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1 Introduction 

Standard mechanisms of spontaneous breaking of the global D=4, N=l supersymmetry 

(SBGS) are connected with the constant vacuum solutions for the auxiliary components 

of chiral and gauge superfields (see reviews {1]-[3]). The constant SBGS solutions are 

possible in the very restrictive class of interactions of the chiral superfields. In particular, 

SBGS is not possible for the non-trivial self-interaction of the single chiral superfield. 

The Fayet-Iliopoulos (F I) mechanism consists in adding the linear term to the action 

of the N=l abelian gauge theory, however, this term does not guarantee automatically 

the appearance of the SBGS-solution for any gauge-matter interaction. These standard 

mechanisms are not very flexible, so the search of new approaches to this problem is de~ 

sirable, especially for the extended supersymmetry or ·supersymmetries in low dimensions 

which have some specific features. The problems of the spontaneous breaking of local 

supersymmetries will not be discussed in this paper. 

The standard linear supermultip!ets (standard superfields) are not convenient for the 

description of the partial spontaneous breaking of the extended global supersymmetries 

(PSBGS) when the invaria.nce with respect to the part of supercharges remains unbroken. 

In particular, the constant solutions with a degenerate structure of the auxiliary fields 

are forbidden in many cases. The Goldstone-fermion models with the partial spontaneous 

breaking of the D=4, N=2 [4] or D=3, N=2 [5] supersymmetries have been constructed 

using the topologically non~ trivial classical solutions preserving the one half of super­

charges. These models have been also studied in the method of nonlinear realizations of 

supersymmetries [6]~[11] using superfields of the unbroken supersymmetry. 

Recently the abelian gauge model with two F J-terms has been used to break sponta­

neously D=4, N=2 supersymmetry to its N=1 subgroup [12]-[14]. This model describes 

the non-minimal interactions of the complex scalar :field with the fermion and U(l )-gauge 

fields. In the D=4, N=2 superspace these interactions correspond to the holomorphic 

action of the Goldstone-Ma.xwell (GM) chiral superfield W satisfying the modified su­

perfield 2-nd order constraints. In comparison to the original constraints of the N=2 

vector multiplet [15], these constraints contain the constant terms which guarantee the 

appearance of the unusual constant imaginary part of the isovector auxiliary component 

and the Goldstone fermion component in the GM-superfield. 

The more early example of the Goldstone-type constraint has been considered in the 

model with the partial breaking of the D=l, N=4 supersymmetry [16]. Thus, these 

constraints introduce a new type of the supersymmetry representations with the linear 

Goldstone ( LG) fermions. In distinction with the Goldstone fermions of the nonlinear real­

izations which transforms linearly only in the unbroken supersymmetry, the LG-fermions 

have their partners in the supermultiplets of the whole supersy=etry. The nonlinear 

deformation of the standard constraints is also possible [3], however, we shall discuss only 

constant terms in the modified constraints which are related with the spontaneous break­

ing of supersymmetries. It will be shown that the models with the LG vector multiplet 

and the corresponding dual scalar multiplet solve the problem of the partial spontaneous 

breaking of the D=3, N =2 supersymmetry. Recently these problems have been consid-
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ered in the framework of the N=l superspace [11]. 
The coordinates of the full D=3, N=2 superspace are 

z = (x"0 , e•, ii") ' (1.1) 

where a,/3 are the spinor indices of the group SL(2,R). The spinor representation 
of the x-coordinate is connected with the vector representation via the 3D ')'-matrices 

xa.8=(1/2)xm{'ym)'k.8. The algebra of spinor derivatives in this superspace has the follow­
ing form: 

{V0 , V0 ) = i80 p + iE:aoZ , 

{V., V 0) = o, {fi., ti0) = o, 

where Z is the real central charge and 

i-
'Do = Do + 2BoZ , 

- - i 
'Do= DQ- 2BoZ , 

i -fJ 
DQ = aQ + 2e aQ13 , 

- - i {3 
DQ = aQ + 29 aQ13 • 

We shall use mainly the spinor derivatives without the central charge Da and DQ. 
The corresponding generators of the N=2 supersymmetry are 

1-
Q. = Q. + 2e.z, - - 1 

Q. = Q. - 2e.z _ 

(L2) 

(L3) 

(L4) 

(L5) 

The N=2 supersymmetry algebra is covariant with respect to the UR(l) transforma­
tions 

(JQ -+ eiP(JQ , OQ -+ e-ip§Q • (L6) 

We shall consider the following notation for the bilinear combinations of spinor coor­
dinates and differential operators: 

(B)2 = ~e B" 2 Q ' 
(0)2 = ~ii·ii 2 a' 

