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1 Introduction 

This article is the third in a series [1, 2] devoted to contractions of rotation groups O(n+l) to 
Euclidean groups E(n) and the separation of variables in Laplace-Beltrami equations. In the 
first one [1] we considered the sphere S2 on which the equation 

1 a ik a 
LiLB'V=-..\W, .6.LB= .Jgae;..fgg ae/ g=detg;k (1.1) 

allows the separation of variables in two coordinate systems: spherical and elliptic ones. 
The contraction parameter was the radius R of the sphere. For R ➔ oo the sphere Sn ~ 
O(n + 1)/0(n) goes into the Euclidean space En~ E(n)/O(n). For n = 2 the two separable 
coordinate systems on S2 go into 4 separable coordinate systems on E2 , namely Cartesian, 
polar, parabolic and elliptic ones. Depending on how the limit is taken, spherical coordinates 
go into polar, or Cartesian ones. Elliptic coordinates on S2 go into elliptic, or parabolic coor­
dinates on E2• Via a two-step procedure, through spherical coordinates, they also contract to 
Cartesian and polar coordinates on E2• The contraction was followed through on several levels: 
the coordinates, the complete sets of commuting operators, the separated equations and the 
eigenfunctions and eigenvalues. 

In the second article [2] the dimension of the space was arbitrary, but only the simplest 
types of coordinates were considered, namely subgroup type coordinates. These are associated 
with chains of subgroups of O(n+l), or E(n), respectively. 

Vilenkin, Kuznetsov and Smorodinsky [3, 4] developed a graphical method, the "method of 
tre.-s" to describe subgroup type coordinates on Sn. The corresponding separated eigenfunctions 
arc hyperspherical function (also called polyspherical functions) [5, 6, 7]. Their relation to 
subgroup chains and subgroup diagrams was analyzed in Ref.2, as were their contractions to 
subgroup type separated basis functions for the groups E(n). 

In many body theories if is often necessary to expand one type of hyperspherical functions 
in terms of other ones. The expansion coefficients have been called T-coefficients, or overlap 
functions. The corresponding coefficients for functions on Sn were calculated by Kildyushov 
[i]. 

The purpose of this article is a study the R ➔ oo contraction limit of the interbases 
<'Xpansions and ov<'rlap functions for the different spherical and hyperspherical functions on S2 

ancl S,1• The mathematical motivation is to obtain asymptotic limits of various expansions and 
of the overlap functions. These are objects of considerable physical interest: Wigner rotation 
matrices, Clebsch-Gordan coefficients, Racah coefficients, etc. The physical motivation goes 
back to the original work of Inonii and Wigner [8]. Typically, a Lie group, or Lie algebra 
contraction relates two different theories. The contraction parameter in our case is not the 
sp<•<'d of light, so we are not relating relativistic and nonrelativistic theories. Rather, we are 
relating theories in flat and curved spaces, or theories of spherical and highly elongated objects, 
<'.g. nuclei [9]. 

The contractions we use arc analytical ones: the radius of the sphere is built into the 
infinitesimal operators and into the sets of commuting operators, not only into the structure 
nmstants. The contractions can be viewed as singular changes of bases, as was the case of 
th1· original Inonii-Wigner ones. They are _also "graded contractions" [10,11], in this case 
,·orwsponding to a Z2 - grading of o(3), o(4) and more generally o(n+l). 

The overall point of view of the separation of variables that we are taking is an operator one 
[12-17]. Thus, let G be the isometry group of the considered Riemannian or pseudo-Riemannian 

, Otrt.c1;; .. :·" .. ~D t;~-rhl'fl I 
!_. llil~i:lrtidl: ur:c.neia&aunil 1 
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space and L its Lie alg~bra. Let { X1, X 2 , .... , XN} be a basis of L and 

Y. = L AfkX;Xk, 
ik 

[Y., Yi,] = 0, Afk = A%,- (1.2) 

a complete set of commuting second order operators in the enveloping algebra of L. The 
separated eigenfunctions will be the common eigenfunctions of such a complete set 

n 

Y.w=->,..w, w = II!,((,), (1.3) 

where (; are the separable coordinates. For subgroup type coordinates all the operators Ya are 
Casimir operators of subalgebras of L (the Laplace-Beltrami operator tlLB is included in the 
set {Y.} ). 

