As explained in Ref.l, the R = oo contract\on is realized by first introducing Beltrami
coordinates

Uy u,

P N E— =1,2,..,n 2.2
T iemmae e

Uo
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Fig.1 Tree diagrams and subgroup diagrams illustrating S — E; contractions.
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(with n=2 for ;). The o(3) Lie algebra is realized as

1
Lyw = —Rmy=-Rp,— EIQ(.’L‘]P] + z3p2)
1
Lo = Rm =Rp + EIl(IIPI + 22p2) (2.3)
_ 7]
Ly = zipy — 21py = 22my — 2479, Pu=7— H=12.
oz,

For B — oo the o(3) algebra contracts to the e(2) one, the momenta =, contract to the
translation operators p, and the Laplace-Beltrami operator on S, to that on E;

L3,

Arp —771 +7I'2+ R2

Let us now consider the contraction R — oo for the interbasis expansion (2.1). Contractions

of basis functions were presented earlier [1]. In order to obtain the correspondmg limits of the
Wigner D- functxons, we use an integral representation for the function d!,, m(T/2)

—+A=pj+pi. (2.4)

(D) = ()P E { (L4 malil — m)!

T {-m 1+m tmaa
P (it [[inay sy em e
and the formulas [20)
cos(2na) = Ty(cos 2a), . ‘sin(2na) = sin 2a + Un_1(cos 2a),

where Tj(z) and Uj(z) are Tchebyshev polynomials of the first and second kind. After integrat-
ing over a, we obtain a representation of the Wigner D- functions in terms of the hypergeo-
metrical function 3 F; (of argument 1):

+m -—m

T (- 1) .
Dy (555:0) = _—\/T (L +ma)!(l — my)! (2.5)
r x+m2,+1 £ i=mt i —mz,mg,' "'2+'
Jr—li-:—lm = F. 1 - —eve
{F(:TL"'I)F('_TL'H)} 3z L1 ‘ , (I —my) —even,

- i+m
2 TR+ r(=m g my+1,mg + 1,40 4]
(1+1) (+ml+l)r( —ml )} 3F2 1 , ([—ml)—odd.
31+2

Consider now the contraction limit B — oo in the expansion (2.1). For large R we put

r y z .
{ ~ kR, my ~ kiR, 0, ~ —, 0, ~ 7 05 ~ o R — oo, (2.6)
where k? = k? + k2, and have [2]
; 1 maimal el
Aim —=Yin, (01,00) = (1) Vg (kr) 7= (2.7)

L T, % oihiz [ coskay, (I —|mi]) — even,
Jim (=), (F-00) = (25 { (28)
2 —isinkzy, (I —|my]) —odd.

)

R

Using known asymptotic formulas [20] for the 3F; functions and I- functions in eq. (2.5) we
obtain:

.- _i=lmy| T
Jim (—1)777 \/1—“_75..,,".,(5,50 = (-)% V

L
K2)4 k
(E) ZFI (_mZym% 20 _*T;L) ’

1
—imz ('E%)‘ 2F1 (—m2+1 m2+1, 2, Eﬂ'.".L)’ (l-—ml)—odd
- cosmyip, (I —m,;)—even, o
= ()2 (29)
™2 | isinmgp, (I—m;)—odd,
where cos p = k; [k.

Multiplying the interbases expansion (2.1) by the factor (—1)~ = and taklng the contrac-
tion limit R — oo we obtain (0 = 8, m = my)

ikiz cos k Yy = |m cos my im
e {sink:y} = Z @ '{_ i } Jm(kr) € ’ (2.10)

s sin myp
or in exponential form

(I = m,) —even,

eikrcos(&—v) - Z (1)m J,,,(kr) eim(ﬁ—w)_ (211)

m=-—o0

The inverse expansion is

Jm(kr)eimﬁ - (_l)m /2# éimv—l'kr cos(8~y) d‘P (212)
2r  Jo

For 0 = 0 the two last formulas are equivalent to well known formulas in the theory of Bessel

functions {20], namely expansions of plane waves in terms of cylindrical ones and vice versa.

