


1 Introduction

Standard mechanisms of spontaneous breaking of the global D=4, N=1 supersymmetry
{SBGS) are connected with the constant vacuum solutions for the auxiliary components
of chiral and gauge superfields (see reviews [1]-{3]). The constant SBGS solutions are
possible in the very restrictive class of interactions of the chiral superfields. In particuler,
SBGS is not possible for the non-irivial self-interaction of the single chiral superfield.
The Fayet-Thopoulos (FI) mechanism consists in adding the linear term to the action
of the N=! abelian gauge theory, however, this term does not guarantee automatically
the appearance of the SBGS-solution for any gauge-matter interaction. These standard
mechanisms are not very flexible, so the search of new approaches to this problem is de-
sirable, especially for the extended supersymmetry or supersymmetries in low dimensions
which have some specific features. The problems of the spontaneous breaking of local
supersymmetries will not be discussed in this paper.

The standard linear supermultiplets (standard superfields) are not convenient for the
description of the partial spontaneous breaking of the extended global supersymmetries
{P§BGS) when the invariance with respect to the part of supercharges remains unbroken.
In particular, the constant solutions with a degenerate structure of the auxiliary fields
are forbidden in many cases. The Goldstone-fermion models with the partial spontanecus
breaking of the D=4, N=2 [4] or D=3, N=2 [5] supersymmetries have been constructed
using the topologically non-trivial classical solutions preserving the one half of super-
charges. These models have been also studied in the method of ponlinear realizations of
supersymmetries [6]-[11] using superfields of the unbroken supersymmetry.

Recently the abelian gauge model with two FI-terms has been used to break sponta-
neously D=4, N=2 supersymmetry to its N=1 subgroup {12]-[14]. This model describes
the non-minimal interactions of the complex scalar field with the fermion and U/(1)-gauge
fields. In the D=4, N=2 superspace these interactions correspond to the holomorphic
action of the Goldstone-Maxwell (GM) chiral superfield W satisfying the modified su-
perfield 2-nd order constraints. In comparison to the original constraints of the N=2
vector multiplet {15], these constraints contain the constant terms which guarantee the
appearance of the unusual constant imaginary part of the isovector auxiliary component
and the Goldstone fermion component in the GM-superfield.

The more early example of the Goldstone-type constraint has been considered in the
model with the partial breaking of the D=1, N=4 supersymmetry {16]. Thus, these
constraints introduce a new type of the supersymmetry representations with the linear
Goldstone (LG) fermions. In distinction with the Goldstone fermions of the nonlinear real-
izations which transforms linearly only in the unbroken supersymmetry, the LG-fermions
have their partners in the supermultiplets of the whole supersymmeiry. The nonlinear
deformation of the standard constraints is also possible [3], however, we shall discuss only
constant terms in the modified constraints which are related with the spontaneous break-
ing of supersymmetries. It will be shown that the models with the LG vector multiplet
and the corresponding dual scalar multiplet solve the problem of the partial spontaneous
breaking of the D=3, N=2 supersymmetry. Recently these problems have been consid-



ered in the framework of the N=1 superspace [11].
The coordinates of the full D=3, N=2 superspace are

z=(z*,0%6% , (1.1)

where «, 3 are the spinor indices of the group SL(2,R). The spinor representation
of the z-coordinate is connected with the vector representation via the 3D v-matrices
7%8=(1/2)5™(7m)*?. The algebra of spinor derivatives in this superspace has the follow-
ing form:

{DoDs} = i00g +icapZ , {1.2)
{Pa: D} =0, {Da,Ds}=0, (1.3)

where Z is the real central charge and

Dy = Dy + %a‘az . Da=a,+ %éﬂac.g ,
Dy =Dy — %anz ., D.=8,+ %eﬁaﬁ. (1.4)
We shall use mainly the spinor derivatives without the central charge D, and D,.