2 Contractions of overlap functions for the group O ( 3) 

Two type of tree diagrams exist for the sphere S2 , both shown on the (Fig.la). Both correspond 
to the subgroup chain O(3)::iO(2), however one priviliges the pair (0,1), the other the pair (1,2). 
In other words, the complete_sets of commuting operators consist-of the rotation operator L01 

and L12 in the first and second case, respectively (in addition to the Laplace-Beltrami operator 
that is always present). On the subgroup diagrams (Fig.le) the circles correspond to O(n) 
subgroups (with the value of n indicated in the circle). Rectangles correspond to Euclidean 
subgroups E(n), again with the values of n in the rectangle. 

The spherical functions corresponding to the two trees are connected by _the interbases 
expansion 

(
71" ' ') I - I -71" 71" Yim, 2 - 01,02 = L Dm,,m,(2, 2,0) Yim,(01,02), 

m2=-l 

(2.1) 

so that the overlap functions are the Wigner rotation matrices D'm,,m, (a, /3, 1 ) = e-im 2 "d'm,,m, (i3) 
e-•mn [7,18,19]. The angles in both sides of the expansions are connected by the relations 

Uo - Rcos01 = R cos o; cos 0; 

U1 = R sin 01 cos 02 = R cos o; sin o; 
U2 = Rsin 01 sin 02 = R sin o;. 

The expansion (2.1) corresponds to an "elementary" transformation of the 0(3) tree diagram 
on Fig.l: the branch leading to the Cartesian coordinate u1 is "transplanted" from the u0 

branch to the u2 one. 
As explained in Ref.1, the R ➔ oo contraction is realized by first introducing Ueltrami 

coordinates 

- RUµ - Uµ 
x,.- uo - jl-I::'=1uf/R2' 

µ = 1,2, ... ,n (2.2) 

2 

,., 

Fig.I Tree diagrams and subgroup diagrams illustrating S2 ➔ E2 contractions. 
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(with n=2 for S2). The o(3) Lie algebra is realized as 

L20 

Loi 

1 
- -R1r2 = -Rp2 - 1t2(X1P1 + X2P2) 

1 
- R1r1 = Rp1 + Rx1(x1p1 + X2P2) 

L12 = X2P1 - X1P2 = X2'lr1 - X1'lr2, 
a 

p,,._= &' µ = 1,2. 
µ. 

(2.3) 

For R ➔ oo the o(3) algebra contracts to the e(2) one, the momenta rr,,. contract to the 
translation operators p,,. and the Laplace-Beltrami operator on S2 to that on E2 

A 2 2 Lf 2 A '2 2 (2 4) 
LJ.LB = 7r1 + 7r2 + 7fi ➔ w. = P1 + P2 • · 

Let us now consider the contraction R ➔ oo for the interbasis expansion (2.1). Contractions 
of basis functions were presented earlier [l]. In order to obtain the corresponding limits of the 
Wigner D-functions, we use an integral representation for the function d!,,

2
,m, ( 1r /2) 

d' (~)=(-l)!.=?-~{(l+m2)!(l-m2)!}''
2 

["(. )1-m,( )l+m1 2im2od 
m2 ,m1 2 ir (l + m,)!(l _ mi)! lo sm n cos n e n, 

and the formulas [20] 

cos(2nn) = Tn(cos2n), sin(2nn) = sin2n · Un_1(cos2n), 

where T1(x) and U1(x) are Tchebyshev polynomials of the first and second kind. After integrat­
ing over n, we obtain a representation of the Wigner D- functions in terms of the hypergeo-
metrical function 3F2 (of argument 1): · 

l+m2-m1 
I 7r 7r (-1) 2 / 

Dm,,m, ( 2, 2, 0) = ,fol! y (/ + m2)!(/ - m2)! 

