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INTRODUCTION 

Quantum Langevin equation has many applications in quantum physics. In particu­

lar, the Brownian motion of a quantum oscillator attracted widespread attention 

(e.g.[l-5]). The present paper treats of the quantization scheme for the <<free» quan­

tum Brownian particle. This· model may be formally thought to be a limiting case of the 

harmonic oscillator with friction. However it is complicated by infrared divergences, so 

the construction of the so-called physical representation, or «dressing-up» of a *-alge­

bra of the system needs a modification of the standard quantization method (whose im­

mediate application gives rise to quantum fields in indefinite metric). 

In the model of the «free>> Brownian particle, the Langevin equation takes the form 

m·o,q(t); p(t), a,p(t);-y- p(t)+Jl:ym·E,(t), (1) 

where q(t) and p(t) are the coordinate and the momentum of the particle with 

mass m, y·m > 0 is a viscous mction coefficient, ~2ym· E,(t )is a fluctuating force whose 

stationary state represents the white noise. Quantization needs a suitable Hamiltonian 

realization of the equations. The heat bath in the present case (as with a harmonically 

bound particle) can be modelled by a semi-infinite string [3,4] stretched along the posi­

tive x axis and allowed one to oscillate in the y direction. A particle, playing the role of 

the Brownian particle and attached to the string atx; 0, may move along the y axis. The 

string configuration at a time moment tis given by the expression 

y;(ymf112 <jJ(t,x). (2) 

The particle coordinate on the y axis at the time moment t is 

q(t); (ym)-112 <jJ(t,O). (3) 

Since the system as a whole is a quantum dynamical system, the terminology of quan­

tum fields and quantum processes is relevant here. The connection with the terminology 

of random (quantum) processes is provided by the fact that dynamical variables of the 



Brownian particle as of an open system and the force acting on it from the heat bath are 
random (possibly noncommuting) variables in any state of a given representation. 

The Langrangian of the system is a sum of the Langragian of the free semi-infinite 

string and the kinetic energy ~ m( a, q )2 = 2~ (a, <p )2
1 """ of the particle: 

L=_I_ J((a,<p)
2 -(ax'P) 2 )e(x)dx+~ J (a,'P)

2
8(x)dx. (4) 

2 2y 
(As usual, 8(x) =I for x ;o, 0 and 8(x) = 0 for x < 0.) Considering the field configuration 
<p(t,x) as being a «canonical coordinate», we find the conjugate «canonical momen­
tum» 

j(t,x)=~ =a,<p-( S(x)+y-1 ·li(x)). (5) 
8iJ,<p 

The Hamiltonian of the system is 

H= J i(t,x)·o,<p(t,x)dx-L=_I_ J((a,<p)
2 +(ax'P)')e(x)dx+~ J (a,<p)

2
8(x)dx,(6) 

2 2y 
and the equation of motion a, i+ ISL/ IS<p = Omeans 

(a; -a;)<p·8(x)+r-'-(a; -ax)'P 8(x)=O. (7) 

A consistent treatment of this equation is possible if the field <p(t ,x) is meant to depend 
in a smooth (or C~) fashion on the spatial variable x as on a parameter, being a usual or 
generalized function in the temporal variable r.ln such a case the equation of motion (7) 
reduces to the wave equation 

(a; -a;)<p·S(x)=O (8) 

and the boundary condition 

(a; -y·ax}~x"o =0. (9) 

According to (3), the physical meaning of (9) is that the string acts on the particle with 

the force (r I m) 112 
-ax<p(t,x)!x"o along the Oy axis. 

Note that the Lagrangian (4) is invariant under the !-parameter gauge group with 
gauge transformations of the first kind 

<p(t,x)--*<p(t,x)+g,g Eilt (10) 

In this case i(t,x)is the temporal component of the Noether «conserved>> current: 

a,i(t,x)+ axk(t,x)= 0, where k(t,x) = -ax<p· 8(x). (II) 

The corresponding charge is 

2 

8= f i(t,x)dx= f o,<p·(S(x)+y- 1 -li(x))dx. (12) 

It stands to reason that the charge along with the Hamiltonian is an integral of motion. 
The above treatment of the spatial variablexas a parameter entails a formulation of 

the canonical formalism in terms of two-times Poisson brackets. Here the use can be 
made of the fact that the system under consideration is a linear boson one, i.e., that the 
Langrangian and the Hamiltonian are quadratic functionals of the field. In this case the 
phase space of the system, identified with a set of «classical» (or c-number) solutions of 
the equations of motion, is a symplectic space [6]. A symplectic form 8(i.e., a bilinear 
nondegenerate skew-symmetric form) assigns to any pair <p 1 ,<p1 of «classical» solu­
tions of equations of motion an expression 

8(<p1 ,<p2 )= J (i1 (t,x)·<p 2 (t,x)-i2 (t,x)·<p 1 (t,x))dx. 