The entire procedure is illustrated on Fig.1. The vertical arrows correspond to the contrac-
tion (2.6). The O(3) interbasis expansion (2.1) has contracted to the E(2) interbasis expansion
(2.11) and its inverse (2.12), i.e. the relations between plane and spherical waves. The con-
traction of the overlap functions is given by eq. (2.9): an asymptotic formula for Wigner D-
functions. )

We recall [2] that the E, "cluster” diagrams are obtained from the S, tree diagrams by
cutting along the dotted lines on Fig.1. The dotted line becomes the basis for the E, (in this
case E;) diagram. Thus two topologically equivalent tree diagrams go into inequivalent cluster
diagrams. The first contracts to Cartesian coordinates, the second to polar ones. In terms of
subgroup diagrams the situation is illustrated in the Fig.1c.



3 Contractions for the group O(4)

Five types of tree diagrams exist for the sphere S3 ~ O(4)/0(3). Two of them are shown on
Fig.2a, two more on Fig.3a, fifth on Fig.4a. Transitions exist between the basis functions
that correspond to all of them However, only the tree transitions shown on the diagrams are
"elementary”, i.e. correspond to the "transplanting” of one twig to a neighboring branch. All
other transitions between bases are obtained by composing the elementary ones and making
use of the O(3) overlap functions for transitions that are inside an O(3) subgroup of O(4).
1. Contractions of Clebsch-Gordan coefficients.
The tree on the left-hand side of Fig.2a corresponds to the subgroup chain O(4)20(2)®0(2), as
indicated on Fig.2c. The one on the right-hand side corresponds to the chain 0(4)>0(3)20(2).
The interbases expansions no longer correspond to a rotation of the sphere, but to a re-
coupling of some of the angular momenta involved. The overlap functions are expressed [1} in
terms of Clebsch-Gordan coefﬁcients of the 0(3) group and we have

Brn(Ors000) = (=)’~‘m' ==t "rm‘l% e P (0,05,05), (31)

. 1=|m|

where
ug = Rcosf) cosd = Rcosb;
u; = Rcosfsind, = Rsinf coso, (3.2)
uz = Rsinf, cosf; = Rsin b sin 8, cos b,
u3 = Rsinf,sinf; = Rsin#|sinf,sin 03,

Cﬁ‘:,;b'p - are the Clebsch-Gordan coefficients for the O(3) group. The corresponding hyper-

spherical functions have the form:

V2T +2 (_LLU“"‘*")r(J—lmf-[nl)
2T (_+_L'1L:|Ll)|( T’|+nl)!

im0 im0

lI’Jﬂm (917 02’ 03) =

X (sin_01)""|(cos 6,)™ PUnHRD (c0590,), (3.3)

J=iml

2

eI DU+ 1)'( -
ZH'IF(J + 5

U gim (6}, 02, 03)

x(sin0;)! PSE D (cos 00) Vi (05,00), R

where P{*#)(x) are Jacobi polynomials: We again make use of the Beltrami coordinates (2.2)
(with n=3). In the contraction limit B — co and

‘%—r% 014—%, '0241—1;, J”—iakli, n~kR,
wherer=\/;f+p2=\/x§+x§+a:§, ki\/kf+p2=\/kf+k§+k;§. We have [2}

1 k e, €
}%I_{Igo ﬁq’.’nm(ol,oh 03) = (thm(xhp703) = \/7 /[ml(pp)(’ W _\75'—;1 (35)

L

Fig.2 Elementary interbases expansions contracted from O(4) to E(3).

Contractions of rotation matrices.
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and

Jim —w,,,,,(a A 03)=¢k,m(r,02,93)=\/;J,+%(kr)n,ﬁ(02,o3). (3.6)

We take the Clebsch-Gordan coeflicients in the form

2

ot _ () () L@+ )+ |m))!
e (mD!\ (V=D + T+ D) = [m])!