{ 
r(~)r(~) }½ (-m2,m2, '±';

1
+

1 

) 

r(!.±!!!.i.+1)r(!::!'!1- ) 3F2 /1 (l 
2 

2 +1 , -ni1)-cvcn 
½,I+ 1 ' 

X 

2il {r(!±?,+1)r(!.=?-+1)}½ (-m2+l,m2+1,~+1

1

) 
(l+1) r('+-;,+')r('";'+') 3F2 ~,/+

2 
1 ,(1-mi)-odd. 

Consider now the contraction limit R ➔ oo in the expansion (2.1). For large R we put 

I ~kR, m 1 ~k,R, 
r 

0, ~R, 
where k2 = kf + k?, and have [2] 

. 1 
hm rr;Yim,(B,,02) = 
R➔oo vR 

hm(-1)- 2 Y, --0' 0' . 1-1m1 I ('Ir ) 
R➔oo m1 2 1, 2 

X 
0~ ~ !. R' 0; ~ R' R ➔ oo, 

cim2D2 
(-l(2+,im,1v'k.ftm,l(kr) ,/fir, 

{k eik1x 

V,;; 7r 

4 

{ 

cos k2y, (I - lmil) - even, 

-isink2y, (l - Jmil)- odd. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

r:,.) 

.,, 

Using known asymptotic formulas [20] for the 3F2 functions and r- functions in eq. (2.5) we 
obtain: 

. · -•-lmJI 1n 1 7r 7r ~ I¾ 
hm(-1) 2 vRDm,m,(-

2
,-

2
,0) = (-1) 2 -k -00 ' 7r 

l (
k

2
) ¼ ( • I. illi.) ~ 2F1 -m2, m2, 2, 2k , 

x -im2 (f>f 2F1(-mdl,mdl; ~; ~), 

(l - mi) - even, 

(l - m1) - odd. 

where coscp = kifk. 

{ 

cosm2cp, 
'!!'-2. 2.. 

= (-1) , /J; isinm2cp, 

(l - mi) - even, 

(l-mi)-odd, 
(2.9) 

Multiplying the interbases expansion (2.1) by the factor (-1)-•-i;n,1 and taking the contrac­
tion limit R ➔ oo we obtain (0 = 02, m = m2) 

e•k,x{c?sk2y} = E (i)lml{ co~mcp} J,m(kr)eimO 
smk2y m=-oo • -smmcp I I ' 

or in exponential form 

00 

eikrcos(O-<p) = I: (ir Jm(kr) e•m(O-<p). 

m=-oo 

The inverse expansion is 

.Im ( kr )eimO = ( -iim / 2
" e•m<p-ikr cos(O-<p) dcp. 

2rr lo 

(2.10) 

(2.11) 

(2.12) 

For O = 0 the two last formulas are equivalent to well known formulas in the theory of Bessel 
functions [20], namely expansions of plane waves in terms of cylindrical ones and vice versa. 

The entire procedure is illustrated on Fig.I. The vertical arrows correspond to the contrac­
tion (2.6). The 0(3) interbasis expansion (2.1) has contracted to the E(2) interbasis expansion 
(2.11) and its inverse (2.12), i.e. the relations between plane and spherical waves. The con­
traction of the overlap functions is given by eq. (2.9): an asymptotic formula for Wigner D­
functions. 