- 1 -
(Be) = 

2
B·e. , 

(D)2 = ~D"D 
2 "' 

- 1 -
(DD) = 2D"D., 

and the useful relations 

e•o = ~[e"ii" +"' ++ ,6] , 
2 

(D)' = ~ D D" 2 Q ' 

1 -
D.p = 2([D., D0J +a++ [3) , 

- i - 1 
D.Dp = 

2
a.0 + E:ap(DD) + 

2
D.0 , 

(DD)2 = ~a"0 (a.8 - iD.0 ) + ~(D)2 (D)', 
D.0(D)' = W.0 (D) 2 , 

(D)2 (e)' = 1 , (D)'(ii)2 = 1 , (DD)(Bii) = -~ _ 

2 

(L7) 

(L8) 

(L9) 

(1.10) 

(Lll) 

(1.12) 

(1.13) 

(1.14) 

The integration measures in the full and chiral superspaces are 

d7 z = d3x(D)'(D)' , d5
( = d3xL(D)2 

• (1.15) 

They have R-charges 0 and -2, respectively. The complex chiral coordinates can be 

constructed by the analogy with D=4 

( = (x~0,e"), X~/3 = XQ(J + i8Q!J . (1.16) 

It is convenient to use the following rules of conjugation for any operators [3]: 

(XY)t = ytxt , [X, Y}t = -(-1)P(X)p(YJ[);-t,}'lj, (1.17) 

where [X, Y} is the graded commutator and p(X) = ±1 is the Z2-parity. The action of 
the differential operator X on some function f{z) and the corresponding conjugation are 

defined as follows: 

XJ =[X,!} => (Xflt = -(-J)P(X)p(fJXljt. (1.18) 

(Remark that the alternative convention of conjugation (X j)f = ( -l)P(X)p(fl xt jt is also 

pos;ible.) 

Consider the conjugation rules for the spinor coordinates and derivatives 

(B")t = ii" , [(B)'Jl = (ii)' , 

Dl = Da , [(D)2jl = (D)' , 

(eii)t = -(eii) , 

(DD)t = -(DD) _ 

It is pos~ible to iatroduce the real N=2 spinor coordinates Of= (Bf)t 

"" 1 ("" '"") e-· 1 ("" ·on) u = "' u, + zu, ' = 0 u, - '"' ' v2 v~ 

(e)'= ~[(B2 e2)- (e,e,)- 2i(B,B,)] , (B,e,) = ~BfBk" =(eke,) , 

- 1 t (ee) = 2[(8,8,)-'- (e,e,)J, (e,Bk) = -(8,ek) , 

e•8 = ~(e~ef + o- ++ /3), 
2 

(e"P)t = 8"" 

and the corresponding real spinor derivatives 

l_llz v2-D21 'DQ - Dn + 2f)2o • o - o- 2,(}1oZ 

I 1 - 2 i -
D.= y'2(D. +Do), D.= y'2(D.- D.) , 

{D~.D1) = {D~,D~) = i8.0 , {D~,D~) = 0. 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(L26) 

( 1.27) 

The D=3, N=2 gauge theories have been considered, for instance, in rt•fs.[IT]-[20]. The 

non-miP.imal self-interaction of the U(l) gauge supennultiplct in this caS(' is pquival<>nt 
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to the interaction of the 3D linear multiplet. We shall analyse the modified LG'M­

constraints for the 3D gauge multiplet. The corresponding real N =2 superfield describes 

the Goldstone fermions interacting with the scalar and vector fields. 

In sect.4 we discuss the prepotential solution for the LGM supermultiplet which con­

tains additional terms manifestly depending on the spinor coordinates and some complex 

constants playing the role of moduli in the vacuum state of the theory together with the 

constant of the FJ-term. Using thiS representation in the non~ minimal gauge action one 

can obtain the constant vacuum solutions with the partial spontaneous breaking of the 

D=3, N=2 supersymmetry. Note that the supersymmetry algebra is modified on the 

LGA1 prepotential V by analogy with the similar modified transformations of the 4D 

gauge fields or prepotentials in refs.[13, 14]. 

The sect.5 is devoted to the description of P S BGS in the interaction of the LG­

chiral superfield which is dual to the interaction of the LGM superfield. This manifestly 

supersymmetric action depends on the sum of the chiral and antichiral superfields and 

some constant term bilinear in the spinor coordinates. The non-usual transformation of 

the basic LG-chiral superfield satisfies the supersyrnmetry algebra with the central-charge 

term. 
The N=l supermembrane and D2-brane actions [11] can be analysed in our approach 

using the decompositions of N =2 superfields in the 2-nd spinor coordinate 8~. In sect.6, we 

consider the N =I components of the extended superfields and the covariant conditions 

which allow us to express the additional degrees of freedom in terms of the Goldstone 

superfields. 

