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Bogoliubov Quasiparticles in Qonstrained Systems

The Bogoliubov transformations of field variables in the holomorphic repre-
sentation are generalized to systems with constraints where the evolution parame-
ter in the reduced phase space is one of the dynamical variables of the extended
phase space.

The Bogoliubov quasiparticles are determined by the diagonalization
of the equations of motion (but not only of the Hamiltonian) to get conserved
«numbers of quasiparticles». This approach is applied for the description of par-
ticle creation in the models of early Universe.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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1 Introduction

The Bogoliubov transformations [1] were applied to get the energy spectrum of the weakly
non-ideal Bose gas and they can be considered as an effective mathematical tool to construct
integrals of motion of complicate systems.

In this paper, we apply the Bogoliubov transformations to construct integrals of motion of
constrained systems invariant with respect to reparametrization of time: t' = t'(¢).

This reparametrization-time invariant system plays an important role for the theory of
gravitation, in particular, for the description of the early Universe. The main problems. of
consideration of the constrained systems are to extract the invariant dynamics with respect to
an internal evolution parameter, and to get corresponding integrals of motion. Recently, the
invariant dynamic description of constrained systems was formulated using explicit resolving the
energy constraint [2, 3, 4]. It allows us to remove one of variables (with a negative contribution
into the constraint) fror the phase space, to convert it to the internal evolution parameter of the
_corresponding reduced system, and to find the relationship between this evolution parameter
and the measurable time interval in gravitation (2, 3, 4] and cosmological models [5].

The problem of the present paper is to construct integrals of motion by the Bogoliubov
transformations in the context of the above-mentioned Hamiltonian reduction [2, 3, 4]. In
the next section, we formulate the problem using as an example an oscillator-like model of a
massive scalar field in the FRW metric [6, 7, 8, 9]. In Section 3, we introduce the Bogoliubov
transformations to diagonalize equations of motion. Section 4 is devoted to the description of
creation of massive particles and gravitons in the early Universe.

2 Statement of Problem

We first consider an oscillator-like model of a massive particle in the flat FRW metric described
by the action [6, 7, 8, 9]

W= [Ma {,,Q R q)]} , W

where ¢ is the cosmic scale factor (R/Ro) multiplied by the Planck constant

R 3
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H(p,q) is the Hamiltonian of a massive particle
1 .
=5+ @ (9)); WH($) =K +2d, @3)

Vo is a three-dimensional space-volume. Action (1) retains the main peculiarity of GR, the
invariance under reparametrization of the coordinate time: ¢ «+ ¢' = #'(¢). The problem is to
find the evolution of variables Py, ¢,p, q with respect to the invariant conformal time

-

Ndt = N'dt' = dT ' (4)

of an observer in the comoving frame of reference.
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As a consequence of the time-reparametrization invariance, the set of classical equations

dg __ dp d¢ Py db 2
il AT RLI Al (6)
is accompanied by the constraint
swW P?
W =0 = —-m + H=0 (6)
with two solutions
(Po)t = +2y/VoH. (7)
The substitution of this solution into the equation for Py (the third equation in (5)) leads to
the equation: 5w .
_ d¢ (B ) _ ] _H
_ 57 =0 7 dT“(wo L= EVA ( *Vo)' (®)
The integral form of this equation
¢ d¢
T. = —

is known [5] as the Friedmann law of the evolution of the measurable time interval with respect
to the scale factor (2) of the Universe.

To solve equation (9), we need the dependence of physical variables on the scale factor ¢,
which can be found from (5) with the use of equation (8)

8-ta_ s %=y "
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The scale factor ¢ in this equations represents the internal evolution parameter. We can find
the corresponding reduced action for egs.(10) by the substitution of the explicit solution of the
" constraint (6),(7) into the initial action (1):

d2=¢(t2)
. di
R q
w -, _{(t ) d¢[p—d¢:;2,/voH]. (11)

Thus, the considered Hamiltonian reduction (11) of the time-reparametrization invariant sys-
tems faces three "times”:

o The first is the coordinate time (t) in the initial extended action (1).

o The second time is the internal evolution parameter of the reduced system (11) which is
one of former variables of the extended system (¢).

e Every action of relativistic theory has to be supplemented with a geometrical convention
which connects a measurable invariant interval (T') (4) with variables of the extended
system.

