


INTRODUCTION

Quantum Langevin equation has many applications in quantum physics. In particu-
lar, the Brownian motion of a quantum oscillator attracted widespread attention
(e.g.[1—5]). The present paper treats of the quantization scheme for the «free» quan-
tum Brownian particle. This model may be formally thought to be a limiting case of the
harmonic oscillator with friction. However it is complicated by infrared divergences, so
the construction of the so-called physical representation, or «dressing-up» of a *-alge-
bra of the system needs a modification of the standard quantization method (whose im-
mediate application gives rise to quantum fields in indefinite metric).

In the model of the «free» Brownian particle, the Langevin equation takes the form

m-8,9(t)= p(t), 8, p(t)==y- pt)+[2Zym-5(1), (1

where g(t) and p(t) are the coordinate and the momentum of the particle with
mass m,y-m > 0 is a viscous friction coefficient, /2ym- £(#)is a fluctuating force whose

stationary state represents the white noise. Quantization needs a suitable Hamiltonian
realization of the equations. The heat bath in the present case (as with a harmonically
bound particle) can be modelled by a semi-infinite string [3,4] stretched along the posi-
tive x axis and allowed one to oscillate in the y direction. A particle, playing the role of
the Brownian particle and attached to the string at x =0, may move along the yaxis. The
string configuration at a time moment ¢ is given by the expression
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y=(m)"" o(,x). @
The particle coordinate on the y axis at the time moment # is
g(t)=(rm) " 9(2,0). &)

Since the system as a whole is 2 quantum dynamical system, the terminology of quan-
tum fields and quantum processes is relevant here. The connection with the terminology
of random (quantum) processes is provided by the fact that dynawnical variables of the
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Brownian particle as of an open system and the force acting on it from the heat bath are
random (possibly noncommuting) variables in any state of a given representation.
The Langrangian of the system is a sum of the Langragian of the free semi-infinite

. . 1 2 .
string and the kinetic energy %m(a, g = > (2, (p)"lx:(, of the particle:
3

=310 o) Yoot fo s @

{As usual, 8(x)}=1for x > 0and 6(x)=0for x < () Considering the field configuration
¢(z,x) as being a «canonical coordinatew, we find the conjugate «canonical momen-
un»

. _ oL . =
) =g =0,0-(B)+y 8(x)). 5)
~ The Hamiltontan of the systern is
. 1 2 1 2
H = [ itt,x)-8,0t,x)dc~L = (o)’ +(6,cp)2)e(x)¢r+2—yj(6,m) 8(x)dx, (6)
and the equation of motion &7+ 8L/ &¢ = 0 means
(87 -2 Yo- 00+ 17 (37 -2, Jo-8x) =0 )

A consistent treatment of this equation is possible if the field ¢{z, x)is meant to depend
in a smooth (or C™) fashion on the spatial variable x as on a parameter, being a usual or
generalized function in the temporal variable ¢. In such a case the equation of motion (7)
reduces to the wave equation

(27 -22)o-0xy=0 ®)
and the boundary condition

(37 18, )alx0 =0 ©
According to (3), the physical meaning of (9) is that the string acts on the particle with
the force (y/ m)uz -8, 0(1,%)] 4=p alongthe 0, axis.

Note that the Lagrangian (4) is invariant under the 1-parameter gauge group with
gauge transformations of the first kind

o{t,x) > o(t,x)+z.2 R (10)
In this case #(f,x}is the temporal component of the Noether «conserved» current:
8,i(t,x)+ 8, k(t,x) =0 where k(t,x)=-0,0-8(x). (1)

The corresponding charge is

e=jf(z,x)dx=ja,(p-(e(x)+y"' -8(x)dx. (12)

It stands to reason that the charge along with the Hamiltonian is an integral of motion.

The above treatment of the spatial variable x as a parameter entails a formulation of
the cancnical formalism in terms of two-times Poisson brackets. Here the use can be
made of the fact that the system under consideration is a linear boson one, i.¢., that the
Langrangian and the Hamiltonian are quadratic functionals of the field. In this case the
phase space of the system, identified with a set of «classical» (or c-number) solutions of
the equations of motion, is a symplectic space [6]. A symplectic form &(1.e., a bilinear
nondegenerate skew-symmetric form) assigns to any pair ¢, ,@, of «classical» solu-
tions of equations of motion an expression

801,02 )= { (i) (1,%)- 02 (1,3) =2 (£,%) 9, (1,3))dx.