We recall [2] that the En "cluster" diagrams are obtained from the Sn tree diagrams by 
cutting along the dotted lines on Fig.I. The dotted line becomes the basis for the En (in this 
case E2) diagram. Thus two topologically equivalent tree diagrams go into inequivalent cluster 
diagrams. The first contracts to Cartesian coordinates, the second to p~lar ones. In terms of 
subgroup diagrams the situation is illustrated in the Fig.le . 
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3 Contractions for the group 0(4) 

Five types of tree diagrams exist for the sphere S3 ~ 0(4)/0(3). Two of them are shown on 
Fig.2a, two more on Fig.3a, fifth on Fig.4a. Transitions exist between the basis functions 
that correspond to all of them. However, only the tree transitions· shown on the diagrams are 
"elementary", i.e. correspond to the "transplanting" of one twig to a neighboring branch. All 
other transitions between bases are obtained by composing the elementary ones and making 
use of the 0(3) overlap functions for transitions that are inside an 0(3) subgroup of 0(4). 

1. Contractions of Clebsch-Gordan coefficients. 
The tree on the left-hand side of Fig.2a corresponds to the subgroup chain 0( 4):::)0(2)@0(2), as 
indicated on Fig.2c. The one on the right-hand side corresponds to the chain 0(4):::)0(3):::)0(2). 

The interbases expansions no longer correspond to a rotation of the sphere, but to a re­
coupling of some of the angular momenta involved. The overlap functions are expressed [l] in 
terms of Clebsch-Gordan coefficients of the 0(3) group and we have 

where 

J ' 

WJnm(01,82,0a) = L (i)Hml(-l)J-l;l-•c~ 1~.l. El::!!. WJ1m(0;,0;,0a), 
l=lml 2' 2 •2' 2 

uo = _Reos 01 cos 02 = Reos 0; 

U1 = Ri:os01 sin02 = Rsin 0; cos 0; 

U2 = R sin 01 cos 03 = R sin 0; sin 0; cos 03 

U3 = R sin 01 sin 03 = R sin 0; sin 0; sin 03, 

(3.1) 

(3.2) 

C!·;;b,/3 - are the Clebsch-Gordan coefficients for the 0(3) group. The corresponding hyper­
spherical functions have the form: 

WJnm(0i,02,03 ) = ✓2J +2 
2ir 

(~)!(~)! 
( J+l~l-1•1 )!( J-1~1+1•1 )! 

ein82eim83 

x (sin 0i)lml(cos 0i)l•I P~1.:;l:\~1

1
~

1 
(cos 20i), 

2 

, , _ J(v + I)(J +, + 1)!(.J- I)! 
WJ1m(81,82,0a) - 21+if(J+ ~) 

( . 0' )1 p(l+½,l+½l( 0') Y, (0' 0 ) X Sill I J-1 COS I Im 2, 3 , 

(:1.3) 

(3.4) 

where PJ0 ,JJ>(x) are Jacobi polynomials. We again make use of the Beltrami coordinates (2.2) 
(with n=3). In the contraction limit R ➔ oo and 

r 
0; ➔ R 

p 
01 ➔ R' 

X1 
02 ➔ R' J ,:_ kR, n ~ kill, 

where r = Jx~ + p2 = Jx~ + x~ + x5, k = Jkf + p2 = Jkf + k~ + k,~. We have [2] 

1 f; . eimB, 
Jim lnWJnm(01,O2,0a) = <l>kk1m(X1,p,O3) = -.Jlml(pp)e'k,x, f<C' 
R➔oo y R 1r y 2ir 

6 
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) 

) 

Fig.2 Elementary interbases expansions contracted from 0(4) to E(3). 

Contractions of rotation matrices. 
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i 
'' 

and 

Jim -.l WJ1m(e;,e;,Oa) = <l>ktm(r,8;,ea) = 0_~1+1(~r)Y,,;,(8;,8a). R➔oo R V;: > 
(3.6) 

We take the Clebsch-Gordan coefficients in the form 

ct,lml . f,~;f,lm!-n = (-l)J-1";1-n (J)! 
2 . -·· (lml)! (J - l)!(J + l + l)!(l - !ml)! 

(2l + l)(l + !ml)! 

X 
( J+!mHn! )1( J-!m!+!n! )I {- J-n-!ml -/ l + 1 } 

2 • 2 • 2 • • • I 
e+lml+lnl )'( J-lmHnl )' aF2 1 . 