The corresponding generators of the N=2 supersymmetry are
1, - o~ 1,
Qa = Qa + EHD'Z 2 ch = ch - EBGZ - (15}

The N=2 supersymmetry algebra is covariant with respect to the Ug{1) transforma-
tions
8 — e, = eV (1.6)
We shall consider the following notation for the bilinear combinations of spinor coor-
dinates and differential operators: :

(8)2 = %eaaa , (0= -;-é“é., , (17)
(09) = %aaéa . o= %[aaéﬂ tae g, (1.8)
(D)? = 3D°Do, (D)= 3DubD", (1.9)
(DD)=2D°Da,  Dap=5(Dos Dal + a4+ 6) . (1.10)
and the useful relations
DDy = gaug +eag{DD) + %Daﬁ , (1.11)
(DD = 5% (85 — iDag) + 5 (DYDY (1.12)
Dog(D)? = 18,5(D)* , (1.13)
(D@ =1, (DF@F=1, (DD)ER)=-3. (1.14)
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The integration measures in the full and chiral superspaces are
d'z = Pz(D)HD)?, d°¢ = &z, (D). {1.15)

They have R-charges 0 and —2, respectively. The complex chiral coordinates can be
constructed by the analogy with D=4

¢=(z2%,67), P =1 4i0°F {1.16)
It is convenient to use the following rules of conjugation for any operators [3}:
EVP =YXt XY = (eI Y {1.17)

where {X, ¥} is the graded commutator and p(X) = £1 is the Z-parity. The action of
the differential operator X on some function f{z) and the corresponding conjugation are
defined as follows:

Xf=X.f} = (XA = —(-1)pFPnxift (1.18)

(Remark that the alternative convention of conjugation (X f)}f = (- 1)V XT f1 is also
possible.) '
Consider the conjugation rules for the spinor coordinates and derivatives
ey =6, {07 =00)°. (68 =-(68), {1.19)
Di=b., [(DY)=(D)?., (DD} =—(DD). (1.20)

It is possible to introduce the real N=2 spinor coordinates 8% = (67)7

= g i8), 8= (e i) (121)
(OF = J106) — (6:60) - 20,02 . (B) = $000 = (B8, (12)
(69) = 10,00+ (Ba82)] (680! = ~(064) (1.2
e =+ p)., (0) =6V (1.24)

and the corresponding real spinor derivatives

Dl D+ %gmz . DE=Di- 6.7, (1.25)
i - i _

Dzl: = %(Dﬂ' + Dn) s Di = %(Dn - Dn) : (126)

{Dl.D}} ={D2. D3} = iBas , {DL.Di}=0. (1.27)

The D=3, N=2 gauge theories have been considered, for instance, in refs.[17]-[20]. The
non-mirimal selfinteraction of the U{1) gauge supermultiplet in this case is eyuivalent



to the interaction of the 3D linear multiplet. We shail analyse the modified LGM-
constraints for the 3D gauge multiplet. The corresponding real N=2 superfield describes
the Goldstone fermions interacting with the scalar and vector fields.

In sect.4 we discuss the prepotential solution for the LGM supermultiplet which con-
tains additional terms manifestly depending on the spinor coordinates and some complex
constants playing the role of moduli in the vacuum state of the theory together with the
constant of the FI-term. Using this representation in the nor-minimal gauge action one
can obtain the constant vacuum solutions with the partial sportaneous breaking of the
D=3, N=2 supersymmetry. Note that the supersymmetry algebra is mod:fied on the
LGM prepotential V by analogy with the similar modified transformations of the 4D
gauge fields or prepotentials in refs.[13, 14].

The sect.5 is devoted to the description of PSBGS in the interaction of the LG-
chiral superfield which is dual to the interaction of the LGM superfield. This manifestly
supersymmetric action depends on the sum of the chiral and antichiral superfields and
some constant term bilinear in the spinor coordinates. The non-usual transformation of
the basic LG-chiral superfield satisfies the supersymmetry algebra with the central-charge
ferm.

The N=1 supermembrane and D2-brane actions [11] can be analysed in our approach
using the decompositions of N=2 superfields in the 2-nd spinor coordinate 3. 1n sect.§, we
consider the N=1 components of the extended superfields and the covariant conditions
which allow us to express the additional degrees of freedom in terms of the Goldstone
superfields.

2 Vector multiplet in D=3, N=2 supersymmetry

The D=3, N=2 gauge theory [17, 18, 19, 20} is analogous to the well-known D=4 N=1
gauge theory, although the three-dimensional case has some interesting peculiarities which
are connected with the existence of the topological mass term and duality between the
3D-vector and chiral multiplets. We shall consider the basic superspace with Z=0.