With regard to (5), this can be rewritten as

8(0.02)=] (3,0, 02 —0; -3,0,)-(B(x)+7 ™" -8(x))-dx (13)
Then the Poisson brackets of the «elassical» field @{¢,x ycan be found from the relations
80,9, ).8(0. 9, )} =80, 92 )- (14

In section 1 we specify the space of «classical» solutions of the equations of motion
(8), (9). This turned out to be isomorphic with the phase space of the so-called left com-
ponent o’ (1) of the free real scalar massless field in the two-dimensional Minkowsky

space-time R In this way the equivalence of the given model (as a linear boson system)
is established with the model of the free semi-infinite string, whose Lagrangian is
gained from (4) in the limit y — c0. We find two-times Poisson brackets of the «classi-
cal» field p(r,x)

In section 2 we construct representations of the quantized field ¢(z,x) The vacuum
two-point function of the field ¢(z,x) possesses infrared divergences. In the standard
treatment of this situation the field @{z,x}is termed «unphysical», and its realization in
a psendo-Hilbert space with indefinite metric may be tolerated. There are gauge invari-
ant quantities, referred to as physical variables, which are generated by the components
i(z,x),k(2,x) of the Noether current or, equivalently, by the partial derivatives 8,¢.,0, ¢
of the field. They possess the Fock vacuum state and also (Gibbs) stationary states in
case of nonzero temperature T In this sense the fleld @(#.x)is considered as a non-Fock
linear boson system. The conventional treatment is not wholly satisfactory, since the
coordinate g(¢) of the Brownian particle tuns out to be an unphysical variable and
hence only the second of the Langevin equations (1) acquires a physical meaning. Like-
wise the canonical commutation relations between the coordinate and the momentum
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of the Brownian particle are devoid of physical meaning. An aliernative viewpoint [7]
which is adopted here enables one to treat the field p(r,x)as a physical variable in the
framework of degenerate Fock linear boson systems. Physical representations of the
field algebra are constructed on account of gauge invariance from the vacuum or tem-

perature (for T > () generalized states which in turn are induced by the Fock vacuum or
Gibbs states of the algebra of gauge invariant quantities.

1. THE PHASE SPACE OF THE SYSTEM

A phase space of the system «particle+string» is the set ¥ of all real {or «classical»)
C?” solutions ¢(t,x) of the equations of motion (8), (9) in RxR+ * with ¢(z,x) and
0, ¢(z,x) being in the Schwartz space . (R, } of rapidly decreasing test functions in

‘the spatial variable x for all t € R. The phase space is a symplectic space with the sym-

plectic form (13) where ¢,,¢, €. The right-hand side of (13) does not depend on
t since

0,:8(01,92)=[ (8791 02 =1 -670, )-(Bx)+17" -8(x))dx =
=j(aazc(i’| @y~ '55@2)9(«’5)‘&"'(5;;‘{;1 P9 'a:(Pz)lmo =0 (15)
The 1-parameter dynamical group acts on the field by time translations
olt,x)—> ¢ (Lx)=¢{t-1,x),TcR. {16)

These are symplectic transformations: &y, =02 )=8(p; ., ), since (13) is indepen-
dent of 7. They define the Hamiltonian of the linear boson system:

I
H=§ar 8((P17=(P»:=0'

In terms of variables ¢ + x and partial derivatives 6* with respect to these variables,
the wave equation (6,2 —Bf )(p =0 can be put in the form 6" 6~ ¢ =0, which yields the

general formula for solutions of the wave equationin Rx R,

ot %) =% (o (r+2)+ 0" (-2)). (17

*The following notations are used: R, = {x e R:x 2 0},R = {r R x < 0}. 7. (K .) and
% (R) stand for subsets of all real test funictions in the Schwartz spaces (B, } and & (R).
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Here o (1) and ¥ (¢) are % *function on R, called the left and right components of
field (¢, x), respectively. They are reproduced from the field uniquely up to a constant
c. This is evident from the expressions

phF (r)=—j§ LP(AUF[C*J. 8 ®(7:%)] x=0 ‘h]} 18

0 -
which follow from (17) after substitution x = Ointo ¢(#,x)and 8, 0(2,x). The arbifrary
constant ¢ will be specified furtheric = ¢(p).*

Designating

O(r)=0(1,0), (19)

we show that the functions @(z}, (pL (1), q}R (t) are antiderivatives of functions from
112 .