The Friedmann law of the Universe evolution is a consequence both of the variation principle
for action (1) (or {11)) and the convention (4) {2, 3, 4].

The Einstein theory of gravity is mathematically equivalent to a scalar version of the con-
formal invariant Weyl theory [2, 3, 4] with the scalar ¢ as the measure of integrable change
of the length of a vector in its parallel transport. However, the Einstein theory and the Weyl
one correspond to different conventions about the measurable interval. The Einstein conven-
tion with the measurable (proper) time dTy = dT(¢/u) leads to the FRW cosmological picture
with the expanding Universe, while, the conformal invariant measurable time (T') leads to the
Hoyle-Narlikar cosmology where the reason of the ”red shift” is alteration of masses of particles
formed by the Higgs-Weyl scalar field ¢ and the conformal mvanant size of the Universe is an
integral of motion. :

Three diflerent "times” of Hamiltonian reduction correspond to three different energies:

e constraint (for coordinate time),
e evolution momentum P, (for evolution parameter),
¢ measurable energy (for measurable time)

dWE

B =~

(12)

All these energies depend on the invariant times (¢, T').

The problem is to find integrals of motion of the considered time-reparametrization
system, and describe creation of ”particles” in the evolution of the Universe.

3 The Bogoliubov transformations

__ We define "particle” -Ilke variables as the holomorphic representations of the standard variables

(10]

) = Z=(a O+ a(0) 5 p(0) = iyf5(a*(0) — a(t). (13)

There is the quantum field theory convention that we measure the "number of particles™

(d+a + aat). (14)

N o—

Na(t) = {a*(a(t)} =
In the considered case this quantity is not conserved

dN,(1)
= o0 (15)

In partlcula.r, just this quantity forms the observable density p and evolution of the Universe
)
Hq

p= Vo; Ho =wh, = %w(a*’a + aat). (16)

The main goal of our paper is to show that there are the Bogoliubov transformations of the

”particle” variables
b* = a"at + p%2, b=aa+ pat, (17}



which diagonalize the corresponding classical equations expressed in terms of particles” (a*, a),
so that the "number of quasiparticles” is conserved
dNy(t) _ d(b*b)
d  —  dt

=0. (18)

In terms of the "particle” variables (13) the action (1) has the form

t2
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where w(0) is defined by initial data. The classical équations (5) can be written as
d \
i— e = Ha a-
X X o (22

After Bogoliubov transformations (17)

N . a‘y ﬂ‘ R a‘) _‘ﬂ‘
x6=0xqs; O= ; O7'= ; (23)
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This equation has the form
. d A A A oA .
lﬁ;xb = [-—1,0 ldTO + 0 IH,IOJX{, = HbXb~ (24)

Let us require that H, to be diagonal

[k 0
Hy, = ( ) . (25)
0, ~h

This means that o and S satisfy the equations

h=(laf* + 8 )w — i(f*a - o)A — i(8*07 — adra”), : (26)
0 = 260w — i(a? + F2)A — i(adrf — f0ra). (27)
For . )
a = cosh(r)e” ; f = isinh(r)e " (28)
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these equations convert into

= wcosh2r — Asinh 2rcos 20 — cosh 2rér0
0 = wsinh2r — A cosh 2r cos 20 — sinh 2r6r8 (29)

0= Asin28 4 drr

In the case of constant w, A we get the result of Bogoliubov paper [1}
0=0; cosh2r = %’ h =i~ Az, (30)

Finally , we obtain the classical equation in terms of ”quasiparticles”

d d d
—pt =13 +. —b= —1 : =
dTb ihbt; dTb thd;, (h= dTQ), (31)
with the solution
T
bt =exp (IQ)b 5 b=exp(~iQbo; Q= [dT'H(T') - (32)

and the conserved number of quasiparticles
Nult) = {6* (OB} = {B3b} (33)

where b} and by are initial data. To close equation (31), we should recall that the evolution of
the Universe is determined by the density of "observable particles”

Z—; =/p(¢); p(¢) = % = w———(¢)‘{4]a+a}; S (34)
{ata} = {b*b} cosh 2r — %(b+2 — b%) sinh 2r : - (35)

Equations (29)-(35) represent a complete set of equations of classical theory.