2 Vector multiplet in D=3, N=2 supersymmetry 

The D=3, N=2 gauge theory [17, 18, 19, 20] is analogous to the well-known D=4, N=1 

gauge theory, although the three-dimensional case has some interesting peculiarities which 

are connected with the existence of the topological mass term and duality between the 

3D-vector and chiral multiplets. We shall consider the basic superspace with Z =0. 

The abelian U{l)-gauge prepotential V(z) possesses the gauge transformation 

6V=A+A, {2.1) 

where the chiral and anti-chiral parameter-s are considered 

DaA = o, D.A = 0. {2.2) 

The D=3, N =2 vector multiplet is described by the real linear superfield 

W(V) = i(DD)V (2.3) 

satisfying the basic constraints 

(D)'W = (D)'W = 0 . (2.4) 

4 

The additional useful relations for this superfield have the following form: 

- 2 p 
D,(DD)W = -;;,&.pD W, 

(DD)'W = ~&"P(&.p- iD,p)W. 

(2.5) 

(2.6) 

The components of the vector multiplet can be calculated as the 8=0 parts of basic 

superfields and their spinor derivatives 

<p(x) = W[o = i(DD)V[0 , >..(x) = (D.W)[o, 

X.(x) = -D,W[o, A,p(x) = D,pV)[o, 

F.p(x) = D,pW[o, G(x) = i(DD)W[o, 

(2.7) 

(2.8) 

(2.9) 

where A,.11 and F,.p are the 3D~ vector field and its field-strength , G is the real auxiliary 

component and tp,). and >.. are the physical scalar and spinor fields. The scalar field 

appears as the 3D analog of the 3-rd component of the 4D gauge :field. 

The low-energy effective action of the 3D vector multiplet describes a non-minimal 

interaction of the real scalar field with the fermion and gauge fields. For the U(l) gauge 

superfield V this action has the following general form: 

S(W) = -~ j d7 zH(W) , T(W) = H"(W) > 0 ' (2.10) 

where H(W) is the real convex function of W. Note that the action S(W) conserves the 

UR{l) invariance. 

The interesting feature of the 3D gauge theory is the existence of the Chern-Simons 

term [17] ikj 7 -
Scs = 4 d zV(DD)V, (2.11) 

where k is some constant. The component form of this action contains the topological 

gauge term f J.3xA,.f38~A"ff1. Note that the non-abelian generalization of this term has 

been constructed in ref.[lS]. 

The 3D linear multiplet is dual to the chiral multiplet ¢. The Legendre transform 

describing this duality is 

S[B, <11] = -~ j d7 z[H(B)- <11B], (2.12) 

where B is the real unconstrained superfield and ifl=¢ + if,. Varying the Lagrange multi­

pliers <P and if> one can obtain the constraints (2.4). 

Using the solution of the algebraic B-equation 

H'(B) =!(B) = 'I> (2.13) 

one can pass to the self-interaction of the chiral superfields 

B '* B('l>) = f- 2('1>), (2.14) . 
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S(iP) = -u d' zH(if>), 

H(if>) = H[B(if>)]- 4>8(4>), 
iJip 
iJB = T(B), 

iJ2H . I 
8~2 = r = --:;:. 

The corresponding superfield equation of motion is 

(D)' il'(if>) = f(if>)(D)'¢ + ~f'(4>)D.¢D"¢ = o. 

(2.J.)) 

(2.16) 

(2.1i) 

(2.18) 

This chiral model describes the special case of the Kahler supersymmetric O"·model 

which is completely determined by the real function H and possesses by construction the 

additional abelian isometry 

,p -+ "'+ if! , 
where (:J is some real parameter. 

3 Difficulties with spontaneous breaking of 

supersymmetry 

(2.19) 

Let us consider the spontaneous breaking of supersymmetry in the non·minimal gauge 

model (2.10) with the additional linear F [-term 

Sn = ~~ j d7 z\i, (3.1) 

where e is a constant of the dimension -1. Varying the superfield V one can derive the 

corresponding superfield equation of motion 

- i(DD)H'(W) + ~ = -iT(W)(DD)W- ~T'(W)D"W D. w + ~ = 0 , (3.2) 

where 

T(W) = H"(W) , T'(W) = H"'(W) . (3.3) 

The spinor derivatives of this superfield equation generate the component equations 

of motion of different dimension 

D.(DD)H' = -~TiJ.,D'W + ~T'D.W(DD)W 
1" i 1-" 1- 2 

+zT'D W(D.,+ 2a.,)W-:/'D.WD WD,W- 2T'D.W(D) W=0,(3.4) 

where the last term vanishes due to the constraint {2.4). The vacuum solutions can be 

analysed with the help of the equation 

(DD) 2 H'(W) = 0. (3.5) 
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We shall study the constant solutions of the equation of motion using the following 

vacuum ansatz: 

Vo = 2i(Oii)a- 2(0)'(ii)'G, W0 =a+ 2i(Oii)G, (3.6) 

where a and G are constant1>. The lowest vacuum components of the equations (3.2) and 

(3.5) read 

GT(a)-~=0, 

G2r'(a) = 0. 