The abelian I/{1}-gauge prepotential V(z) possesses the gauge transformation

fV=A+A4, (2.1)
where the chiral and anti-chiral parameters are considered
D,A=0, D,A=0. (22)
The D=3, N=2 vector multiplet is described by the real linear superfield
W(V) =i(DD)V (2.3)
-satisfying the basic consiraints

(D)*W = (DY?W =0. (2.4)

The additional useful relations for this superfield have the following form:
D(DDYW = —% s DFW | (2.5)
(DDYW = £0°%(8ug — iDug) W . (2.6)

The components of the vector multiplet can be calculated as the =0 parts of basic
superfields and their spinor derivatives

olz) = Wlo = iDBWlo, Dale) = (DaW)o (27)
j‘c\r(-":) = _DuwlD 3 AnB(I) = Duﬂv}lﬂ 3 (2'8)
Faﬂ(z) = DGEWID 1 G(:l‘.‘) = z{Df?)Wh 1 (29)

where A,p and F,y are the 3D-vector field and its field-strength , G is the real auxiliary
component and ¢, A and X are the physical scalar and spinor fields. The scalar field
appears as the 3D analog of the 3-rd component of the 4D gauge field.

The low-energy effective action of the 30 vector multiplet describes a non-minimal
interaction of the real scalar field with the fermion and gauge fields. For the U(1) gauge
superfield V this action has the following general form:

SW)=—3 [d=HW), (W)= H"(W)>0, (2.10)

where H{W) is the real convex function of W. Note that the action §(W) conserves the
Ug(1) invariance.

The interesting feature of the 3D gauge theory is the existence of the Chern-Simons
term [17]

ik =
Ses= 5 ] JZV(DD)V (2.11)

where k is some constant. The component form of this action contains the topological
gauge term [ d°zA,p0%A". Note that the non-abelian generalization of this term has
been constructed in ref [18].

The 3D linear multiplet is dual to the chiral multiplet ¢. The Legendre transform
describing this duality is

S[B,9] = —% [=1B) - 28], (2.12)

where B is th_e real unconstrained superfield and ®=¢ + $. Varving the Lagrange multi-
pliers ¢ and ¢ one can obtain the constraints {2.4).
Using the solution of the algebraic B-equation

H'(B)={(B) = @ (2.13)

one can pass to the self-interaction of the chiral superfields

B = B(®)=7"Y(®), (2.14) -
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S(®) = —%ffzf{(@) , (2.15)
H(®) = H[B(?)] - ¢B(%), (2.16)
bl #H .1 .
@=T(B)s -5'52'_=T=_;‘ (21[)
The corresponding superfield equation of motion is
(DY E'() = #(@)(DY3+ 57(8)DdD°6 = 0. (2.18)

This chiral model describes the special case of the Kzhler supersymmetric o-model
which is completely determined by the real function H and possesses by construction the
additional abelian isometry

¢ =+d+if, (2.19)

where § is some real parameter.

3 Difficulties with spontaneous breaking of
supersymmetry

Lei us consider the spontaneous breaking of supersymmetry in the non-minimal gauge
model (2.10) with the additional linear FJ-term

1 .
Sei=3¢ f &V, (3.1)

where £ is a constant of the dimension —1. Varying the superfield V one can derive the
corresponding superfield equation of motion

_i{(DDYH(W) + € = —ir (W) DD)W — %T'(W)Dawbgw +E=0,  (32)

where
r(Wy=H" (W), (W)=H"(W). (3.3)

The spinor derivatives of this superfield equation generate the component equations
of motion of different dimension

Da{DDYH' = _%T L DPW + -lz-r'DuW(DI'J)W
1 3 - _
457 DOW(Deg + 500 W ér”DuWDﬂWD,gW - %T’D“W(D)zw —0,(34)

where the last term vanishes due to the constraint (2.4). The vacuum solutions can be
analysed with the help of the equation

(DDYH'(W)=10. {3.5)

We shall study the constant solutions of the equaiion of motion using the following
vacuum ansatz:

Vo = 2i(0f)a — 2V(6)}G,  Wo=a+2i(60)G, (3.6)

where a and (G are constanis. The lowest vacuum components of the equations {3.2) and

{3.5) read

GT(Q) - E =0 1’ (37}
Gir'a) =0 . (3.8)

The non-Lrivial solution Gp70 is possible for the guadratic function H only.
It is useful to consider the real 3D spinors A = (A2)!