With regard to (5), this can be rewritten as 

8(<p, ,<pz )= J (a,<p, ·<p2 -<p1 -a,<p2 )·(S(x)+y-1 ·li(x))·dx. (13) 

Then the Poisson brackets of the «classical>> field <p(l ,x )can be found from the relations 

{8(<p,<p, ),8(q>,<p2 l}=8(<p, ,<pz ). (14) 

In section 1 we specify the space of «classical» solutions of the equations of motion 
(8), (9). This turned out to be isomorphic with the phase space of the so-called left com­
ponent <pL (t) of the free real scalar massless field in the two-dimensional Minkowsky 

space-time JR2.In this way the equivalence of the given model (as a linear boson system) 
is established with the model of the free semi-infinite string, whose Lagrangian is 
gained from (4) in the limit y-+ co. We find two-times Poisson brackets of the «classi­
cal>> field <p(l,x~ 

In section 2 we construct representations of the quantized field <p(t ,x). The vacuum 
two-point function of the field <p(t ,x) possesses infrared divergences. In the standard 
treatment of this situation the field <p(t,x)is termed «unphysical», and its realization in 
a pseudo-Hilbert space with indefinite metric may be tolerated. There are gauge invari­
ant quantities, referred to as physical variables, which are generated by the components 
i(t ,X ),k(t ,x) of the Noether current or, equivalently, by the partial derivatives a' <p, a, <p 
of the field. They possess the Fock vacuum state and also (Gibbs) stationary states in 
case of nonzero temperature T. In this sense the field <p(t ,x )is considered as a non-Fock 
linear boson system. The conventional treatment is not wholly satisfactory, since the 
coordinate q(t) of the Brownian particle turns out to be an unphysical variable and 
hence only the second of the Langevin equations (I) acquires a physical meaning. Like­
wise the canonical commutation relations between the coordinate and the momentum 
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of the Brownian particle are devoid of physical meaning. An alternative viewpoint [7] 
which is adopted here enables one to treat the field <p(t ,x) as a physical variable in the 
framework of degenerate Fock linear boson systems. Physical representations of the 
field algebra are constructed on account of gauge in variance from the vacuum or tem­
perature (forT> 0) generalized states which in turn are induced by the Fock vacuum or 
Gibbs states of the algebra of gauge invariant quantities. 

I. THE PHASE SPACE OF THE SYSTEM 

A phase space of the system <<particle+string» is the set x of all real (or «classical>>) 
C~ solutions <p(t,x) of the equations of motion (8), (9) in !lb<i:+ *with <p(t,x) and 
a, <p(t,x) being in the Schwartz space df, (iR+) of rapidly decreasing test functions in 
the spatial variable x for all t e R. The phase space is a symplectic space with the sym­
plectic form (13) where 'Pi ,<p 2 ex. The right-hand side of (13) does not depend on 
t since 

a, O{<pi ,<p2 ) = J ( 8~'Pi · 'Pz -<pi -a~<p 2 )-( S(x)+y-i · O(x))dx = 
= J (a; 'Pi ·<p2 -<pi .a_;<p2 )e(x)dx+(ax~i ·<p2 -<pi -ax'Pz)lx=O =0 (15) 

The !-parameter dynamical group acts on the field by time translations 

<p(t,x)-> <p, (t,x) = <p(t -T,x), T e JR. (16) 

These are symplectic transformations: O(<p1_, ,<p 2_, )= 0( 'Pi ,<p2 ), since (13) is indepen­
dent oft. They define the Hamiltonian of the linear boson system: 

I 
H=-a,O(<p, ,<p~,=O· 2 . 