The non-trivial solution G0 #0 is possible for the quadratic function H only. 

It is useful to consider the real 3D spinors Af = (J.i)t 

;..o.- 1 - .)2(.\~ +i,\~) 

and the corresponding real spinor parameters of the N =2 supersymmetry 

,. 1 
= .,12('~ +it~) . 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

It is clear that the constant solution {3.6) can only break spontaneously both super­

symmetries 
O,).o. = iGoc_o., 61 Aa = -iGoca (3.11) 

since it generates two real Goldstone fermions. 

Thus, the full spontaneous breakdown of the N=2 supersymmetry is possible only for 

the fre<' theory with the W 2 (V)-interaction and the F I term. The partial spontaneous 

breaking is forbidden if one uses the vector multiplet satisfying th<' standard constraint 

(2.4 ). 

Let us estimate the role of the Chern-Simons term (2.11) in t.hc vacuum equations. 

Varying the action S(W) + Scs + SF1 one can obtain the modified equation of mot.ion 

- i(DD)H' + kW + ~ = o. 

This superfield equation produces the following modified vacuum equations: 

GT(a)- ka -f..= 0, 

G2T'(a)- kG= 0. 

The scalar potential of this model is 

1 2 
v,(a)= 2r(a)(t;+ka) . 

(3.12) 

(~.13) 

(3.J.!) 

(:!.15) 

For the arbitrary function oo > t(a.) > 0 this potential has the uniquc manif<~!'it.\y 

supersymmetric minimum a = -ek-1 • Thus. cven the frC"c SBGS solution T = ronM 

disappears in the presence of the CS-tcrm. 
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4 Partial spontaneous breakdown of supersymmetry 

We shall define the modified Goldstone-type constraints for the 3D vector multiplet by 
the analogy with refs.[16, 14] and show that the partial spontaneous breaking of the 
D=3, N =2 supersymmetry is possible for the non-trivial gauge interaction in the frame­
work of this approach. 

Consider the following deformation of the constraints (2.4): 

(D)2W = c, (li)'l¥ = c, (4.1) 

where C 3.nd C are some constants. These relations break manifestly the U R(l) invariance. 
The solution of these constraints can be constructed by analogy with Eq.(2.3) 

W = i(DD)V + (8)2C + (ii)2C . (4.2) 

This LG M superfield contains new constant auxiliary structures which change radically 
the matrix of the vacuum fermion transformations 

O,),a = -Cca: + iGo~ , 

&).a= -iGo€a- C~ . 
(4.3) 

(4.4) 

It is evident that the PSBGS-condition corresponds to the degeneracy of these trans­
formations 

CC-Gi =0. (4.5) 

In this case one can choose the single real Goldstone spinor field as some linear combination 
of >,Q. For the case of the pure imaginary constant C the LG fermion can be identified 
with A2. 

It should be stressed that the shifted quantity W(V) = i(DD)V in Eq.(4.2) is not a 
standard superfield 

6,W = ie>Q:w --> 6,W(V) = C<"Bo- C<"iio + i<>Q:W(V) , (4.6) 

The algebra of these transformations is not changed on the gauge-invariant superfield 

[6,,6,]W(V) = <>if.{Q:,Q~}W(V). (4.7) 

The transformation of the LGM-prepotential V will be considered in the end of this 
section. 

The action of the LG M-superfield ( 4.2) has the following form: 

S(V) = -~ j d1 z[H(W)- ~V] (4.8) 

and depends on three constants .;, C and G. 
The non-derivative terms in the component Lagrangian 

~(G' -ICI')r(cp)- ~G, (4.9) 
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I 

produce the following scalar potential 

V(cp) = ~[ICI'r(cp) + er-'(cp)] . 

The vacuum equations of this model are 

Gr(a) -~ = 0, 

{G2 -IC[2)r'(a) = o. 

(4.10) 

(4.11) 

(4.12) 

The PSBGS solution (4.5) arises for the non-trivial interaction r'(a)"O. This solution 
determines the minimum point ~ of the model 

I~ I 
r(a,) = ICI . 