4 C‘reation of Particles

As ¢ has left the phase space to convert into the internal evolution parameter, in quantum
theory, we can quantize only the particle sector

[atl=1; [t =1 ' (36)
In the following, we restrict ourselves by the Universe in the state of vacuum of quasiparticles :

s <O[BBI0 >4=0; < 0[{a*a}0 >= %cosh 2r = ZNol4). 37)



We can rewrite egs. (29) in terms of the number of particles No(¢)
h = wNo — Aly/NZ — 1 cos 20 + No2%
wy/Ng —1=A[Nocos26 +/N¢ —1 2% (38)
/Ng —1sin20 = —%’Tﬂ;

A= \/,;d;gi); 7($) = log (“’7(‘:1) s w(g) =R+ AF (39)

where wp is the initial data. ' '
For A = 0 and Ny = 1 particles are not created. For A — oo the solution to these equations

has the functional form

where

. 1{ wo w(¢)
No(¢) = 5 (w———( py o ) (40)
with the density
‘ w(g) No(4) _ 1 w?(4)
>= Vo ) .—m(wo‘l' “wo ) (41)

This solution has the zero energy of the Bogoliubov quasiparticles (k = 0) of the t?'pe of the
Landau sound in theory of superfluid liquid. The corresponding proper time dynamics

- éd— Wwho fuwoVo o N2 4 \Jwh + K + AP (12)
T(¢)= 0/ ¢—————~r—-————wg pyrsvin 3y log JA i

determines the red shift and the Hubble parameter of evolution of the Universe with this

excitation. ) ' ]
Equations (29) and (38) can be applyed for gravitons [8) which are described by the action

of the type of (1) with the Hamiltonian N

2 .
B =2 (% + g, (43)
29°¢ )
In this case, in eqs (38) we have

8=Z; g)=2iog (25wt = v, (4)
$ o
where ¢ is the initial data. .
For A — oo the "Landau sound” solution (A = 0) to eqs. (38) has the functional form

2 2 .
mi(o) = 3 (84 5) (45)
with density Nol &) )
<p>=p —02@ {46)
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where py is the vacuum density.
The proper time dynamics is determined by the integral

®
-1
T(¢)= [ d = (47)
o/ \/Po(¢)
which leads to the red shift of the Universe evolution
$HT) _ . . 2T, E
ke sinh( T )y To=¢o . (48)

We can see that there can be the period of inflation-like evolution of the scale factor in GR, or
the Higgs field in Conformal Unified Theory (2, 3, 4], with respect to the conformal world time

~measurable in CUT [2, 3, 4] by a Weyl observer with relative standard of length. While, an

Einstein-Friedmann observer (with absolute standard of the length) sees the linear dependence
of the measured proper time on the scale factor. Thus, ten billion years for an observer with
the absolute standard of length can convert in the ”biblical” short period of several thousand
years for an observer with relative standard.

5 Conclusion

The conceptions of "particle” and ”quasiparticle” were considered in constrained systems with
the time-reparametrization invariance. The main peculiarity of such systems is the internal
evolution parameter as one of variables of the extended phase space. After the Hamiltonjan
reduction all equations of motion of the constrained system are converted into the repara-
metrization invariant equations for variables in the reduced phase space with respect to the
evolution parameter. Relativistic systems are defined also the proper (measurable) time of an
observer in a comoving frame of reference. The dependence of the measurable time on the
internal evolution parameter determines the Universe evolution law in the form of the red shift
or the Hubble parameter.

Accordingly, there are two different energies: the evolution energy (as the momentum with
negative contribution to the energy constraint) and the measurable energy as the variation of
the reduced action with respect to the measurable time with negative sign. ’

We define "particles” as variables in the holomorphic representation which diagonalizes the
cvolution energy. Just this energy forms the observable Hubble parameter. Therefore, these
"particles” can be treated as "observable” ones. As a number of "particles” is not conserved, we
construct the Bogoliubov quasiparticles which digonalize the equations of motion. A number of
quasiparticles is conserved, and they are required to find a set of integrals of motion to describe
the measurable time in the parametric form depending on initial data. R

These definitions strongly differ from the conventional approach [6, 7, 8, 9] which goes from
the conserved "particles” as initial data to unconserved ”quasiparticles” with diagonalization
only of the Hamiltonian.
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