In terms of variables t ±xand partial derivatives a± with respect to these variables, 
t.l:!e wave equation (a; -a; )'P = 0 can be put in the form a+ a- 'P = 0, which yields the 

general formula for solutions of the wave equation in JR x R:+ 

<p(t,x)= _)z('PL(t+x)+<pR(t-x)). (17) 

*The following notations are used: iii:+= {x e 1!!.: x ;, 0} ,iii:_= {x el!!. x::; 0}. 8,: (lR ±land 
~(R) stand for subsets of all real test functions in the Schwartz spaces &'(R±) and c9'(1R). 
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Here <pL (t) and 'PR (t) are 'i:f"'function on R, called the left and right components of 
field <p(t ,x), respectively. They are reproduced from the field uniquely up to a constant 
c. This is evident from the expressions 

<pL.R (t)= Jz( 'P(t,O)+(c+! ax'P(T,x)lx=OdTJ} (J8) 

which follow from (17) after substitution x= Ointo <p(t,x) and i),<p(t,x). The arbitrary 
constant c will be specified further:c = c( <p ).* 

Designating 

<1/(t)=<p(t,O), (19) 

we show that the functions <1/(t ), <pL (t), <pR (t) are anti derivatives of functions from 
d7, (JR). Note that equation (6) impliesj a, <1/(t~ :5(2yH)'12 

,hence j<ll(t~is bounded by a 

first-degree polynomial in JtJ, so that <1/(t) e <i/1 
(JR). From (17) we find 

a,<p(t,X~ !=0 = Jz (ax'PL (x)-ax'PR (-x)), 

ax<p(O,x)= Jz (ax'PL (x)+ax'PR (-x)). (20) 

By condition, left-hand sides in (20) belong to <fT(R.) hence restruction of a, <pL (t) on 
R:. and a, 'PR (t) on R_ belong to <fT(R+) and <fT(R_ ), respectively. The boundary con­
dition (9) can be written in either of the two forms 

hence 

(r+ a, )a,<~~(t)=.fiya ,'PL (t), 

(y-a,)a,<~~(t)=.fiya,'PR (t), (21) 

(r2 -a~)a,<l/(t) = J2y(y-a, )a,'PL (t), 

(r2 -a;)a,<ll(t)=J2y(y+a, )a,<pR (t). (22) 

*Although the «classical>> fields cp e '1/'were originally defined on the set R xiii+, they are 
force-continued by formula ( 17) as rtff a:> solutions of the wave equation in R2 

_ This suggests that 
the semi-infinite string is supplemented by a <<Virtllah> semi-infinite string to form an infinite 
string, without adding new degrees of freedom. Similarly, the quantum field <p(t,x) may be 
thought of as an operator-valued generalized function in R2 obeying the wave equation. 
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Since the restrictions of right-hand sides of (22) on iR. and iR_, respectively, belong to 

&"(iR+) and &"(iR_), and since <t>(t) is a ~ 00 function by condition, we obtain that 

(r2 -o~)o, <t>(t) belongs to &(R). From this it is inferred by applying Fourier trans­

formation to the generalized function iJ, <t>(t) E cl.i' 1 (R) that a, <I>( I) belongs to 2/(R). 

Invoking (22) we obtain that iJ, cpL (t) and iJ, cp• (I) also belong to r7(R). 

This entails, in particular, the existence oflimits <l>(±oo ), cpL (±oo ), cpR (±oo ), which 

may be subjected to relations 

<!>( -oo) = .JZcpL ( -oo) = .JZcpR ( -oo ). (23) 

The former of these equations deleates the arbitrariness of the constant cin (18) and the 
latter follows from equation (17). Now equations (21) can be rewritten in the form 

(y + iJ t )<l>(t )=.J2ycpL (I), (y-iJ, )<l>(t)=.J2ycpR (1). (24) 

Invoking that iJ, <l>(t) ecl.i''(R) we obtain also 

<!>( +oo ) = .J2cp L ( +oo ) = .J2cp R ( +oo). (25) 

At last, equation (17) in the limitx--> +oo implies cpL (+oo )+ cp• (-oo) = 0, so in addition 

to (23), (25) we have 

$( -oo) =-<l>(+oo ), cpL (-oo) = -<pL (+oo ), cpR (-oo) = -<pR ( +oo ). (26) 

These relations mean that all of the functions <l>(t ), cpL (t ), cp• (t ), belong to the space 

E* &;. (R), consisting of functions of the form g(t )= {t* f)(t) =I t(t -<)f(<)<h for 

f ec?,.(ll!.); as usual, E(t)=lfor I ;o,Oand t(t)=-lfor t <0. 