(3.7)

- JHiml=Inl\t/ J=Im}+]|n 1 —J_n_m,—l,l+1,
e T Ce S R i
(FEEEEi(Z=Inl=E)

~J, |m| +1,

In the contraction limit R = oo, we get

. _pyEimen gy 20+ 1)(L + [m])! (sin @)
A, VRED T g 4 i = Whe(€039) = || == p g

x o Fy (—l +iml L+ ml+ 1 [m] + 1 —“’5—4’) [ P (cos 8), (3.8)

2

where

2+ 1) = m])!
201+ |m))!

are the orthonormalized Legendre polynomials and cos ¢ = p/k. Thus the interbases expansion

* (3.1) transforms to the expansion between the cylindrical and spherical bases for the Helmholtz
equation

P = A(@)

q’kklm(Il,PaaS) 2 114 |m](('°S (t)) q’Itlm(r 0)’0 ) (3())
. I=|m|

We use the formula
[ Wiini(cos ) Wi (cos 6) sin ds = 261 (3.10)

to obtain the inverse expansion
' 7 1 " =l 0\ o
uim(r, 05, 00) = 5 /0 Wi ((cos 8)@ux,m(21, 0, 0) sin & d. @3.11)

Putting the functions (3.5)-(3.6) and interbases coefficients (3.8) into the expansions (3.9) and
(3.11), we obtain

1 .
l:rn:osd:ccpsaz JI |(krsm¢sm0 )_ Z (, {+m 1

ok 2 T e

(k )'P'ml((os(/)) Im'((os()’)(ll"

1
2

_a\l+m - I
Jl+§(kT)P}mI(C°S ) = (=) e'k"wwwso’ J| |(kr sin ¢sm9 VP m'(cgs ¢)sinp do

1
Vkr Vvamr
The last two expansions coincide with well known formula.s in the theory of the Bessel functions

(20].

2. Contraction of Racah coefficients

" In this case both trees correspond to isomorphic subgroup chains 0(4)>0(3)>0(2). The twig

leading to the Cartesian coordinates (u;,us) is transplanted to the neighbouring branch, so an
0(2) subgroup is moved from the O(3) subgroup (012) to the (123) one. In the contraction the
(012) subgroup is destroyed, the (123) one survives (see the "cut™ lines on Fig.3a).

The O(4) interbases expansion in this case is

WJnm(01,02103) = 2 TJnmelm(an?voS) (313)
1=|m|
where
u = R cos 0, cos §; = Rcos 6] ) .
u; = Rcosfsinf;cosf; = Rsinf]cos ) cosb, (3-14)
uz = Rcosf,sinf,sinf; = Rsin0] cosb)sinbs
u3 = Rsinfy - © = Rsin6{sinbj,

[see Fig.3(a)]. The hyperspherical wave functions corresponding to these two trees are

V(@7 + 1)(J +n+ 1)I(J ~ n)!

U g (01, 62,03) = (T + %)
X(cos ;)" P('::%'H%)(sin())) Yom(02,03), (3.15)
and .
V@I + 1) +1+ DI = D)!
Woim(81, 0z, 0s) = 24IT(J + 3)
x(sin @) P E D (s 97 Yin(5 = 63,05), (3.16)

respectively. The interbases coefficients T, are expressed [7] in terms of Racah coefficients,
in turn expressed in terms of the 4F3 hypergeometric function:

" [1 + (~‘1)J-"+‘~’"] @+ 1)(2n + 1)(n + [mD{ +[m)(J = DI — n)!
Jnm = 2 (n— |mD)( = [mDI(J +n+ DT+ +1)!

n— m[ n=|m|~1. I=|m I—lm —
( l)l—n J=ngiom 2“'"_2"' F(—ﬂ"ﬂ{—l) - 2| [ |2 I’ TT2 T 2 : ll
X .
[m}! F(;L"‘ZLLI{—]) Im| + 1, — Zénti=lm]  Jon-teim] o
’ 2 ’ 2




Fig.3 Elementary interbases expansions contracted from O(4) to E(3).
Contractions of Racah coefficients.
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In the contraction limit R — oo and

GIN%, 92~%, 0;~-’1§, J ~ kR, n~pR,
where r = /p? + 23 and k.= /p? + kj, we obtain 2]

1)~

}%l-?; ‘—(—\/1—2- — \pJnm(Gl,oZ’oS) = Qkpm(P1?3$03)

i

Vk Jm(pp) Eﬂ—

y

imés { cos k3z3, (J —n) —even
v

—isinkszs, (J —n) —odd

.1 . k
i 10,03, 85) = Ban (1, 05,05) = \ﬁ Baykr)Yin G = O 05).
For the contractions of interbases coefficients TS, we get o

e —1)"':”4'2i+1 [+ Y
Aim (=177 VT = Wh(c0s¢) = [ml! \( 2k(l)-(- |m‘|)!|)

x (cot ¢‘>)|"'|v+% (sin@)' 2 (—l —2{m|,_l — ‘n;l — 1; Im| 4 1; — cot? ¢) .