&, (R). Note that equation (6} implies| 3, ®(1} < (2v#) " ,hence |®(t }is bounded by a
first-degree polynomial in |¢], so that ®(z) e ' ®). From (17) we find

at('p(t:x)l t=0 = é (ax(PL (x)—ax(pR (_x)):

0.003= (00" )+ 2,0" (=) 20)

= - L
By condition, left-hand sides in (20) belong to & (R.) hence restruction of 9, ¢" (1) on
R.and 3,¢" (1) on R_belongto (R, )and & (®_), respectively. The boundary con-
dition (9) can be written in either of the two forms

(v+3,)8,0(t) =213, 0" (2),
(v—8,)8,9(:) =218, 0% (&), 2
hence
(r*-81)e. o) =2x(r-8,)2,0" (1),
(v* -1 )2, @) =21y +8,)8,0" (©)- 22)

*Although the «classical» fields & 2 were originally defined on the set R xR_, they are
force-continued by formula (17) as ¥ “solutions of the wave equat_ion in. R* This sugge?ts ﬂ?at
the semi-infinite string is supplemented by a «virtual» semi-infinite string to form an mﬁm{:e
string, without adding new degrees of freedom. $imilla:ly, the guanmm field (p(t,_x) may be
thought of as an operator-valued generalized function in R? obeying the wave equation.
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Since the restrictions of right-hand sides of (22) on R, and R_, respectively, belong to
& (R,) and F(R_), and since ®(z)is a ¥ “function by condition, we obtain that

('yz . )8, @t} belongs to <& (R). From this it is inferred by applying Fourier trans-
formation to the generalized function 8, ®(¢) € &' (R) that @, d(z } belongs to & (R).
Invoking (22) we obtain that g, o ()and & . ©® (¢)also belong to F (R).
This entails, in particular, the existence of limits ®{e0), tpL (Zo0), (pR (4o0), which
may be subjected to relations
D(—0) =2 (~0) = V20" (o). @3)

The former of these equations deleates the arbitrariness of the constant ¢ in (18) and the
. latter follows from equation (17). Now equations {(21) can be rewritten in the form

(1+8.)B()=2r0 (1), (1=8,)0(1)=V2r0% (1), (24)
Invoking that 8, ®(¢) e & (R) we obtain also
D(+m)=~29" (30) = 2" (+0). 25)
At last, equation (17) in the limit x — +oo implies ¢ (+0)+ ¢% (—0) = 0, s0 in addition
to (23), (25) we have
B(=00) =—0(+0), ¢* (=0) =" (+00), ¢ () =~ (0). 6
These relations mean that all of the functions ®(r), (pL {1), (pR (1), belong to the space
ex 7, (R), consisting of finctions of the form g(z)=(e* f)(t)EJ- gt —1) f{r)dt for
fed’ (R); as usual, e(t)=1for ¢t > 0and e{t)=—1fort <0
Define Fourier transformation by the formula
(1) = [ B()-exp (ihe)dr.
Now the relations (24) between the functions @(t), o (£),¢® () become
—R ¥+ i 1 (=L =R N2yt
o =2 =" ) . @
i V2 ? y—ik
Thus, we obtained isomorphisms @) < of (1) & ¢F () in the space e+ & (R).
Any of the functions ®(z), 0" (¢), ©% () can be used as 2 way of parametrization of ele-

ments of the phase space %%of the system. It is convenient to choose the field ok ()as
such parametrization. On account of formula (17), an expression for the symplectic

o (), ()=

6

form in terms of @&, % is obtained as ¢ tends to —co in the formula (13) (which makes
nondegeneracy of the form o explicit):

1
o(01,02)=5 [ (80t (1) 05 (1)-0f ()-8, 08 (1)) . (28)
Similarly, formulas (6) and (12) yield the Hamiltonian
_1 Ly
H—EJ(B,(p (r)) dr (29)
and the charge
1 e
Q=—[j*(r)r (30)
7l

in terms of (pL {t), where jL (£)= a,tpL (t)is a left current. Note that the dynamical
groups act as before by translations of the variable :

(p"‘(t}—)»(pf’(t}:(p"‘(t—t), teR. (3YH

These formulas establish an equivalence between the present linear boson systern and
the model of the free semi-infinite siring described by the field

1

[\ _ L L

oV (tx)=— (o (t+x)+ 09" (1-x)).

We are now ready to derive Poisson brackets of the «classical» field. Formula (28)

implies for g, @, e with pf (:):% g f, f e, R):

o™ () /() = o(e,0, ).