Define Fourier transformation by the formula 

<i>(A.)= I <l>(t)·exp(z'At)dt. 

Now the relations (24) between the functions <I>{ I), cpL (t), cp• {I) become 

;pR (:\,)= y+tA;pL (/..),<i>(A.)=-1 (<iiL (/..)+{jiR (/..))= .f2·yq;L (/..). 
y-z'A .J2 y-iA. 

(27) 

Thus, we obtained isomorphisms <l>(t) ++ cpL (I)++ cpR (t) in the space E* ciT~ (Jl!.). 

Any of the functions <I>{ I ),cpL (t ),cpR {!)can be used as a way of parametrization of ele­

ments of the phase space ~of the system. It is convenient to choose the field cpL (t) as 

such parametrization. On account of formula (17), an expression for the symplectic 
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form in terms of cpf, cp~ is obtained as t tends to -oo in the formula ( 13) (which makes 

nondegeneracy of the form a explicit): 

a( 'P1 , 'Pz ) = M ( iJ, cpf (t )· cp~ (t)- cpf ( t )· iJ, cp~ {t l) dt. (28) 

Similarly, formulas (6) and (12) yield the Hamiltonian 
I , 

H=-zJ(a,cpL(t)rdt (29) 

and the charge 

Q= ~I /<r)dt (30) 

in terms of cpL (I), where/ (t )= iJ, cpL (t) is a left current. Note that the dynamical 

groups act as before by translations of the variable t: 

cpL(t)-->cp;'(t)=cpL(t-<), <EIR. (3 I) 

These formulas establish an equivalence between the present linear boson system and 
the model of the free semi-infinite string described by the field 

cp<0>(1,x)= ~(cpL(t+x)+cpL{t-x)). 
We are now ready to derive Poisson brackets of the «classical>> field. Formula (28) 

implies for cp1 cp, e Xwith cpf (t) = ~ E* f,f e &, (ll!.): 
, - 2 

I cpL(t)f(t)dt=a(cp,cp1 ). 

Putting cp j = ~ t* fj with fj e &', (Jl!.) for j = I, 2, we see that ( 14) becomes now 
2 

where 

consequently 

~ cp 2 (11 )./i (II )dt 1, I 'PL {tz )./i {tz )dtz} = cr(cpl, 'P2 )= 

I DL (t 1 -12 )ft (1 1 )/2 (t 2 )dt1 dt 2 , 

L I ·s I dA. D (t1 -t2 )=-E(t1 -t2 )=z P-·exp{-z'A{t1 -t2 ))-; 
2 A. 21t 

~ cpL{tl ),cpL{tz)}=DL{tl-12). 

(32) 

(33) 

By virtue of(17), (27) this suffices for derivation of two-times Poisson brackets of the 
«classical>> fields cp: 
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where 

{cp(t1 ,x1 ),cp(t2 ,x2 l} =D(t1 ,x1; t 2 ,x2 ), 

D(_it ,x1; t 2 ,xz) = 

=~f P~(exp(-i/c(t 1 _-t 2 +x1 -x2 ))+exp(-i/c(t1 -t2 -x1 +x2 ))+ 
y+tlc 

+--. exp(-i/c(t1 -t 2 -x1 -x2 ))+ 
y-tlc 

y-ilc JJ... 
+--. exp(-i/c(t1 -t2 +x1 +x2 )))-. 

y+ '"- 2n 

2. QUANTIZATION 

(34) 

(35) 

The quantized field cp(l,x) of the system <<particle+string» obeys the same equa­
tions of motion as does the «classical>> field. It is reasonable to regard cp(t ,x)as an oper­
ator-valued generalized function overthe space cV (R2 ) of test functions, with the wave 

equation ( o~ - o; )cp = 0 satisfied. By analogy, we may assume that cp(t, x) is expressed 

by (13) in terms of the left and right components. Now cpL (t) and cpR (t) are opera­

tor-valued generalized functions over the space cV(R) of test functions, interrelated by 

the formula 

RR (!c)= y-i"-;p\A.). 
y+ilc 

The canonical commutation relations (CCR) corresponding to (33), (34) are 

[ 
L L ] I L cp (t1 ),cp (t 2 ) =jD (t1 -t2 ), 

(36) 

(37) 

I 
(cp(t 1 ,x1 ), cp(t 2 ,x2 ) ] = ~ D(t1 ,x1 ; t 2 ,x2 ). (38) 

l 

Of the two components cpL (t )and cpR (t )only one is an independent field, so it suffices 

to construct physical representations only for the left component cpL (t ). 