= (~1)'i£lL \/% (cot $)% P}'"‘(sm‘qs), (3.17)

where cos ¢ = p/k. The interbases expansion in eq. (3.13) transforms to the expansion between
the cylindrical and spherical bases for the ‘Helmholtz equation

T ee) coskaa =EL1)‘—3_J?—J, 1(k.r)‘('cot¢).%P,lm‘(sintb)i'lel(sinG’) (3.18)
v Vhr M1 e I 2)

—isin ksI;; !

where the top line on the left-hand side corresponds to a summation over I = |ml, [m|+2, |m|+
4, ... and the bottom one to a summation over [ = jm|+1, |} 43, ... on the right-hand side. The
E(3) expansion (3.18) is related to the expansion (3.12) by the substitution ky = kcos ¢ — ks,
zy=rcosf, =+ z3, ¢ = 7/2— pand 6 = 7/2 ~ . :

3. Further contractions of Clebsch-Gordan coefficients
As on Fig.2, the two O(4) trees on Fig.4 correspond to two different subgroup reductions:
0(4)>0(3)20(2) on the left and O(4)D 0(2)®0(2) on the right. Since a recoupling of mo-

- menta is involved the overlap functions are again expressed in terms of 0(3) Clebsch-Gordan

coefficients {7]. The corresponding interbases expansion is

J=}m} .

\I’Jlm(olv 02703) ("’i)l—lml Cé"__lnll_"]‘_zliﬂ'_z{_ IZ.JZ___,. \men(ei, 0’2,03), (319)

n=—(J~mf)

11



where n has the same ;;arity as (J — [m]) and

ug = HRcosd cosh;cosf; = Rcosb)cosby

u; = Rcosfcosbysinfy = Rcosf;sinb, (3.20)
u; = HRcosf,sinb, = Rsin 0] cos 0,

us = Rsing, = Rsin6)sin 0,

(see Fig.4). The corresponding hyperspherical function is:

V@I + 1)(J + 1+ 1) = 1)t
2+IT(J + 3)

U im(01,02,03) =

x(cos 8,)! P& D (im0, Vi (g - 02,93) :

and the wave function W,na(0],63,0;) is given by eq. (3.3) (with n replaced by m).

The contraction in this case (see Fig.4 and eq. (3.22) below) will involve 3 quantum numbers
J, ! and m. Eq. (3.7) expressing Clebsch-Gordan coefficients.in terms of the 3F; function is
not convenient for taking this limit. Instead, we use the following integral representation [7]

~|m|—In imltn 1/2
Cylh = (iy-tml (oay gt [ ImDICER (=)
B (1~ ) (PEEEDy (ZE R

JEF DG - DT 11 1)
Ql+|m|+2 [(J+3/2)

and the formulas [20]

27 1 . )
%/ (sin ¢)l—lm| Pj'_‘f}i,"ﬁ'%)(cos é)e-—modé (321)
V]

Ma+n+1)
) _HNatntl)
R eosd) = T ym
2F.(—§,"+’+a;a+l;sinzai), n — even,
x
cos¢2F|(—"2—'—‘, 2+a+1la+1;sin?¢), n—odd.

After integrating over ¢, we obtain a representation of the Clehsch-Gordan cocfficients in terms
of the hypergeometrical function 4F; (of argument 1):

J_"lﬂl_nv2l+l (J—}-l—}-l)!(__'_""’;—" )!(Jﬂn;[—]n )l
(4 = D=Ll (Zelebly

1, |m A-lm
C; hin g oo = () 717(=1) 2
2 7 2 12

wie

—3 _n=l JH g Sl
VU= HmD! (2t o202 R
e “ml=n aF 1], (J=1)—even,
e e N é(l‘ml’ L1 lmlen gy Ll (/=1

—in /(I=[m){I+[m])! r( 4 27202 0 7

Ry, Elmss; Fzaet 413

(_n—l _n=2 J+i43 =l

'1) , (J=1) = odd.