1 sy fa)
A = S5 +i9) (3.9)

and the corresponding real spinor parameters of the N=2 supersymmetry

&= %(67 +1i€eg) - (3.10j
1t is clear that the constant solution (3.6) can only break sponianeously both super-
symmetries
8,0° = 1Gyt™ . 5 A% = —iGe” i3.11)
since it generates two real Goldstone fermions.

Thus, the full spontanecus breakdown of the N=2 supersymmetry 1s possible only for
the frec theory with the W?2(V)-interaction and the FJ term. The pariial spontancous
breaking is forbidden if one uses the vector multipiet satisfying the standard constraint
(2.4).

Let us estimate the role of the Chern-Simons term (2.11) in the vacuum equations.
Varying the action §{W) + Sgs + 5S¢, one can obtain the modified equation of motion

—i{DDYH' + kW +£=0. (3.12)

This superfield equation produces the following modified vacuum equations:
Grla)—ka—£=10, (313
Gir'(a) — kG =1. (3.14)

The scalar poiential of this model is

1
Vila) = s——{£ + ka)* . 3.15
e = gy 6+ ko) (3.15)
For the arbiirary [unction oo > 7(a) > O this poteniial has the unique manifesily
supersymmeiric minimum ¢ = —£k~!. Thus. even the {ree SBGS solution 7 = const
disappears in the presence of the CS-term.



4 Partial spontaneous breakdown of supersymmetry

We shall define the modified Goldstone~-type constraints for the 3D vector multiplet by
the analogy with refs.[16, 14] and show that the partial spontaneous breaking of the
D=3, N=2 supersymmetry is possible for the non-trivial gauge interaction in the frame-
work of this approach.

Consider the following deformation of the constraints (2.4):

(DPWw=c, (D¥W=C, (4.1)

where ' and C are some constants. These relations break manifestly the [7p(1) invariance.
The solution of these constraints can be constructed by analogy with Eq.{2.3)

W = {DD)V + (6)°C + (§)°C . (4.2)

This LGM superfield contains new constant auxiliary structures which change radically
the matrix of the vacuum fermion transformations

6% = —Ce® +iGpe® | {4.3)
B A™ = ~iGe* — CE® . (4.4)

It is evident that the PSBG S-condition corresponds to the degencracy of these trans-
formations
CC-Gi=0. (4.5)

In this case one can choose the single real Goldstone spinor field as some linear combination
of \¢. For the case of the pure imaginary constant C' the LG fermion can be identified
with A%.

Tt should be stressed that the shifted quantity W (V) = i(DD)V in Eq.(4.2) is not a
standard superfield

W =i QEW = W (V) = Ce®f, — Ce°, + iefQEW (V) , (4.6)
The algebra of these transformations is not changed on the gauge-invariant superfield
16, 8IW (V) = g { Q. QpIW (V) - (4.7)

The transformation of the LG M-prepotential V' will be considered in the end of this
section.
The action of the LGM-superfield {4.2) has the following form:

(V) = --;- [admw) - evi 4.8)

and depends on three constants £,C and C.
The non-derivative terms in the component Lagrangian

26 = ICPr(e) - €6 , (49)
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produce the following scalar potential
1 -
V(o) = SlICPr (o) + €77 (0] (410)
The vacuum equations of this model are

Gr{e)-£=0, (4.1i)
(G* - |CP7 (@) =0. (4.12)

The PSBGS solution (4.5) arises for the non-trivial interaction r'{a)30. This solution
determines the minimum point a, of the model

=l
T{8,) = e (4.13)
The vacuum auxiliary field can be calculated in the point a,
Go= = —iCl. (4.14)

= 7(as)

Using the U/r{1) transformation one can choose the pure imaginary constant C — ¢ = i|c}
{without the loss of generality) then

Go=—ic=|c|. (4.18)

This choice corresponds to the following decompositior of the LG M-superfield (4.2)

W = W,(V2) + 2ilc](6262) , (4.18)
W,(V,) = i(DmD; +D*D2}Y, . (4.17)

where V; is the shifted LG M-prepotential which has the vanishing vacuum solution for
the auxiliary component. It is evident that this representation breaks spontaneously the
2-nd supersymmetry only.