2 • 2 . -J, 1ml + 1, 
(3.7) 

In the contraction limit R ➔ oo, we get 

r;:; J-!m!-n I 1ml W' ( ,1.) 
Jim v.n(-1) 2 CJ. ~ . .t lmHn! = klml cos'!' = (2l + 1)(/ + !ml)! (sin<f,)lml 
R➔oo 2• 2 •2• 2 k(l - Im!)! 21m'lml! 

X 2F1 (-/ + lml,l + 1ml + l; 1ml + l; 1 
-;os </>) = /¾ P}m1(cos</>), (3.8) 

where 

P}ml(x) = (2/ + 1)(/ - !ml)! p
1
1ml(~) 

2(1 + lml)! · · 

are the orthonormalized Legendre polynomials and cos <I>= pf k. Thus the inter bases expansion 
(3.1) transforms to the expansion between the cylindrical and spherical bases for the Helmholtz 
equation 

We use the formula 

00 

<I>kk,m(x1,p,83) = I: Wi1m1(cos</>)<I>k1m(r,O;,o:i). 
l=lml 

{" , 
lo Wi1m1(cos<f,) w;,~,(cos,t,) sin,t,def, = 2<51,1• 

to obtain the inverse expansion 

<I>ktm(r,e;,83) = ~ f w;_\m,(cos</>)<I>kk,m(x1,p,83)sin</>d</>. 

(:l.!J) 

(3.10) 

(3.11) 

Putting the functions (3.5)-(3.6) and interbases coefficients (:l.8) into the expansions (:l.!J) and 
(3.11), we obtain 

~/krcos,/>cosB; J1m1(krsin¢sinO;) = f: (i)l+m ;, .J1+1(kr) P}ml(rns<f,)P}ml(rnsO;)(:l.12) 
v21r . l=lml vkr ' 

8 

,j 

[\ (V 
l 
] 

;,J,+1(kr)P)ml(cos8;) = (-:rt {"" eikrcos</>co•
91 J1m1(k;.si~</>sin8;)P)"'1(cosef>)sin.<f,d</> 

vkr 2 v21r lo · · · - · 

The last two expansions coincide with well known formulas in the theory of the Bessel functions 
[20). 

2. Contraction of Racah coefficients 
In this case both trees correspond to isomorphic subgroup chains 0(4):::>0(3):::>0(2). The twig 
leading to the Cartesian coordinates (u1,u2) is transplanted to the neighbouring branch, so an 
0(2) subgroup is moved from the 0(3) subgroup (012) to the (123) one. In the contra~tion the 
(012) subgroup is destroyed, the (123) one survives (see the "cut" lines on Fig.3a). 

The 0(4) interbases expansion in this case is 

where 

J 

WJnm(81,82,8a) = L TtmwJ1m(8~,e;,ea), 
l=lml 

Uo R cos 01 cos 02 = Rcoso; 

U1 = R cos 01 sin 82 cos 03 = R sin o; cos o; cos 83 

U2 

U3 

R cos 01 sin 02 sin Ba = R sin 0~ cos o; sin 03 
R sin 01 = R sin o; sin o;, 

[see Fig.3(a)). The hyperspherical wave functions corresponding to these two, trees are 

J(2J + l)(J + n + l)!(J - n)! 
Ill Jnm(B1, 02, Ba) = 2n+I f(J + ~) 

( 0 )n p(n+½,n+½)( , 0 ) Y. (0 0 ) X COS I J-n Sill I nm 2, 3 , 

and 

, , J(2J + l)(J + l + l)!(J - l)! 
WJtm(Bi,02,03) = 2,+ir(J + ~) 

( . 0')1 p(l+½,t+½>( 0') y, (11" 8' 0) X SIIl 1 J-1 COS I Im 2 - 2, 3 , 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

respectively. The interbases coefficients TJnm are expressed [7) in terms of Racah coefficients, 
in turn expressed in terms of the 4 F3 hypergeometric function: 

Tl _ [1 + (-'l)J-n+l-m] 
Jnm - 2 

(2l+ 1)(2n + l)(n + lml)!(l +lml)!(J - l)!(J - n)! 