The vacuum auxiliary field can be calculated in the point a0 

~ G, = -) = ±ICI . 
r(ao 

(4.13) 

{4.14) 

Using the U n(l) transformation one can choose the pure imaginary constant C --)- c = ilcl 
(without the loss of generality) then 

G, = -ic = lei . (4.15) 

This choice corresponds to the following decomposition of the LGM-superfield (4.2) 

w = w.(V.) + 2i[cl(8282) , 

1V (V.)- i:_(D1"D1 .LD2"D2 )V. ss- 4 a• as· 

( 4.16) 

( 4.17) 

where Vs is the shifted LGM-prepotential which has the vanishing vacuum solution for 
the auxiliary component. It is evident that this representation breaks spontaneously the 
2-nd supersymmetry only. 

Let us consider now the supersymmetry transformations of W8 and Vs 

OeWs = it:kQ~W = -2ilclt:~B2a + it:kQ!Ws, 
§f Va = .6.( t, 8) + it:kQ!Vs ' 
£.{<,8) = 2[c[€~82o(Bf8,p) = -2v'2[cli<~[ilo{8)2 + 80 {0)2

]. 

(4.18) 

( 4.19) 

(4.20) 

The supersymmetry algebra of the Vs-transformations is essentially modified by the 
analogy with the transformations of the prepotentials in refs.[13, 14] 

[6,, 6,]\1; = ,.if. { Q:, Q~} v; 
= 4[c[(<2'lf- ry~<f)81p8,. +,~,f. {Q~, Q~}ll; , ( 4.21) 

where Q~ are the generators of the modified transformations. 

9 



The modified part of the supersymmetry algebra of transformations has the following 
form: 

{Q~, Q~}=dV, = 4jcj8,a82p = 4ijcJ6ap + 2iJcl<ap[(8)' +(Of) . ( 4.22) 

It should be stressed that both terms in this anticommutator can be decomposed as a 
sum of chiral and anti-chiral functions and do not contribute to the Lie bracket on the 
superfield W, 

ecr/3 = _!:_(x"13 - x"/J) 2 L R l 
x~13 = (x~!3)t . {4.23) 

The modified anticommutator contains the additional vector and scalar generators 
T0 p,T and 1' 

-1 -2 -
{Qa,Qp}=<ap(T+T)+Tap. 

T0 pV, = 4ijcj60 p, TV,= 2ijcj(Oj'. 

{4.24) 

(4.25) 

The additional generators belong to the infinite Lie algebra of the U(l)-gauge transfor­
mations which arises in the (x, B)-decomposition of the chiral gauge parameters A (2.1). 
These generators vanish on the gauge invariant quantity Ws- One should also include in 
the modified N=2 supersymmetry algebra all nontrivial commutators of the T generators 
with the spinor generators Q~. 

Consider the spinor gauge connection 

Aa(z) = Da V, , OAAo:=DcrA (4.26) 

in the chiral representation (.4a=0). The inhomogeneous term in the modified supersym­
metry transformation of this gauge superfield has the following form: 

OAa = -2v'2ijc1[<,(8)'- 8a<g0p] + i<~Q~Aa . (4.27) 

It should be remarked that the minimal interaction of the charged chiral superfields 
with the LGM-prepotential Vs breaks the supersymmetry. The analogous problem of 
the LGM interaction with the charged matter appears also in the PSBGS model with 
D=4, N=2 supersymmetry [14]. 

5 The 3D chiral interaction with the partial breaking 

The general effective action of the chiral superfields 4Ji (i is some internal index) can be 
written as follows: 

j d'xd'OK(q,,, ~,) + 1/ d'xd28P(1>;) + c.c.), (5.1) 

where K is the Kahler potential and P is the chiral superfield potential. 
The existence of the non-trivial SBGS solution implies the degeneracy of the matrix 

8i8kP- The vacuum equation for the single chiral superfield ¢may have the non-vanishing 
SBGS solution only in the trivial case of the linear function P(¢) and the free K8.hler 
potential K = ¢~. 
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\Ve shall show that the spontaneous breaking of supersymmetry is possible for the 
non-trivial interaction of the LG chiral superfield which possesses the inhomogeneous 
supersymrnetry transformation. Let us consider the dual picture for the PSBGS gauge 
model with the FJ-term (4.8) 

S(B, ¢, ii>) = -~ j d7 z[H(B) - B<i>] - ~[C j d5(</J + c.c.] , (5.2) 

where the modified constrained LG superfield is introduced 

<!> = ¢ + ¢ + 2il;(80) ' (DD)<i> = -il; . (5.3) 

Varying the chiral and antichiral Lagrange multipliers ¢ and dJ one can obtain the 
LG1U-constraints (4.2) on the superfield Band then pass to the gauge phase B -t Tf·(F) 
where the {BiJ)-term in <J, transforms to the FI-term. 