Let us consider now the supersymmetry transformations of W, and ¥

8 W, = ie2QEW = —2i|c|eSfan + ieTQEW, , (4.18)
6V, = Ale,0) +4eSQEV; , (4.19)
Ale, 8) = 2|c|e20aa (02815) = —2V2c]ieSi0.(0)* + 8(6)7] . (4.20)

The supersymmetry algebra of the Vi-transformations is essentially modified by the
analogy with the transformations of the prepotentials in refs.[13, 14}

(65, 8] Vs = egnf {GF, Q.IB}V;
= dlel{} — n5el)b10020 + § {QL, QBIV (4.21)

where Q% are the generators of the modified transformations.

)



The modified part of the supersymmetry algebra of transformations has the following
form:

{Q%, @5 JmoaVs = 4|cl61ab25 = 4ilc}Oap + 2ilcleap[(8)” + (B)7] - (4.22)

It should be stressed that both terms in this anticommutator can be decomposed as a

sum of chiral and anti-chiral functions and do nof contribute to the Lie bracket on the
superfield W, .

e — _%(I:E — 228y, z28 = (z2f) (4.23)

The modified anticommutator contains the additional vector and scalar generators
Top, T and T '

Q5. Q%) =cas(T+T) + T . (4.24)
TogV = dilc|ns , TV; = 2ijc)(8)* . {4.25)

The additional generators belong to the infinite Lie algebra of the U(1)-gauge transfor-
mations which arises in the (z, f}-decomposition of the chiral gauge parameters A (2.1).
These generators vanish on the gauge invariant quantity W,. One should also include in
the modified N=2 supersymmetry algebra all nontrivial commutators of the T generators
with the spinor generators Q%.

Consider the spinor gauge connection

Axlz) = DV, , 6p A, = D A (4.26)

in the chiral representation (4,=0). The inhomogeneous term in the modified supersym-
metry transformation of this gauge superfield has the following form:

§Aq = —2v/2i|c|[esa @) — Onehs] + 12 QE A, . (4.27)

It should be remarked that the minimal interaction of the charged chiral superfields
with the LG M -prepotential V, breaks the supersymmetry. The analogous problem of
the LGM interaction with the charged matter appears also in the PSBGS model with
D=4, N=2 supersymmetry [14].

5 The 3D chiral interaction with the partial breaking

The general effective action of the chiral superfields ¢; {1 is some internal index) can be
written as follows:

/ dzd"0K (¢r, $x) + | f d'zd0P(¢;) + c.cl] (5.1)

where K is the Kihler potential and F is the chiral superfield potential.

The existence of the non-trivial §BGS solution implies the degeneracy of the matrix
&6, P. The vacuum equation for the single chiral superfield ¢ may have the non-vanishing
SBGS solution only in the trivial case of the linear function P(¢) and the free Kahler
potential K = ¢¢.
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We shall show that the spontaneous breaking of supersymmetry is possible for the
non-trivial interaction of the LG chiral superfield which possesses the inhomogeneous
supersymmetry transformation. Let us consider the dual picture for the PSBGS gauge
model with the F/-term (4.8)

5 N=_L (4 _ B~ lig [
$(B.¢.8) = -5 fd z[H(B) - Bd) Z[Cfd (d+cel], (5.2)
where the modified constrained LG superfield is introduced
d=o+o+2i666), (DD =-ic. (5.3)

Varying the chiral and antichiral Lagrange multipliers © and ¢ one can obtain the
LG AI-constraints (4.2) on the superfield B and ther pass to the gauge phase B — ﬁ'(l-’)
where the {#8)-term in @ transforms to the Fl-term.

The algebraic B-equation

H'(B)=[(B)=$, (5.4)

provides the transform to the ‘chiral’ phase
B — ;7%= B(®). (5.5)
The transformed chiral action is

&(@) = —% [dAAE) +(CEF +ce)d) . (5.6)
H{(®) = HIB($)] - $B($) (5.7)

The linear terms with C and C break the Ug(1)-symmetry (1.6), however. this action is
invariant with respect to the isometry transformation {2.18).

