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Bogoliubov Quasiparticles in Constrained Systems 

The Bogoliubov transformations of field variables in the holomorphic repre
sentation are generalized to systems with constraints where the evolution parame
ter in the reduced phase space is one of the dynamical variables of the extended 
phase space. 

The Bogoliubov quasiparticles are determined by the diagonalization 
of the equations of motion (but not only of the Hamiltonian) to get conserved 
«numbers of quasi particles». This approach is applied for the 'description of par
ticle creation in the models of early Universe. 

The investigation has been performed at the Bogoliubov Laboratory of Theo
retical Physics, JINR. 
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1 Introduction 

The Bogoliubov transformatiqns [1] were applied to get the energy spectrum of the weakly 
non-ideal Bose gas and they can be considered as an effective mathematical tool to construct 
integrals of motion of complicate systems. 

In this paper, we apply the Bogoliubov transformations to construct integrals of motion of 
constrained systems invariant with respect to reparametrization of time: t' = t'(t). 

This reparametrization-time invariant system plays an important role for the theory of 
gravitation, in particular, for the description of the early Universe. The main problems of 
consideration of the constrained systems are to extract the invariant dynamics with respect to 
an internal evolution parameter, and to get corresponding integrals of motion. Recently, the 
invariant dynamic description of constrained systems was formulated using explicit resolving the 
energy constraint [2, 3, 4]. It allows us to remove one of variables (with a negative contribution 
into the constraint) from the phase space, to convert it to the internal evolution parameter of the 
corresponding reduced system, and to find the relationship between this evolution parameter 
and the measurable time interval in gravitation [2, 3, 4] and cosmological models [5]. 

The problem of the present paper is to construct integrals of motion by the, Bogoliubov 
transformations in the context of the above-mentioned Hamiltonian reduction [2, 3, 4]. In 
the next section, we formulate the problem using as an example an oscillator-like model of a 
massive scalar field in the FRW metric [6, 7, 8, 9]. In Section 3, we introduce the Bogoliubov 
transformations to diagonalize equations of motion. Section 4 is devoted to the description of 
creation of massive particles and gravitons in the early Universe. 

2 Statement of Problem 

We first consider an oscillator-like model of a massive particle in the flat FRW metric described 
by the action [6, 7, 8, 9] 

J, t, { ' pi } WE= 
11 

dt pq- Poe/>- N[-
4

Vo + H(p, q)J , (1) 

where¢, is the cosmic scale factor (R/ Ro) multiplied by the Planck constant 

(2) 

H(p, q) is the Hamiltonian of a massive particle 

(3) 

Vo is a three-dimensional space-volume. Action (1) retains the main peculiarity of GR, the 
invariance under reparametrization of the coordinate time: t ➔ t' = t'(t). The· problem is to 
find the evolution of variables P0 , ¢,,p, q with respect _to the invariant conformal time 

Ndt = N'dt' = dT 

of an observer in the comoving frame of reference. 
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As a consequence of the time-reparametrization invariance, the set of classical equations 

dq dp 2 . d<f, Po dPo 2 
dT = p; dT + w q = O; dT = 2Vc,; dT = >.<f,q 

is accompanied by the constraint 

with two solutions 

aw =0 
aN 

P.2 
➔ --0 +H =0 

4Vc, 

(Po)± = ±2/v3i. 

(5) 

(6) 

(7) 

The substitution of this solution into the equation for P0 (the third equation in (5)) leads to 
the equation: 

aw d<f, ( Po ) ~ ( H) 
aPo =O ➔ dT= 2Vc, ± -±yp(<f,), P-Vo . (8) 

The integral form of this equation 

f"' d<f, 
T±(<f,) =±lo P112 (<f,) (9) 

is known [5] as the Friedmann law of the evolution of the measurable time interval with respect 
to the scale factor (2) of the Universe. 

To solve equation (9), we need the dependence of physical variables on the scale factor <f,, 
which can he found from (5) with the use of equation (8) 

!!!J_ _ d</>!!!L - ± ~("-)2!L -
dT - d'Td,/, - yP\'l')d¢, -p 

(10) 
!!E. !!j_f!E. ± ~("')!!E. 2("') dT = dTd,/, = yP\'l')d¢, = W 'I' q. 

The scale factor <f, in this equations represents the internal evolution parameter. We can find 
the corresponding reduced action for eqs.(10) by the substitution of the explicit solution of the 
constraint (6),(7) into the initial action (1): 

</>2=</>(!2) 

WR= I d<f,[p :: =t= 2/¼fiJ. 
</>,=,/,(ti) 

(11) 

Thus, the considered Hamiltonian reduction (11) of the time-reparametrization invariant sys
tems faces three "times": 

• The first is the coordinate time (t) in the initial extended action (1). 

• The second time is the internal evolution parameter of the reduced system (11) which is 
one of former variables of the extended system (<f,). 

• Every action ~f relativistic theory has to he supplemented with a geometrical convention 
which connects a measurable invariant interval (T) (4) with variables of the extended 
system. 