The algebraic B-equation 

H'(B) = j(B) = <i> , 

provides the transform to the 'chiral' phase 

B -+ r'(<i>) = il(<i>) . 

The transformed chiral action is 

s(<i>) = -~ j d7 z{H(<i>) + [C(O)' + c.c.]<i>} . 

H(<i>) = H[il(<i>)]- <i>il(<i>) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

The linear terms ',\<·ith C and C break the UR{l)-symmetry {1.6), howPver. this action is 
invariant with respect to the isometry transformation (2.19). 

It should be underlined that the LG-superfield $ transforms homogeneously, while 
the supersymmetry transformation of the LG-chiral Lagrange multiplirr ¢ •ontains the 
inhomogeneous term 

&r¢ = -i,;(OaEa) + iEkQ~¢ - (5.8) 

The action S is invariant \\"ith respect to the LG repwsentation of the N =2 suprrsym­
metry, since the 1-st. term of this action dC'pends manifestly on the covariant suprrfiC'ld ci>, 
and the 2-nd one is invariant due to the linear 8-dependence of the inhomogenrons part. 
of o,¢>. 

Consider the 8-decomposition of the LG-chiral superficld 

¢ = A(x,) + O"~'a(x,) + (8) 2 F(x,) , (5.9) 

where XL is the complex coordinate of the chiral basis. 
The Lie bracket of the modified supersymmctry transformation (5.8) 

[J,, J,]¢ = il;(<"i)a- ry0 lo) + <~ryf {Q~, Q~)q) (5.10) 
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contains the composite central charge parameter corresponding to the following action of 

the generator Z on the chiral superfield: 

Z¢=f., (Z¢ = -f.) . (5.11) 

Thus, the Goldstone boson field Im A( x) for the central-charge transformation appears in 

this model. It should be remarked that the isometry transformation (2.19) in the chiral 

model without P SBG'S cannot be identified with the central-charge transformation. 

It is interesting that we can define the deformed chiral superfield 

¢( = </> + if.(OB) = ei(OS)Z </> , 

15.¢( = (D. - ~O.Z)¢( = 0 

satisfying the unusual covariant condition. 

The superfield equation of motion for the action (5.6) 

(D)'fl'(q,) + t = o 

generate-s the vacuum component equations 

Z'<l> = 0, 

Ff(b) + t = 0 , b= A+ A 
(IFI'- f,')f'(b) = o , 
f = H" = -T-

1 

(5.!2) 

(5.!3) 

{5.!4) 

(5.!5) 

(5.!6) 

The scalar potential of this model depends on the one real scalar component only 

V(b) = ~Jei'(b) + ICI'f-1 {b)] . 

The minimum point ba of this potential can be defined by the equation 

using the condition T
1(b):f;O. 

V' = ~f'{b)[f.' -ICI'r'(b)] = o, 

r'(b,) = r' = C'ICI' 

(5.!7) 

(5.!8) 

(5.!9) 

The vacuum transformations of the spinor components of the LG superfields ¢ and ~ 

have the following form: 

o(,po. = Fot01
- iet" , 

o(;r;o = iet(i +Poe" . 
(5.20) 

{5.2!) 

The vacuum solution IFol2 = e corresponds to the degeneracy condition for these 

transformations. The choice F0 = i{ breaks the 2-nd supersymmetry. 

Thus, the non-trivial interaction of the LG-chiral superfield tjJ provides the partial 

spontaneous breaking of the D=3, N =2 supersymmetry. This phenomenon has been 

analysed also in the formalism of the D=3, N=! Goldstone-type superfields [!!]. 

!2 

6 Passing to N=l superfields 

Let us assume that the spinor coordinates or parameterize N=l superspace, and the gen­

erators Q; form the corresponding subalgebra of the N=2 supersymmetry. The complex 

chiral coordinates ( (1.16) can be written via the real spinor coordinates 

x•P - x"0 + ~(0"0° +a++ ") L- 2
12 /J, 

o· = ~(or+ iO~). 

We shall use the relations 

(D)'= ~(D1 D1 )-~(D'D')-i(D1 D'), (D'Dk) = ~D'" Dk 
2 "' 

D!D1 = ~Bo/3 + E:orf3(D1 D 1
) , 

[D;,, (D1 D' )] = -ia.pD10 , 

The chirality condition in the real basis 

{D;,,(D1D1
)} = 0, 

(D' D')' = ~o 8 3' 

- 1 1 . 2 
D.¢= VZ(D. + •D.)¢ = 0 

can be solved via the complex unrestricted N=l superfield X 

03 = ao13 ao/3. 