(n - lml)!(l- lml)!(J+ n + l)!(J + l + 1)! 

( ) 
J-n+l-m 21+n-2m r(J-n-l+lml + 1) {- n-lmi - n-'-lml-1. _!.=.J.>.>:1 1-!mi-1 } 

X -1 2 --- 2 2 ' 2 ' 2 , - 2 
!ml! r(J+n+Hmi 1 4F3 11 

2 + ) 1ml + 1 J+n+Hml J-n-l+lml , 
' 2 ' 2 + 1 

9 



Fig.3 Elementary interbases expansions contracted from 0(4) to E(3). 

Contractions of Racah coefficients. 
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In the contraction limit R -+ oo and 

X3 

01~R' 
p 

02 ~ n' 
r 

o~ ~ R' J ~.kR, n ~ pR, 

where r = J p2 + x; and k = Jp2 + k~, we obtain [2] 

. (-n-¥ 
hm In '11Jnm(01,02,0a) = il>kpm(p,xa,Oa) 
R➔oo y R 

= VkJm(pp)-e - •· . , 
, im93 { cos kaxa, ( J - n) - even 

ir -i sin kaxa, (J - n) - odd 

Jim _RI WJ1m(0~,0;,0a) = il>k1m(r,O;,Oa) =;= ~J1+1(kr)Y,m('!:..-o;,Oa). R➔oo V;: 2 2 

For the contractions-of interbases ~oefficients T)nm we get 

. _1=. In I I (-l)'";m 
hm(-1) 'vRTJnm=WkJml(cos</>)=-,-

1
,-

R-+oo m. 

(21 + 1)(1 + lml)! 
2k(I - !ml)! 

I 1 ( I - 1ml I - 1ml - 1 ) x(cot</>)ml+qsin</>)12F1 --
2
-, 

2 
;lml+l;-cot

2
_</> 

!±1!!!1 /2 1 Jml · 
= (-1) , yk(cot</>)2 P1 (sin</>),_ (3.17) 

where cos</>= p/ k. The inter bases expansion in eq. (3.13) transforms to the expansion between 
the cylindrical and spherical bases for the'Helmholtz equation 

1 _ { cosk3x3 } (-l)!.=f!-l _ _ , 
r::J,,.(pp) = L y'kr J1+1(kr)(cot </>)½ P)m1(sin </>) P)ml(sin o;), (3.18) 

v ir -i sin kax3 I kr ' _ 

where the top line on the left-hand side corresponds to a summation over I = 1ml, 1ml + 2, 1ml + 
4, ... and the bottom one to a summation over I = 1ml + 1, 1ml +3, ... on the right-hand side. The 
E(3) expansion (3.18) is related to the expansion (3.12) by the substitution k1 = kcos</>-+ k3, 
Xi= rcosO;-+ X3, </>-+ ir/2- <I> and o;-+ ir/2 - o;. 

3. Further contractions of Clebsch-Gordan coefficients 
As on Fig.2, the two 0(4) trees on Fig.4 correspond to two different subgroup reductions: 
O(1):::lO(3):::lO(2) on the left and O(4):::l 0(2)®0(2) on the right. Since a recoupling of mo­

. m1•11ta is involved 'tl1e overlap functions are again ex'pressed in terms of 0(3) Cl~bsch-Gofdan 
coefficients [7]. The corresponding interbases expansion is 

J-Jml 
IVJ1m(01,02,03) = L (-i)I-Jmlct 1

~.1. El.=!!. 'VJmn(O~,o;,03), 
n=-(J-Jml) 2 ' 

2 '>' 2 
• 

(3.19) 
' 
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where n has the same parity as (J - jml) and 

uo = Reos 01 cos 02 cos03 = Reos 0~ cos 03 . 