2 

The Friedmann law of the Universe evolution is a consequence both of the variation principle 
fo~ action (1) (or (11)) and the convention (4) [2, 3, 4]. 

The Einstein theory of gravity is mathe.mati,cally equivalent to a scalar version of the con
formal invariant Wey) theory [2, 3, 4] with the scalar <f, as the measure of integrable change 
of the length of a vector in its parallel transport. However, the Einstein theory and the Wey) 
one correspond to different conventions about the measurable interval. The Einstein conven
tion with the measurable (proper) time dT1 = dT(<f,/µ) leads to the FRW cosmological picture 
with the expanding Universe, while, the conformal invariant measurable time (T) leads to the 
Hoyle-Narlikar cosmology where the reason of the "red shift" is alteration of masses of particles 
formed by the Higgs-Wey) scalar field <f, and lhe conformal invariant size of the Universe is an 
integral of motion. 

Three different "times" of Hamiltonian reduction correspond to three different energies: 

• constraint (for coordinate time), 

• evolution momentum Po (for evolution parameter), 

• measurable energy (for measurable time) 

E - dWR 
m- - -dT · (12) 

All these energies depend on the invariant times (<f,, T). 
The problem is to find integrals of motion of the considered time-reparametrization 

system, and describe creation of "particles" in the evolution of the Universe. 

3 The Bogoliubov transformations 

We define "particle"-Iike variables as the holomorphic representations of the standard variables 
~ [10] 

l -~ q(t) = ~(a+(t) + a(t)); p(t) = z -(a+(t) - a(t)). 
v2w 2 

There is the quantum field theory convention that we measure the "number of particles" 

• 1 . 
N.(t) = {a+(t)a(t)} = 2(a+a + aa+). 

In the considered case this quantity is not conserved 

dN.(t) f= 0. 
dt 

(13) 

(14) 

(15) 

In particular, just this quantity forms the observable density p and evolution of tll<' Universe 
(9) 

Ho 
p = Vo; 

• 1 + + 
Ho= wN. = 2w(a a+ aa ). (16) 

The main goal of our paper is to show that there are the Bogoliubov transformations of the 
"particle" variables 

b+=a•a++t1"a, b=oa+#a+, (Ji) 
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which diagonalize the corr<'!sponding classical equations expressed in terms of "particles'' (a+, a), 
so that the "number of quasiparticles" is conserved 

dN,,(t) _ d(b+b) 
-;ft = ~ = 0. 

In terms of the "particle" variables (13) the action (1) has the form 

t, p2 . 
E J · o Z_ 1_ • w = dt[-Pocf>- N 

4
V, + 2x.a,x. - N 2x.H.x.l, 

,, 0 

where 

X• = (a, -a+); x. = ( aa+ r if. = I w 

-ill 
' -ill I· 

-w 

ll = jd, log~' 

where w(O) is defined by initial data. The .classical equations (5) can be written as 

d • 
i dTx. = H.x •. 

After Bogoliubov transformations ( 17) 

Xb = Ox.; 0 = ; 0-1= . 
' ( 

a*' /3* ) 

/3, °' 
This equation has the form 

• ( a*' -/3* ) 

-/3, °' 

. d .• -I d • • -1 • • • 
i dTXb = [-iO dTo + o H.O]xb = HbXb· 

Let us require that Hb to be diagonal 

• ( h, O) 
Hb= . 

0, -h 

This means that a and /3 satisfy the equations 

For 

h = (JaJ
2 + J/3J

2)w - i(f3*a - /3a*)ll - i(/3*8-r/3 - a8ra*), 

0 = 2f3aw - i(a2 + /32)ll - i(a8rf3 - /38ra). 

a= cosh(r)ei9
; /3 = i sinh(r)e-i9 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

I 

,:) l1 

;( 
'· 

r 

'(); 
'I;,. 
I. 
I. 

/1 

:( 
) 

these equations convert into 

h = w cosh 2r - ll sinh 2r cos 2B - cosh 2rifr0 

0 = w sinh 2r - ll cosh 2r cos 2B - sinh 2r8-r0 

0 = llsin2B + 8-rr 

In the case of constant w, ll we get the result of Bogoliubov paper [l] 

0 = 0; cosh 2r = ~ h = ✓w2 - ll2. 
h 

Finally , we obtain the classical equation in terms of "quasiparticles" 

d 
dTb+ = ihb+-

' 
d 

dTb= -ihb; 

with the solution 

b+ = exp ( iQ)bt ; b = exp (-iQ)b0 ; 

and the conserved number of quasiparticles 

d 
(h = dTQ), 

T 

Q = j dT'h(T') 

.Nb(t) = {b+(t)b(t)} = {btbo} 

(29) 

(30) 

(31) 

(32) 

(33) 

where bt and b0 are initial data. To close equation (31), we should recall that the evolution of 
the Universe is determined by the density of "observable particles" 

d¢, dT = /;(:i5; p(¢,) = H = w(¢,){a+a} 
Vo Vo ; (34) 

{a+a} = {b+b}cosh2r - ½(b+2 - b2)sinh2r (35) 

Equations (29)-(35) represent a complete set of equations of classical theory. 