Putting @ ; =% ex f; with f; e, (R) for j=1,2, we see that (14) becomes now

o> (02 fi (03, f ot (1) 1202 M1} = 0(0y 01 )=
[ D" (1 1)/ ) falex Y,
where
D1y —1, )=%s(:1 ~, )=iJ'P%»exp(—z7L(r, 1, ))52.‘%; (32)
consequently
0" (0,0 (120} =D" (1 —13). (33)

By virtue of (17}, (27) this suffices for derivation of two-times Poisson brackets of the
«classicaly fields ¢:



{(P(ri !xi )7‘}9(:2 ,XZ )}=D(f| ,I];tz axz )s (34)

where

D(t1 ,xl;rz,xz) =

= P—;C(exp (~A(8, — 1 +2, Xy D) HExp (=iklty —ty —%, +X; )+

+y+flexP(-9\-(’i =1y =X =X )+
v—-i
+ ""?“ exp (—iA(t, =15 +X, +X» )));ﬂ. (35)
T

2. QUANTIZATION

The quantized field ¢(z,x) of the system «particle+string» obeys the same equa-
tions of motion as does the «classical» field. It is reasonable to regard @(¢,x)as an oper-
ator-valued generalized function over the space ¥ (R? ) of test functions, with the wave

equation (Bf —6;2 )cp = Osatisfied. By analogy, we may assume that ¢{z, x)is expressed

by (13) in terms of the left and right components: Now o’ (#) and o (1) are opera-
tor-valned generalized functions over the space < (R) of test functions, interrelated by

the formula
—R —fA—L
R =070, (36)
Y+IA
The canonical commutation relations (CCR) corresponding to (33), (34) are
1
[0 (1)0" (12)] == D" (1 -22), (37)
1
[(P(tl':x] 3 o(ty,xy )]=}D(l; Xy 124X 3 (38)

Of the two components ¢’ (z)and ¢* (¢)only one is an independent field, so it suffices
to construct physical representations only for the left component ol ().

We use the construction [7] of the vacuum (or zero-temperature) representation of
the field (pL (1), with suitable modification in case of nonzero temperature representa-

tions. Let e/ be an abstact *-algebra of CCR of the field @™ (¢), which contains unitary
elements &, with f e &, (R) satisfying the relations

818, =exp 5 [ DX (4 =12)1, (4 )y (62 Ml ey )& - (39)

8

We suppose that o/ consists of elements of the form*

[ &du(s), (40)

ol
with o# — an arbitrary finite-dimensional subspace in &, (R),pp — an arbitrary com-
plex Borel measure on o# having compact support. Quantization of the system means
the construction of a physical representation (or «dressing-up») of the *-algebrace/ina
Hilbert space. Here we are interested in the vacuum and the temperature representa-
tions. In this case unitary operators £ , » with continuous dependence of f(in the weak
operator topology) correspond to unitary elements %}. They can be written as

Epr=exp(if " ()f(0)r), (1)
with (pL {#)the quantized field in a concrete (vacuum or temperature) representation.

Gauge transformations (10} in terms of the left component (pL (#) take the form

I L L r_ 1
(t)—=>o (t)+g", whereg™ =—g. (42)
¢ ¢ +g g 5z
The corresponding *-automorphisms 4 — 4% act on the algebra o by
& = (&, ) =exp (igLI (t)dt)-%’f. (43)

Elements &; forj f()dr =0,ie, for f =—8,F with F e &, (R), are gauge invariant; in
a concrete representation of o/ such elements can be expressed in terms of the left cur-
rent j- ()= 3,0% ()
E_gr 7 =oxp(if /5 (1)F () dt). (44)
Admitting in (40) only subspaces e# < &, {R) consisted of functions f e &7 (R) with
f ed (R), we obtain a *-subalgebra 28 of gauge invariant elements of /.
Let us assume, for the moment, that the field LpL {t) is a Fock system, then
a{. (A)-0(-L) and aL {X)-6(A) would be creation and annihilation operators (opera-

tor-valued generalized functions), respectively, and there would exist vacuum
WOL (rl —tz) and temperature (or Gibbs with temperature 7) W}Y‘ (¢, —t, ) two-point

*Completion of the *-algebra o in a comresponding norm topology is a kingd of an abstract
C*-algebra of CCR.



functions, which could be restored as generalized functions by the commutator function
Dt (t; —1, Yaccording to
—L 1=L
Wo(d)= 9(1)} D),
= 4 l=L
W (\)=(1-exp (-B1) " 2 D7 (M)for T >0 (45)
i