u1 = R cos 01 cos 02 sin 03 = R cos 0~ sin 03 
u2 = Rcos01 sin02 
ua = Rsin01 

= Rsin0~ cos0~ 

= R sin 0~ sin 0~, 

(see Fig.4). The corresponding hyperspherical function is: 

J(2J + I)(J + l + l)!(J - l)! 
IJ!i1m(01,02,0a):::; . 21+1r(J + ~) 

( 0 )I p(l+½,I+½)( . 0 ) Y, ('Tr O 0 ) 
X COS I J-1 Sill I Im 2 - 2, 3 , 

and the wave function '11imn(0~,o;,0a) is given by eq. (3.3) (with n replaced by m). 

(3.20) 

The contraction in this case (see Fig.4 and eq. (3.22) below) will involve 3 quantum numbers 
J, l and m. Eq. (3. 7) expressing Clebsch-Gordan coefficients in terms of the 3 F2 function is 
not convenient for taking this limit. Instead, we use the following integral representation (7] 

c'•lml (")1-iml( l)J-fmf-n {(l+lml)!(~)!(~)!}l/2 
f, ~:f.~ = i - ' (l - lml)!(J+ln;l-lnl)!(J+ln;l+lnl)! 

✓(2l + I)(J - l)!(J + l + l)! _l_ / 2" (sin ef>)Hml ~t~½:1+½l(cos <f>)e-in<t>d<f, 
X 21+1ml+2f(J + 3/2) ,fir fo (3.21) 

and the formulas [20] 

<>,<>) _f(o+n+l) PJ (cosef>)- r(o + l)n! 

{ 

2F1(-~, !!f- + o; o + l; sin2 tb), 

X cosef> 2F1(-n; 1,~+o+l;o+l;sin2,p), 

n - even, 

n -odd. 

After integrating over¢>, we obtain a representation of the Clebsch-Gor<lan coefficients in terms 
of the hypergeometrical function 4F3 (of argument 1): 

X 

ct,lml J. .E.1±!!..J lml-n = {i)l-lml( l)!=.El 12'7'"[ + I 2' 2 ,2,~ - 2 -nY_,,,, T_ l 221 
(J+t+l)!(~)!(~)! 

( J - l)!( J-Jn;l+lnl )!( J+Jn;l+ln! )! 

( 

_!!. _!!.::!. .:W. + 1 _J-1; ) 
J l 1 2' 2 ' 2 ' 2 (1-lml)!(l+lml)! r(lili:!) F II , (./ -l) - even, 

re1+'+m-")r(l+'-';-"l re , l
4 3 

! l+l-lml-n l+'+lm!-n 
~ 2' , 2 ' 2 

( 

n-1 n-2 J+l+:1 J-1-1. ) 
r(~) -2,-2,-2-,--2-, 
~ 4 F3 l , (./ - /) - odd. 

re ) r(~) ;! 1-lml-n+3 l+lm!-n+3 I 
2' 2 ' 2 
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Fig.4 Elementary interbases expansions contracted from 0(4) to E(3). 

(a) 

(b) 

(c) 

Contractions of Clebsch-Gordan coefficients. 

Uo U1 U2 
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~ 
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> 

>· 
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(To our knowledge, this expression is new). In the contraction limit R ➔ oo and 

,ve get 

81 ~ X3 82 ~ X2 83 ~ Xt 
R' R' R' 

p 
o~ ~ R' J ~ kR, I~ pR,. m ~ k1 R, 

~ 
lim (-1)- 2 WJ1m(81,82,83) 
R➔oo 

l 
cos k2x2 cos kix3 

_ ✓ 2kp eik,r, -i sin k2X2 cos k3X3 

- rrk2k 3 rr -i cos k2x2 sin k3X3 

- sin k2x2 sin k3x3 

(J - Jml) - even, (I - JmJ) - even, 
(J - JmJ) - odd, (I - Jml) - even, 
(J - JmJ) - even, (1- JmJ) - odd, 
(J - Jml) - odd, (I - JmJ) - odd, 