We use the construction [7] of the vacuum (or zero-temperature) representation of 
the field cpL (t ), with suitable modification in case of nonzero temperature representa­

tions. Let&/be an abstact *-algebra ofCCR of the field cpL (t ), which contains unitary 

elements '!1 withf E &;. (R) satisfying the relations 

){',){', =exp(~JDL(t 1 -t2 )fi(t 1 )f2(t2 )dt1dt2 )-lt',+, 
JL n 2 11 n (39) 
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We suppose that o-/ consists of elements of the form* 

J 't!dfl(f), (40) 
c:{( 

with cJ(- an arbitrary finite-dimensional subspace in&;. (R),fl- an arbitrary com­

plex Borel measure on of( having compact support. Quantization of the system means 
the construction of a physical representation (or «dressing-up») of the *-algebra GS'/ in a 
Hilbert space. Here we are interested in the vacuum and the temperature representa­
tions.ln this case unitary operators E J,T with continuous dependence of f(in the weak 
operator topology) correspond to unitary elements '!1 . They can be written as 

EJ.T =exp(iJ cpL(t)f(t)dt), (41) 

with cp L ( t) the quantized field in a concrete (vacuum or temperature) representation. 

Gauge transformations (I 0) in terms of the left component cpL (t) take the form 

L L L L } 
cp (t)-+cp (t)+g , whereg = .J2g. 

The corresponding * -automorphisms A -+ A • act on the algebra cd by 

'f1 ->(lt'1 )• =exp(igL J (t)dt)-?1 . 

(42) 

(43) 

Elements 'lj for f f(t)dt = 0, i.e., for f =-o,FwithF E c!1, (R), are gauge invariant; in 

a concrete representation of cd such elements can be expressed in terms of the left cur­
rent J' (t) = a,cpL (t): 

E-aF .r =exp (iJ J' (t )F(t )dt). (44) 

Admitting in ( 40) only subspaces g-f{ c &;. (R) consisted of functions f E &;. (R) with 

f E &', (R), we obtain a *-subalgebra 9'1 of gauge invariant elements of cd. 

Let us assume, for the moment, that the field cpL (I) is a Fock system, then 

q;L (A.)-8(-A.) and q;L (A.)-8(/c) would be creation and annihilation operators (opera­

tor-valued generalized functions), respectively, and there would exist vacuum 
Wf (t1 -t2 ) and temperature (or Gibbs with temperature T) Wj (t1 -t2 ) two-point 

*Completion of the *-algebra c9£ in a corresponding norm topology is a kind of an abstract 
C*-algebra ofCCR 
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functions, which could be restored as generalized functions by the commutator function 
DL (t1 -12 )according to 

w~ (A.)= 9(A.)2DL (A.), 
i 

-L -1 !-L 
Wr(A.)=(l-exp(-j3A.)) ~Dr(A.)forT>O (45) 

l 

(in connection with the latter of these equations see, e.g., [2]). Here f3 = -
1
- with k the 

kT 
Boltzmann constant. The general requirements for the two-point functions 

Wf: (t1 -12 ) are that they be hermitian lm (W~ (A.)= 0), positive definite 

(W~(A.)<:O)and properly related to DL (11 -12 l(DL (t1 -12 )=-21m wf: (11 -12 l} 
w[ (t1 -12 )is distinguished by additional spectrum condition (support ofW~ (A.) 

is contained in R + ). 

However, the product 9(A.)·2 DL (A.)= 9(A.)· P _!_is ill defined (i.e., infrared diver-
; A. 

gent) and needs further defutition as a generalized function from 8 1 (ll.). The result of 

such defutition contains an arbitrary dimensional parameter K > 0 and can be written as 

L J I aA. W0 (11 -12 )= 9(A.)·P-exp(-iA.(t1 -t2 ))-= 

1 
A. 2n 

=--!n(0+iK(t1-t2)). (46) 
2n 

It is fairly obvious, W0L (11 -12 ) satisfies all the requirments apart from positive defi-

niteness. This indicates that Fock representation of the field <pL (I) consistent with the 

action (31) of the dynamical group does not exist. In other words, the field <pL (I) is a 

non-F ock linear boson system. 
Nevertheless, the positive definiteness property is restored partly if the functions 

fare restricted by the condition f =-B1F with Fe c!7,. (11.): 

J L - J ~- 12 <fA. W0 (t1 -12 )B,,F(t1 )B,,F(t2 )d11dl 2 = 9(A.)A.· F(A.) 
2
, <:0, 

so w.,L (t) belongs to the class of the so-called conditionally positive defmite general­

ized functions ofthefust order. Hence the left current/ (t) = a,<pL (t)and the *-subal-

*In the general case an arbitrary finite dimension of gauge group of the system of this class is 
allowable. 