It should be underlined that the LG-superfield & transforms homogeneously, while
the supersymmetry transformation of the LG-chiral Lagrange multiplier ¢ contains the
inhomogenecous term

8.6 = —if(§7E) + iefQng - (5.8)

The action & is invariant with respect to the LG representation of the N=2 supersym-
metry, since the 1-st term of this action depends manifestly on the covariant superfield @,
and the 2-nd one is invariant due to the linear f-dependence of the inhomogeneous part
of ,¢.

Consider the #-decomposition of the LG-chiral superfield

¢ = Alz.) +8%a(z.) + (0)*F(z.) (5.9)

where z; is the complex coordinate of the chiral basts.
The Lie bracket of the modified supersymmetry transformation {5.8)

[8. 8] = H6(e™ T ~ 0°En) + €Xnf {QF, QL 30 (5.10)

5|



contains the compasite central charge parameter corresponding o the following action of
the generator Z on the chiral superfield:

Ze=¢, (Zé¢=-&). (5.11)

Thus, the Goldstone boson field Im A{z) for the central-charge transformation appears in
this model. It should be remarked that the isometry transformation (2.19} in the chiral
model without PSBGS cannot be identified with the central-charge transformation.

It is interesting that we can define the deformed chiral superfield

de = $+ik(00) = €¢I =0,
Dage = (Da — 50028 =0 (5.12)

satisfying the unusual covariant condition.
The superfield equation of motion for the action (5.6)
(DYH(®)+C =0 (5.13)

generates the vacuum component equations

Fit)+C=0, b=A4+A {5.14)
(IFF ey =0, (5.15)
F=H"=—r. (5.16)

The scalar potential of this model depends or the one real scalar component only

lian .
V() = S5 + [CP 7 (3) - (5.17)
The minimum point &, of this potential can be defined by the equation
V= SHBIE - 0P ) = 0 (518)
( ) =7 =gCF (5.19)

using the condition T'(b)#£0.
The vacuum transformations of the spinor components of the LG superfields ¢ and ¢
have the following form:

B = Foe™ — ife (5.20)
b = ite® + Py . (5.21)

The vacuum solution |Fp[? = £2 corresponds to the degeneracy condition for these
transformations. The choice Fy = if breaks the 2-nd supersymmetry.

Thus, the non-trivial interaction of the LG-chiral superfield ¢ provides the partial
spontaneous breaking of the D=3, N=2 supersymmetry. This phenomenon has been
analysed also in the formalism of the D=3, N=1 Goldstone-type superfields [11].
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6 Passing to N=1 superfields

Let us assume that the spinor coordinates 85 parameterize N=1 superspace, and the gen-
erators (), form the corresponding subalgebra of the N=2 supersymmetry. The complex
chiral coordinates ¢ (1.16) can be written via the real spinor coordinates

{+4 i+ 1 ie3
2 =24 (08 +a o ), - {6.1)

6 = %{9;’ i) . (6.2)

We shall use the relations

(DY = %(DID‘} - %(szz) - ;'(DIJ_J?) . (D'DRy= D’“D" (6.3}

D,Dy = —3a3 +eap(D'DY),  {D(D'DY}=0, (6.4)
: 1 '
(D, (D'D')] = —id.pD" ,  (D'DY)P= 30, Da=0"0,. (65)
The chirality condition in the real basis

— 1 : B
Dot = 75(0; +iD}¢=10 (6.6)

can be solved via the complex unrestricted N=1 superfield y
¢ = x(z,6;) + 105 DL x(z, 01) + (026:)(D* DV )x(z, 6) . (6.7)

To prove the chirality in the N=1 representation one should use Eqs.(6.4,6.5) and the
relation

)
Dix(z,0:) = Eegarx.@X(xa th) . (6-8)
Using Eq.(6.3) one can readily obtain the relation between the chiral and N=1 integrals
[ #a(Dyé= [ @x(D'D)x(z.) (6.9)

where &?6,=(D"D?) is the imaginary spinor measure of the N=I superspace.
The transformation (5.8) has the following N=1 decomposition:

.1 , 1. ) i
56 = —5€07 (e + iera) + 5E05 (€10 — caa) + (8] + 5800p)é +icfQLe  (6.10)
and generates the corresponding transformation of the complex N=1 superfield:
1 . . .
8x = = 5801 (€0 + fera) — iDL X + €T QuX - (6.11)
Consider the 8;-decomposition of the basic superfield (5.3) of the chiral PSBGS model
& = x+ 2+ DA(x ~ )+ (B:0)(D'D)(x + 1) + i](00) + (@0

=E +65DLp + {8:8:)[( D' DY)T + 2i€] (6.12)
Bz, &) = x + % +i£{681) , p=ix —1i¥ (6.13)
13



where % is the massive real N=] superfield and p is the real Goldstone superfield for the
2-nd supersymmetry
8T = =2 D p +12QLT {6.14}
bp=—i€e30y, + 2DLE 4 ze‘l” [ (6.15)
The analogous transformations of N=1 superfields have been proposed in ref.[11].
The authors of this work have shown that the additional superfield ¢can be constructed in
terms of the spinor derivative of the Goldstone superfield g in order to built the super-
membrane action. The massive degrees of freedom in our approach can be removed using
the covaniant condition A
=0, (6.16)
which allows us to construct ¥ via DIp by analogy with the similar construction in the
D=4, N=2 theory [10}. ‘
The superfield p possesses also the central-charge transformation induced by the cor-

responding transformation of the chiral superfield (5.11). )
Qur N=2 action (5.6) can be rewritten via the both N=1 components of ®

—gé / Pr(DPd+cc = % j' Pzd?,[(C — C)E +4(C + €Yo + const , (6.17)
-1 j d20(8) = - > [ £2(0' DY DD ()
f Bzd?6,{[2i¢ + (D' DEIH(E) + -r(z)pm pDLp}, (6.18)

Note that these integrals, including the linear in p term, are invariant with respect to the
N=2 supersymmetry transformations (6.14,6.15).
Let us analyse the N=1 decomposition of the gauge prepotential

Vi(z, 81, 02) = w{z, 61) + 05 Vo{z,0) + (82021 Mz, 8,) (6.19)
and the chiral gauge parameter
A =14 i65D% + (8:85){ D' D*))A(z,6,) . (6.20)
The gauge transformations of the N=1 componeats are
E=A+13, {6.21)
6V, =DLA-1), {6.22)
M = —i(D'DY(A+ ). {6.23)

Thus, « is a pure gauge degree of freedom, V,, is the N=1 gauge superfield, and M is the
scalar N=1I component of the N=2 supermultiplet. _
The 2-nd supersymmetry transformations of the N=1 superfields have the following

form:

bak = —ieg Vs (6.24)
. 1

8:Vs = —€aal M + 4ilcl(0:60,)] - 550005, (6.25)

B M = %ﬁgauﬁva _ (6.26)
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The deformation of the supersymmetry algebra (4.22) can be studied also in this repre-
sentation.

Consider the N=1 decompaosition of the linear superfield (4.17)

W,(V,) = %[(D‘D‘) +(DPDAV, = w+ 5 F,(V) — (6:20:)(D' DV, (6.27)

(D'DY - (D*DHW, =0, (D'DHYW,=0. (6.28)

where the gauge-invariant scalar and spinor superfields are defined
w = %[M YD DY (6.20)
)= 1V(J‘_IJJDI)P},‘ + 16051’3 . DR, =0. (6.30)

The Goldstone transformation of W (4.18) produces the following ez-transformations
of the N=1 superfieids:

dw = —ies F, , (6.31)
0Fy = —egof2le| + (D' D yw] + "2-62 2 Oagw . (6.32)

The spinor superfield strength F, is analogous to the Goldstone spinor superfield of
ref.{11]. It describes the Goldstone degree of freedom of the D2-brane, and the superfield
w corTesponds to the massive degrees of freedom. Our construction introduces the N=1
gauge superfield V, as the basic object of this model and allows us to study the modifica-
tion of the supersymmetry algebra on the gauge fields of the D2-brane. It is not difficult
to rewrite the N'=2 action (4.8) in terms of the N=1 superfields.
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