¢ = x(x, 01 ) + iO~ D;,x(x, 01) + (O,O,)(D' D')x(x, 0,) . 

{6.!) 

{6.2) 

(6.3) 

{6.4) 

{6.5) 

{6.6) 

(6.7) 

To prove the chirality in the N=l representation one should use Eqs.(6.4,6.5) and the 
relation . 

D!x(x,O,) = ~o~a.0x(x,O,). (6.8) 

Using Eq.(6.3) one can readily obtain the relation between the chiral and N =I integrals 

j d'x(D)',P = j d'x(D1 D')x(x, O,) , {6.9) 

where d?01 =(D1 D1
) is the imaginary spinor measure of the N=I superspace. 

The transformation (5.8) has the following N=l decomposition: 

61> = -~f.Of(,,. + ;,,.) + ~f.o;(,,.- i,,.) +,~(-a~+ ~o:a.,)¢ + i<rQ~,p {6.10) 

and generates the corresponding transformation of the complex N =I superfield: 

6 
1

<0"( . ) . "D' . "Q' X= -2., 1 tzc.r + ztla - zc2 aX+ ~e1 (iX . (6.!1) 

Consider the 02-decomposition of the basic superfield (5.3) of the chiral P SBGS model 

q, = x +X+ iO~D~(x- X)+ (O,O,)(D1 D')(x + 5() + i([(O,O,) + (O,O,)J 

= E + O~D;,p + {0202)[(D1 D1)E + 2if.] , 

E(x,OI)=x+x+i~(o,o,), p=ix-ix 
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(6.!2) 

(6.!3) . 



where :E is the massive real N=l superfield and pis the real Goldstone superfield for the 
2-nd supersymmetry 

o~ = -€~ n;p + i€~Q;~ . 
fJp = -ie€~9la + €~D~~ + if~Q;p. 

(6.14) 

(6.15) 

The analogous transformations of N=l superfields have been proposed in ref.[llJ. 

The authors of this work have shown that the additional superfield can be constructed in 
terms of the spinor derivative of the Goldstone superfield p in order to built the super­

membrane action. The massive degrees of freedom in our approach can be removed using 
the covariant condition ., 

ill = 0' (6.16) 

which allows us to construct I: via D!p by analogy with the similar construction in the 

D=4, N=2 theory [10]. 

The superfield p possesses also the central-charge transformation induced by the cor­
responding transformation of the chiral superfield (5.11 ). 

Our N=2 action (5.6) can be rewritten via the both N=l components of <P 

1-J !!'' - --2C d'x(D)'if> + c.c. = 2 d xd 81[(C- C)E + i(C + C)p] + const , (6.17) 

-~ j d7 zH(~) = -~ j d3x(D' D1 )(D'D')H(~) 

= ~ j d'xd281 {[2i~ + (D1 D')E]H'(E) + ~f(E)D'" pD~p} , (6.18) 

Note that these integrals, including the linear in p term, are invariant with respect to the 

N=2 supersymmetry transformations (6.14,6.15). 
Let us analyse the N =1 decomposition of the gauge prepotential 

V.(x, 81 , 82 ) = K(x, 81) + ;egv.(x, e,) + i(0282)M(x,81) (6.19) 

and the chiral gauge parameter 

A= [I+ i8~D~ + (8282)(D1 D1)].<(x,81). 

The gauge transformations of the N=l components are 

8>.K.=A+X, 

o,V. = D~(A- X), 
o,M = -i(D1 D')(.< +X) . 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Thus, K. is a pure gauge degree of freedom, Va is the N=l gauge superfield, and M is the 
scalar N=l component of the N=2 supermultiplet. 

The 2-nd supersymmetry transformations of the N=l superfields have the following 

form: 

62K. = -i€~Va , 

o,V. = -<,.[M + 4i[c[(8,81)]- ~,ga.8K, 
- 1 ~ 
S2M = 2€~8apV . 
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(6.24) 

(6.25) 

(6.26) 

The deformation of the supersymmetry algebra (4.22) can be studied also in this repre­
sentation. 

Consider the N=1 decomposition of the linear superfield (4.17) 

W,(l~) = ~[(D 1D 1 ) + (D2D2)]1~ = w+i8~F.(V)- (8282 )(D1D1)w, (6.27) 

[(D
1
D1

)- (D2D2 )JW, = 0, (D 1D2)W, = 0. (6.28) 

where the gauge-invariant scalar and spinor superfields are defined 

u> = ~IM + i(D1 D 1)K] , 
. 1 

F.(V) = ~(D 1 D 1 )1·~ + 4a.8V8 , DaFn=O. 