4 Creation of Particles 

As ¢, has left ,the phase space to convert into the internal evolution parameter, in quantum 
theory, we can quantize only the particle sect'or 

[a,a+]=l; [b,b+]=l (36) 

In the following, we restrict ourselves by the Universe in the state of vacuum of quasiparticles : 

· 1 1 
b < 0Jb+bJ0 >b= 0; < 0J{a+a}J0 >= 2cosh2r = 2No(¢,). (37) 
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We can rewrite eqs. (29) in terms of the number of particles N0 (<f,) 

h = wN0 -1::l.[JNJ -1 cos20 + N02~] 

wJNJ-1 = l:l.[N0 cos20 + JNJ -1 2~] 

~ sin20 = _41:f,,,_. vJvo-.1 dT' 

where 

A= .,fpdr(<f,); r(ef,) = log (w(ef,)); w(ef,) = ✓k2 + >..ef,2 
2d<f, wo 

where w0 is the initial data. 

(38) 

(39) 

For A = 0 and N0 = l particles are not created. For A ➔ oo the solution to these equations 
has the functional form 

N0 (<f,) = ! (~ + w(ef,)) 
2 w(<f,) wo 

(40) 

with the density 

< p >= w(<f,) N0 (<f,) = _l_ (wo + w
2
(ef,)). 

Vo 2 4Vo Wo 
( 41) 

This solution has the zero energy of the Bogoliubov quasiparticles (h = 0) of the type of the 
Landau sound in theory of superfluid liquid. The corresponding proper time dynamics 

,/, 2 ~V, M (>.,1/2,t.. + ~2 -+ ki-+ )./42) T(<f,) = jdef> vWo•o _ = 2 Wo o log 'I-' ye o 'I-' 

o Jw5+k2+>.,<f,2 >.. Jw5+k2 
(42) 

determines the red shift and the Hubble parameter of evolution of the Universe with this 
excitation. 

Equations (29) and (38) can be applyed for gravitons [8] which are described by the action 
of the type of (1) with the Hamiltonian 

H = i ~(~~ + <f,2qW)-

In this case, in eqs (38) we have 

A= vP; r(<f,) = 2log (±); w(k) = vk2, 
<f, 'Po 

where <po is the initial data. 
For A ➔ oo the "Landau sound" solution (h = 0) to eqs. (38) has the functional form 

with densi_ty 

(
ef,2 ef,2) 

No(</,)= i <f,~ + <f,'/i 

< p >= Po No(</,) 
2 ' 
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(43) 

(44) 

(45) 

(46) 

I 

l 

where p0 is the vacuum density. 
The proper time dynamics is determined by the integral 

,b 

J - l 
T(<f,)= def,--_ 

o Jpo(</,) 

which leads to the red shift of the Universe evolution 

<f,2(T) = sinh( 2T)· 
<f,'/i To ' 

To= 'Po (2_ v; 

(47) 

(48) 

We can see that there can be the period of inflation-like evolution of the scale factor in GR; or 
the Higgs field in Conformal Unified Theory [2, 3, 4], with respect to the conformal world time 
measurable in CUT [2, 3, 4] by a Wey! observer with relative standard of length. While, an 

· Einstein-Friedmann observer (with absolute standard of the length) sees the linear dependence 
of the measured proper time on the scale factor. Thus, ten billion years for an observer with 
the absolute standard of length c;an convert in the "biblical" short period of several thousand 
years for an observer with relative standard. 

5 Conclusion 

The conceptions of "particle" and "quasiparticle" were considered in constrained systems with 
the time-reparametrization invariance. The main peculiarity of such systems is the internal 
evolution parameter as one of variables of the extended phase space. After the Hamiltonian 
reduction all equations of motion of the constrained system are converted into the repara
metrization invariant equations for variables in the reduced phase space with respect to the 
evolution parameter. Relativistic systems are defined also the proper (measurable) time of an 
observer in a comoving frame of reference. The dependence of the measurable time on the 
internal evolution parameter determines the Universe evolution law in the form of the red shift 
or the Hubble parameter. 

Accordingly, there are two different energies: the evolution energy (as the momentum with 
negative contribution to the energy constraint) and the measurable energy as the variation of 
the reduced action with respect to the measurable time with negative sign. · 

We define "particles" as variables in the holomorphic representation which diagonalizes th<' 
evolution energy. Just this energy forms the observable Hubble parameter. Tll<'refon•, these 
"particles" can be treated as "observable" ones. As a num her of" particles" is not conserved, we 
construct the Bogoliubov quasi particles which digonalize the equations of motion. A number of 
quasiparticle~ is conserved, and they are required to find a set of integrals of motion to describe 
the measurable time in the parametric form depending on initial data. _ 

These defiJiitions strongly differ from the conventional approach [6, 7, 8, 9] which go<'s from 
the conserved "particles" as initial data to unconserved "quasiparticles" with diagonalization 
only of the Hamiltonian. 
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