I .
(in connection with the latter of these equations see, e.g., [2]). Here = 7T with & the
Boltzmann constant. The general requirements for the two-point functions
—1L .. .
WE(t, —t,) are that they be hemmitian Im (W7 (X)=0), positive definite
(W (h)= 0)and properly related to D* (1, —1, )(D"‘ (t, —t5)=—2Im WE (1, -1, )).
s —1L
WOT (#, —1, )is distinguished by additional spectrum condition (support of W o (1)
is contained in R+ ).
However, the product 8(A)- D~ (L) = ea(x)-P-}lL is ill defined (i.¢., infrared diver-
1
gent) and needs further definition as a generalized function from &' (R). The result of
such definition contains an arbitrary dimensional parameter « > 0 and can be written as
1 dh
Wy (1 -t;)=] 8(2)- P —exp (-IMt, =12 )=
- —2i In (0+ ik (1, 1, ). (46)
14
1t is fairly obvious, W(,L (¢, —t, ) satisfies all the requirments apart from positive defi-
niteness. This indicates that Fock representation of the field ¢ (¢) consistent with the

action (31) of the dynamical group does not exist. In other words, the field (pL (t)isa
non-Fock linear boson system. . ‘
Nevertheless, the positive definiteness property is restored partly if the functions
f are restricted by the condition f=-8,F with F e &, (R):
- - _ 2
[ (1 =138, F ()8, F(1)dnde = [ 60 F M| =20,

s0 WOL (t)belongs to the class of the so-called conditionally positive definite general-
ized functions of the first order. Hence the left current j“ (£)=8, ¢? (¢)and the *-subal-

*In the general case an arbitrary finite dimension of gauge group of the system of this class is
allowable.
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gebra 4 of gauge invariant variables of the algebra o/ of the field ¢* (¢)possess
Fock representation consistent with the action of the dynamical group. In this case we
call the field cp"‘ () (or, equivalently, the field g{¢,x)) degenerate Fock linear boson

system*. The Fock vacuum state 5, of the left current J*(t)is defined by a character-
istic functional

-~ 1
S0y ) =exp (=2 [ Wy (¢ =23 )0, /(e ety i)
for f=-0,F,F %, (R). 47
In an analogous way ”W';'- (A)1s ill-defined (infrarer divergent), and can be de-
fined as a generalized function from ' (R) by the formula* (with a suitable choice

of a real parameter a; and P —11 =0 ;_P—I X
A‘-

A
-1
WE(t 1, )=J‘[[1—ex;;(—f31)) 'Pl_lz-i—ai" -&l)}x
xexp (—iAf] — 15 ))j—: =_2_17t In (O-H'K%sinh (% (2 =12 1)) (48)

Of the requirements on the two-point functions, the positive definiteness condition is
not fulfilled. Rather W;‘:‘ (¢) belongs to the class of conditionally positive definite
generalized functions of the first order (i.e., ?LEW? (A)= 0. Therefore there is the
Gibbs state s of the left current ; L (r)and of the subalgebra 98 with a characteristic
functional obtained by substitution W (1, -1, )instead of Wy (1, —t, )into (47). The
Fock and the Gibbs representations of the al gebra Z4 are constructed uniquely (up to
unitary equivalence) by the Gel'fand-Naimark-Segal (GNS [9]) construction.

The state s (7 = 0) of subalgebra 93 induces a generalized state sr ofthe alge-
bra o2/ with a characteristic functional

sp (& y=2m-8([ f(e)de)57.(8)), [, @), (49)

This is a «statey with an infinite norm. In contradistinction to a state it is defined on
the *-ideal, # of oo/ consisting of elements (40) with a measure du( f), which we call

smooth in J_*”( 0). This means that 7'( 0)(: I f( )dz) is not identical zero on a finite-di-

*Sec, e.g.,[8],4.116.3
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mensional  subspace o . (R), and that with linear coordinates
rl =7’(0),r2,...,r;, chosen on o# the measure du(f) is representable in the form
du(fy=v(5,....r, Ydn...dr,, where v(r; ,...,r. ) is a generalized funetion in B® smooth
in 5. The generalized state s, is obtained from the state s, by integration over the

gauge group R:
ST(A)=5T(IA3dg),A et (50)
(This is a correct formula in lieu of the previous definition (49).)
The GNS construction is easily extended to the generalized states sy which enables

one to obtain vacuum and temperature representations of the algebra csv. Hilbert space
<7 is generated by generalized vectors X / 7 (f €, (R)) with scalar product