(6.29) 

(6.30) 

The Goldstone transformation of H1s {4.18) produces the following t 2-transformations 
of the N~I superfields: 

llw = -it:~ Fn , 

6F. = -<2.[2lcl + i(D1 D')w] + ~,ga.pw. 
(6.31) 

(6.32) 

The spinor superfield strength Fn is analogous to the Goldstone spinor superfield of 
ref.[ll]. It describes the Goldstone degree of freedom of the D2-branc, and thP superfield 

w corresponds to the massive degrees of freedom. Our construction introducE's the N=l 

gauge superfield Vn a':i the basic object of this model and allows us to study the modifica­

tion of the supcrsymmetry algebra on the gauge fields of the D2-brane. It is not difficult 
to rev.Tite the N=2 action (4.8) in terms of the N=l superfields. 
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3ynHHK E.M. E2-99- I 83 
l!aCTH'!Hoe cnoHTa.HHOe HapyrneHHe 3-MepHoii N=2 cynepcHMMeTpHH 

06cy)l(l{aiOTC5.l cynepnoneBbie MO,UeJU.i: C qaCTHqHbiM CllOHTaHHbiM HapymeHH­
eM mo6anhHOii D=3, N=2 cynepcHMMeTpHH. A6eJJeBa KaJIH6poBO'IHaJI MO)(eJJh 
OllHCbiBaeT HH3K03HeprenrqecKHe B3aHMO,Ueif:CTBIDI semeCTBeHHOfO CKamipHOfO 
UOIIll C 3D BeKTOpHb!MH H tjlepMHOHHh!MH UOIDIMH. Mbl BBO)(HM HOBOe ffiJl)(­
CTOyH-Ma.KCBeJIJIOBCKOe npellCTaBIIeHHe 3D Ka.JIH6pOBOlJHOf0 cyneprrOJUI H D;OKa-
3biBaeM B03_MO)KHOCTb qacTwmoro crroHTaHHoro HapyrneHH.si N=2 ~ N=l llJI.si He­
MHHHMaJibHoro Ca1.10.llefiCTBIDI ::noro MOilH¢lHUHpOBaHHOfO KaJIH6pOBOqHQfO 
cyneprronx c BKmoqeHHeM JJHHeiiHoro qneHa ¢aii:e-HJmonynoca. PaccMaTpHBaeT­
C5.l Ta.IOKe .il.YaJlbHOe OIIHCaJtHe 1-JaCTfiqHOfO HapynieHH.si B MO,Ile.tlH CaMO.Ueif:CTBYJO-. 
mero fOn.llCTO)IHOBCKOfO KHpaJJbHOfO cyneprromi. 3TH MO.lleJIH HMeiOT llOCTOXHHhie 
BaK~1Hhie perueHns H onHcbiBaJOT, coOTBeTCTBeHHO, B3aHMo.neHcTBllil N=l ro~­
CTO)'HOBCKHX MYJibTHTIJieTOB D2-6paHbi IDIH cynepMeM6p3Hbi c nononHHTeJihHbiMH 
MaCCHBHbiMH MYJibTHID1eTaMH. 

Pa6oTa BhmoJIHeHa B Jla6opaTopHH Teopeni'!ecKoii tjlmHKH HM. H.H.Eoromo-
6oBa 0!15!11. · 

npenpHHT Qfuell~fHeHHOfO UHCTHTYfa a!IepHblX HCCJlel!;OBa.HUfi:. )ly6Ha, 1999 

Zupnik B.M. E2-99-183 
Partial Spontaneous Breakdown 
of 3-Dimensional N=2 Supersymmetry 

The superfield models with the partial spontaneous breaking of the global 
D=3, N=2 supersymmetry are discussed. The abelian gauge model describes 
low-energy interactions of the real scalar field with the 3D vector and fermion 
fields. We introduce the new Goldstone-Maxwell representation of the 3D gauge 
superfield and show that the partial spontaneous breaking N=2---+ N=i is possible 
for the non-minimal self-interaction of this modified gauge superfield including 
the linear Fayet-Iliopoulos term. The dual description of the partial breaking 
in the model of self-interacting Goldstone chiral superfield is also considered. 
These models have the constant vacuum solutions and describe, respectively, 
the interactions of the N=l Goldstone multiplets of the D2-brane or supermem­
brane with the additional massive multiplets. 

The investigation has been performed at the Bogoliubov Laboratory of Theo­
retical Physics, JINR. 
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