1. ( ")1-iml( 1)-~ r.:;RC'·lml tm -i - 2 V 11 l. lml-n.l, 1'!!.l±.!:!. 
R-+oo 2 • 2 • 2 • 2 

Sp l cos nef,, 
(k2 _ k2) (sin2ef,)-½ -isinnef,, 

I 'Ir • • -zsmnef,, 
-cosn<f,, 

(J - JmJ) - even, (I - Jml) - even, 
(J - JmJ) - odd, (I - JmJ) - even, 
(J - JmJ) - even, (I - Jml) - odd, 
(J - JmJ) - odd, (l - JmJ) - odd, 

(3.22) 

(3.23) 

(3.24) 

where cos ef, = (p2 - kD/(k2 - kD and k2 = p2 + k5 = k~ + k~ + k5. Substituting the formulas 
(3.5), (3.23) and (3.24) into the expansion (3.19) we obtain 

where 

l cos k2x 2 cos k3x3 i · l cos n¢ ) 
sin k2x 2 cos k3X3 _ ~ sin n<f, J ( · ) ;ne; 
cos k2X2 sin k3X3 - ~ sin n<f, · lnl qp e · 
sin k2x2 sin k3X3 n=-oo cos n<f, 

I X3 
tan02 = -, 

X2 
q2 = k~ + k5, 2 2 2 

f) = X2 + 1::1, 

,._2 
h2 

cos
2 

O = ,.2 + kJ
1 

· 
h-2 . 

Thus the interbases expansion (3.19) contracts to the expa11sio11 betw<·<·n Cart<"sian and cylin­
drical bases for the Helmholtz equation on E~. 

4 Conclusions 
The "method of trees" was introduced [4,5] in order to describe the separation of variables on 
homogeneous spaces of compact Lie groups, more specifically O(n+I) and SlJ(n). The "trees" 
turned out to be related to subgroup chains and it is useful lo complement the I.re<' diagrams 
by subgroup diagrams [2]. Moreover, the method of trees has !wen cxl<•ndcd in a very simple 
and straighforward way to Euclidean spaces [2], where instead of I.recs we have dusters of trees. 
The Sn tree diagrams and En cluster diagrams are very helpful in tlu, study of contradious. 
They tell us, at least for subgroup type coordinates, how rnordinates on 8,, and /~,. can be 
related by contractions. 

The contribution of this paper is to treat rnntractions of int<,rhases expansions and h<"11ce of 
overlap function. Overlap functions for different bases corrc•sponding to isomorphic subgroup 
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chains involve rotation matrices. If the subgroup chains are not isomorphic, the overlap funcc 
tions will be expressed in terms of Clebsch-Gordan coefficients, Racah coefficients, or higher 
order. recoupling coefficients. For all of these we obtain asymptotic expressions. 

For 0(3) the contraction breaks the equivalence of the two types of subgi~up chiins. One 
0(3)::)0(2) basis contracts to an E(2)::)0(2) basis, the other t_o an E(2)::)E(l)0E(l) one. Thus 
we obtain the well known relations between plane and cylindrical waves in_ E 2 • 

For 0(4) the contraction provides relations between spherical and cylindrical bases and_also 
between cylindrical and Cartesian ones.· The inter bases expansions relating E(3) Cartesian and 
spherical bases are obtained by composing the elementary transitions. · 

Work is in progress in two directions. The• first is contraction of interbases. expansions 
for arbitrary values of n. The other is an extension to spaces of negative constant ~urvature, 
generalizing the results on the two-dimensional hyperboloid, obtained earlier [21]. 

In this article we restricted ourselves to subgroup type coordinates only and moreover to 
the lowest dimensional spheres S2 and S3 • Two earlier .articles were devoted to contractions 
of separated basis functions that correspond to nonsubgroup type coordinates, in particular 
elliptic coordinates on S2 and on the hyperboloid H2 [l, 21]. It would also be possible to obtain 
interbases expansions for other types of bases, though so far this has not been done, 
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