10 

' 

gebra :}3 of gauge invariant variables of the algebra c-/ of the field <pL ( 1) possess 

Fock representation consistent with the action of the dynamical group. In this case we 
call the field <pL (I )(or, equivalently, the field <p(t,x)) degenerate Fock linear boson 

system*. The Fock vacuum states0 of the left current/ (t)is defined by a character­
istic functional 

So (<ff) =exp (-~ J WoL (II -12 )f(tl )j(t2 )dll dt2 ) 

for f =-B,F,F eB,(R). (47) 

In an analogous way W~ (A) is ill-defined (infrarer divergent), and can be de­

fined as a generalized function from 8 1 (ll.) by the formula* (with a suitable choice 

of a real parameter aT andP_!_ =-a,p2 ): 
A2 A 

L l-exp(-j3A) I 
Wr (11 -12 )= J A ·P A

2 
+ar ·O(A.) x (( J

-1 J 

X exp ( -iA.(t 1 -I, )) <fA.= _ __!_ Jn (0+ iK .!!.sinh ( 2': (I 
1 
-I, ))). (48) 

- 2rr 2rc " f3 -
Of the requirements on the two-point functions, the positive definiteness condition is 
not fulfilled. Rather w{: (I) belongs to the class of conditionally positive definite 

generalized functions of the first order (i.e., A.2 W~ (A)<: 0). Therefore there is the 

Gibbs state sr of the left current f (r )and of the subalgebra:}l with a characteristic 

functional obtained by substitution Wf: (11 -12 )instead ofW0L (1
1 

-12 )into (47). The 

Fock and the Gibbs representations of the algebra 9'1 are constructed uniquely (up to 
unitary equivalence) by the Gel'fand-Naimark-Segal (GNS [9]) construction. 

The statesr (T <: 0) ofsubalgebra ~induces a generalized state sr of the alge­
bra C'f// with a characteristic functional 

sr(~j)=2n·O(J f(t)dtl-sr(~j), fe<"'Y,(ll.). (49) 

This is a «State» with an infinite norm. In contradistinction to a state it is defined on 
the *-ideal0f of c-/ consisting of elements (40) with a measure dJl (f), which we call 

smooth in f(O). This means that f(O)( = J f(l )d1 )is not identical zero on a finite-di-

*See, e.g., [8]. 4.116.3 
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mensional subspace o// c &r (.lR ), and that with linear coordinates 

r, =f(O),r,, ... ,r. chosen on cdl the measure dJ-1-(f) is representable in the form 

dJ-L(f) =v(r, , ... ,r, )dr, ... dr., where v(r, , ... ,r.) is a generalized function in JR• smooth 
in 'i. The generalized state sr is obtained from the state sr by integration over the 
gauge group R: 

sr(A)=sr(f A'dg),A Erf. (50) 

(This is a correct formula in lieu of the previous definition (49).) 
TheGNS construction is easily extended to the generalized states sr which enables 

one to obtain vacuum and temperature representations of the algebra c-</. Hilbert space 
&"t'r is generated by generalized vectors X f,T (f E 6', (R)) with scalar product 

(x J.,T ,X 1,.r) = 21t· 8(-f1 (0)+ f 2 (O))·sr ('t.: J.+ h ). (51) 

Smoothing X f,T with an arbitrary measure dJ-L(/)smooth in f(O)(entering in the defi­

nition of the ideal r/ ) gains a subspace of vectors dense in OtT. The vacuum or the 
temperature representation 'tj -> E f,T is defined by generalized matrix elements 

(X j,,T ,E f,TX j,,T) =21t· 8(-f1 (0)+ f(O)+ f 2 (O))·sr ('t_ /,+ f+ /, ), (52) 

and quantum fields <pL (t) and <p(t,x) in the vacuum or the temperature representation 
are defined by formulas ( 41 ), (36), (I 7). These are operator-valued distributions over 
the test function spaces &'(R) and cii'"(R2