N

{=}m]-n+3 (4|m|-n43
2 ? 2

’
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-

Fig.4 Elementary interbases expansions contracted from 0(4) to E(3)..
Contractions of Clebsch-Gordan coefficients.
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{To our knowledge, this expression is new). In the contraction limit R — co and

T T z P
6, ~ 7;1, 0y ~ E’, 03 ~ El’ 6y~ J~kR, L~pR, m~ kR, (3.22)
we get
llm ( 1) \II_”,,.(GI, 02,03)
cos kyz; cos k3 (J = |m]) — even, (I —|m|)— even,

2kp e*17 | _isink,zq cos kza (J = |m|) —odd, (I —|m})— even,
- . ; (3.29)
1Tk2k3 (J -

T —icos kpz4 sin ksza |m|) — even, (I —|m|)—odd,
- sin k,z; sin kaza —|m|)—odd, (I —|m|)—odd,

J=im 'm
im (—i) 1" (=1)" VR e
R-boo T o 2

cosng, (J — |m|) —even, (I —|m])—even,
—isinng, (J = |m|) —odd, (I —|m])— even,
—isinng, (J — |m]) — even, (I — |m|) — odd,
—cosng, (J = |m|) — odd, (! —|m|)— odd,

== (sin2¢)~} (3.24)

(k2 — k)

where cos ¢ = (p* — k?)/(k* — k?) and k? = p* + kZ = k} + k] + k. Substituting the formulas
(3.5), (3.23) and (3.24) into the expansion (3.19) we obtain

cos kyxy coskszs ) . cosno
sin kgl‘z CcOoS k31‘3 _ f: sin nd’ J (( )) inf, 2
cos kgl‘z Sin k;;.’t;; - n=—oo Sin n¢ Ind e
sin kgl‘z sin k313 cos nd’
where 2
tanfy ==, =K+, =i+ o= 5tn
Iy ] + I\'l

Thus the interbases expansion (3.19) contracts to the expansion between Cartesian and cylin-
drical bases for the Helmholtz equation on Fj.

4 Conclusions
The "method of trees” was introduced [4,5] in order to describe the separation of variables on

homogeneous spaces of compact Lie groups, more specifically O(n+1) and SU{n). The "trees”
turned out to be related to subgroup chains and it is useful to complement the tree diagrams

by subgroup diagrams [2]. Moreover, the method of trees has heen extended in a very simple ’

and straighforward way to Euclidean spaces {2], where instead of trees we have clusters of trees.
The S, tree diagrams and E, cluster diagrains are very helpful in the study of contractions.
They tell us, at least for subgroup type coordinates, how coordinates on S, and I,,, can hr‘
related by contractions.

The contribution of this paper is to treat contractions of interbases expansions and hence of
overlap function. Overlap functions for diffcrent bases corresponding to isormorphic subgroup
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chains involve rotation matrices. If the subgroup chains are not isomorphic, the overlap func-
tions will be expressed in terms of Clebsch-Gordan coefficients, Racah coefficients, or higher
order. recoupling coeflicients. For all of these we obtain asymptotic expressions.

For O(3) the contraction breaks the equivalence of the two types of subgroup chains. One
0(3)>0(2) basis contracts to an E(2)D0(2) basis, the other to an E(2)DE(1)®E(1) one. Thus
we obtain the well known relations between plane and cyhndncal waves in E,.

For O(4) the contraction provides relations between spherical and cylindrical bases and also
between cylindrical and Cartesian ones. The interbases expansions relating E(3) Cartesxan and
spherical bases are obtained by composing the elementary transitions.

Work is in progress in two directions. The first is contraction of interbases expansmns'
for arbitrary values of n. The other is an extension to spaces of negative constant curvature,
generalizing the results on the two-dimensional hyperboloid, obtained earlier [21].

In this article we restricted ourselves to-subgroup type coordinates only and moreover to
the lowest dimensional spheres S; andSs. Two earlier .articles were devoted to contractions
of separated basis functions that correspond to nonsubgroup type coordinates, in particular
elliptic coordinates on S; and on the hyperboloid H; [1, 21]. It would also be possible to obtain
interbases expansions for other types of bases, though so far this has not been done.
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