(X g1 X 1) =208~ (0)+ f5(0))- s (E 1. 1 ). (51

Smoothing X ; » with an arbitrary measure dp ( f)smooth in 7'(0) (entering in the defi-

nition of the ideal ¥ ) gains a subspace of vectors dense in <. The vacuum or the
temperature representation &, — £ r is defined by generalized matrix elements

(Xpr ErrX o) =2m81 (O0+ FO+ T @) s0 (€ fufo ) (52)

and quantum fields ch {t}and @{7,x) in the vacuum or the temperature representation

are defined by formulas (41), (36), (17). These are operator-valued distributions over
the test function spaces &*(R) and <#(R?), respectively. The dynamical group of time

translations and the gauge group are implemented by unitary operators U5 (1) and
Vr{g)in 7.

Ur(0)X ;7 =X, p with k(t)= fz+1);
V()X ;. =expligh f(0)) X ;1. (53)

It is easy to pass from the fields ¢’ (¢) and @{?,x} to dynamical variables of the

Brownian particle. The coordinate g{¢ } of the Brownian particle in the vacuum or tern-
perature representation as an operator-valued generalized function over the space

% (R) is defined by {3) or, equivalently, by
g(t) = (rm) ™2 d(e) | (54)

with (7 )defined by (19), (27). The former of the Langevin equations (1) serves as a
definition of momentum P(¢ ) of the particle, and the latter of the equations {1) reduces

i2

to the first of the equations (21), when the field in the definition of the fluctuating force
is identified with the left current:

E1)=8,0" (1) =j* (1) (55)

Note that the fluctuating force in the vacuum s, or the Gibbs state s of the subalgebra
93 is a Gaussian quantum field with mean 0 and with a two-point function defined by
the relations

(Bt (), = [ 00 hexp (-ir (5~ D2,

(&8 ), = [ (1—exp (BL) " Aexp (~iM(t, —1, ))g_i forT>0  (56)

When 7' — o0, the «classical» white noise is obtained in the asymptotics

(e, ~5at -0,

The fact that g(7 }and p(t)are operator-valued distributions is displayed in an inter-
pretation of quantum-mechanical commutation relations. With the help of (52) it can be
checked that (for oeR), A(t)ed” (R)) there exists the limit of

exp(ic I g(£)h(2)dt ywhen k(¢ ) tends to 8(z —1, ) defining thereby exp (icg (¢, ) where-
as such a limit does not exist for exp (ia I p(tYh(t)dt) (because of uliraviolet diver-

gences). This is an indication that the operator-valued distribution g(¢ ) permits a restric-
tion g(t)|,=,u defining the coordinate g(zy) at a fixed time. For the momentum

p{t)such a restriction is not allowable. In this regard commutation relations between
the coordinate and the momentum inferred from (38) are of interest:

[a( ), P2 )= 1] 2v(v* + 22 Y Texp ik (1 —1, ))% =
=iexp(-y [f; —2,]). (57)

This suggests that, afier smearing the momentum p(: )by means of convolution with a
d-shaped sequence of functions &, (¢), the equal-time canonical commutation relation
between the coordinate and the momentum is reproduced in the limit A(r) — 8(¢ ):

[a(te), Py (1)) = 1, where p, (£)= p(t)* h(2). (58

The peculiarity. of the model of Brownian motion under consideration is that the

'Langevin equations cannot be formulated in the frame of the algebra generated by the

fluctuating force. It is necessary to extend this algebra incorporating an antiderivative
of the fluctuating force. Indeed, as a gauge-invariant field the fluctuating force gener-
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ates only a gauge-invariant subalgebra of the field algebra rather than the whele alge-
bra, so only the momentum of the Brownian particle can be restored by the fluctuating

force. It is the formula (27) that impiies;(l) = {2ym-(y —ik)'1 E(L) so p(r)isaconvo-
lution of the form

(1) =Zm[ 8( ~tyexp (-y (1 ~0)E(r) d1 =

=~/ 2ym (0 (t)exp (—y13)* &(1). (59
Formula {27) suggests aiso &(h) =/2y/ m(y A aL (&),

hence
g(t)=J2y/m[ 8(¢—T)exp (~y (1 —t) " (t)dt =
=277 m-(8(t)-exp (~y))* " (1). (60)

The coordinate g(? ), as a not gauge-invariant variable which does not commute with the
group of pauge transportation operators ¥ (g ), cannot be expressed in terms of the
fluctuating force. This is a distinguishing feature of the «free» quanturn Brownian parti-
cle as opposed to the quantum oscillator with friction.
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