), respectively. The dynamical group of time 
translations and the gauge group are implemented by unitary operators U r (') and 
Vr(g)in Glt'r: 

Ur(')Xf,T =Xh,T with h(t)=f(t+,); 

. L-
Vr(g)X f,T =exp(tg /(O))·X f,T· (53) 

It is easy to pass from the fields <pL(t)and <p(l,x)to dynamical variables of the 
Brownian particle. The coordinate q(t) of the Brownian particle in the vacuum ortem­
perature representation as an operator-valued generalized function over the space 
&'(R) is defined by (3) or, equivalently, by 

q(t) = (ym)-t/2 <l>(t) (54) 

with <l>(t)defined by (19), (27). The former of the Langevin equations (I) serves as a 
definition of momentum P( t) of the particle, and the latter of the equations (l) reduces 
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to the first of the equations (21), when the field in the definition of the fluctuating force 
is identified with the left current: 

~(t) = a,q/ (t) = l (t). (55) 

Note that the fluctuating force in the vacuum s0 or the Gibbs states;- of the subalgebra 
9'3 is a Gaussian quantum field with mean 0 and with a two-point function defined by 
the relations 

(~(1, )~(I 2 l) 0 = f ep,p .. exp (-iA.(t, -lz)) d),_, 
21t 

f 
-1 d),_ 

(~(1 1 )~(12 l)r = (1-exp(-jR)) A.-exp(-iA.(t1 -12 )) 
2
" forT>O. 

When T---+ co, the «classical» white noise is obtained in the asymptotics 

((~(1 1 )~(12 l) ,.,) r -i 8(t1 -12 ). 

(56) 

The fact that q(t )and p(t )are operator-valued distributions is displayed in an inter­
pretation of quantum-mechanical commutation relations. With the help of(52) it can be 
checked that (for a E R), h(t) E &'; (R)) there exists the limit of 

exp(iaJ q(t )h(t)dt )when h(t )tends to 8(1 -10 )defining thereby exp (iaq (10 ))where­

as such a limit does not exist for exp (iaJ p(t)h(t)dt) (because of ultraviolet diver­

gences). This is an indication that the operator-valued distribution q(t )permits a restric­
tion q(t llr=t" defining the coordinate q(t0 ) at a fixed time. For the momentum 

p(l)such a restriction is not allowable.ln this regard commutation relations between 
the coordinate and the momentum inferred from (38) are of interest: 

[q(t1 ),p(t2 )]=if 2y(y 2 +A.2 
)-

1 exp (iA.(t1 -12 )) : = 

=iexp(-y lt1 -12 1)- (57) 

This suggests that, after smearing the momentum p(t) by means of convolution with a 
0-shaped sequence of functions h.(t), the equal-time canonical commutation relation 
between the coordinate and the momentum is reproduced in the limit h(t)-> 8(1): 

[q(to ),ph (10 )]-> i, where Ph (I)= p(l)* h(t ). (58) 

The peculiarity. of the model of Brownian motion under consideration is that the 
Langevin equations cannot be formulated in the frame of the algebra generated by the 
fluctuating force. It is necessary to extend this algebra incorporating an anti derivative 
of the fluctuating force. Indeed, as a gauge-invariant field the fluctuating force gener-
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ates only a gauge-invariant subalgebra of the field algebra rather than the whole alge­
bra, so only the momentum of the Brownian particle can be restored by the fluctuating 
force. It is the formula (27) that impliespCA.) = )]:ym · (y -iA.r' C,(A.1 so p(t)is a convo-

lution of the form 

p(t) = )2ym J S(t -1:)exp ( -y (t -1:))C,(c)d1: = 

= .,{i.Ym (8 (t )exp ( -yt ))* C,(t ). 

Formula (27) suggests also q(A.) =) 2y I m ( y - iA.) -I ~ L (A.), 

hence 

q(t) = )2y I m f e (t -1:)exp ( -y (t -1:))q/ (c)dc = 
= )2y I m·(S (t )·exp (-yt))* 'I'L (t ). 

(59) 

(60) 

The coordinate q(t ), as a not gauge-invariant variable which does not commute with the 
group of gauge transportation operators V r (g), cannot be expressed in terms of the 
fluctuating force. This is a distinguishing feature of the «free>> quantum Brownian parti­
cle as opposed to the quantum oscillator with friction. 
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