


1 Introduction

The process of electron-positron scattering is commeonly used for luminosity mea-
surements at e¥e~ colliders. It has almost pure electradynamic nature and could
therefore be described to any desired precision within a framework of perturbative
QED. Nevertheless the accuracy of modern experiments is ahead of that provided
by theory. A lot of work has recently been done to uplift the theoretical uncer-
tainty to about one per mille under conditions of small-angle Bhabha scattering at
LEP1 [1].

The large-angle kinematics of Bhabha scattering process is extensively used for
calibration purposes at e¥e™ colliders of moderately high energies, such as ¢, Jf,
B, and ¢/t factories and LEP2. At the Born and one-loop levels the process was
investigated in detail in [2, 3, 4, 5§, 6], taking into account both QED and electroweak
effects.

In paper (7] we considered Bhabha scattering to () order exactly improved
by the structure function method. The latter based on the renormalization group
approach allows to evaluate the leading radiative corrections to higher orders, in-
cluding all the terms ~ (al,)®, n = 2,3,..., where L, = In{s/m?) is a large
logarithm, s is the total center-of-mass {cms) energy of incoming particles squared
and m is the mass of fermion.

To reach the one per mille accuracy it is required to take into account radia-
tive corrections (RC) up to third order within the leading logarithmic approxima-
tion (LLA) and up to second order in the nexi-to-leading approximation (NLA).
In a series of papers several sources of these corrections were considered in de-
tail [8, 9, 10, 11].

In a recent publication [11] the contribution due to virtual and soft photon
corrections to large-angle radiative Bhabha scattering was calculated for the general
case of hard photon emission at large angle with respect to. all charged particles
momenta. In the present work we are going to consider the complementary specific
kinematics, in which the photon moves within a narrow cone of small opening angle
B, < 1 together with one of the incoming or outgoing charged particles. Thus
the result obtained here may be used in experiments with the tagging of scattered
electron (positron) in detectors of small aperture 8o < 1.

Our paper is organized as follows. In Sec. 2 the Born level cross section of
radiative Bhabha scattering is revised in the collinear kinematics of photon emission
along initial (scattered) electron. We introduce here the physical gauge of real
photon that is extensively used in the next sections. In Sec. 3 a set of crossing
transformations which enables us to consider in some detail only the scattering
type amplitudes of loop corrections to the process is described. Besides we restrict
ourselves to the kinematics of hard photon emission along initial electron. In Sec. 4
the corrections due to virtual and soft real photon emission in the case k, || p, are
considered. The general expression for correction in the case of hard photon emission



along scattered electron is given in Sec. 5. In Sec. 6 we consider a contribution
(in LLA) coming from two hard photon emission and derive a general expression
for radiative correction. In conclusion we discuss the relation with structure function
approach and the accuracy of the results obtained. Some useful expressions for loop

integrals are given in the Appendix and the results of numeric estimates are given
in graphs.

2 Born expressions in collinear kinematics

Let us begin with revising the radiative Bhabha scattering process

e (p) + ef{pa) = e (p) + €7(ph) + (ki) (1)

at the tree level. We define the collinear kinematical domains as those in which
the hard photon is emitted close (within a narrow cone with opening angle 8 < 1)
to the incident (i) = plz;;ki < ) or the outgoing electron {positron) (& ) =
Pl(n)kl < Bp) direction of motion. Because of the symmetry between electron and
positron we may restrict ourselves to a consideration of only two collinear regions,
which correspond to the emission of a photon along the eléctron momenta. The
two remaining contributions to the differential cross section of the process (1) can
be obtained by the substitution Q ’

o = [140( 207 )] (a7 2 4 a7t | p;)}. @)

To begin with, let us recall the known expression [12] in Born approximation for the
general kinematics, i.e. assuming all the squares of the momenta transfers among
fermions to be large compared to electron mass squared:
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In the collinear kinematical domain in which k; || p, the above formula takes the

form
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Here y; are the energy fractions of the scattered leptons and dog(m (1l — £),p2) is
the cross section of the elastic Bhabha scattering process. . _
Throughout the paper we use the following relations among invariants

siHt+um=dmi— 10, sth+u=4m*4+x; =0
In the case k; || p} one gets
o 1-—dk1

dogklp) = 3T, —L{1 — z)doo(ps, a), (6)
< 1+ (1 —z)t B gf_ni
T = .1: o

These expressions could also be inferred by using the method of gquasi-real elec-
trons [13] and starting from the non-radiative Bhabha cross section.

After integration over a hard collinear (k, || p;) photon a.ngular phase space the
cross section of radiative Bhabha scattering in the Born approximation is found to

be
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where Lo = In{efp/m)*. And in the case k, | ¥} it reads
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The simplest way to reproduce these results is to use the physical gauge for
the real photon which in the beam cms sets the photon polarization vector to be a
space-like 3-vector €, having density matrix

A A _ 9, fporv=20 _?e_l
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with the properties
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A by
; f U . ?
Sipalt = —]s 5, YmeFhe) 'R0
A A

These properties enable us to omit mass terms in the calculations of traces and,
besides, to restrict ourselves to consideration of singular terms (see Eq. (10)) only
both at the Born and one-loop level. As shown in [14], this gauge is proved useful
for a description of jet production in quantum chromodynamics; it is also very well
suited to our case because it allows to simplify a lot the calculation with respect, for
instance, to the Feynman gauge. What is more it possesses another very attractive
feature related with the structure of the correction to be mentioned below (see
Appendix).

With these tools at our disposal let us turn now to the main point. The contri-
butions, which survive the limit g — G, arise from the terms containing

2 2 A
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Other omitted terms (in particular those which do not contain a factor x7') can be
safely neglected since they give a contribution of the order of #2 which determines
the accuracy of our calculations

1+0(6L), T <h<l (1)

In the realistic case this corresponds to an accuracy of the order of per mille.

3 Crossing relations

In this and the next section we shall consider the case ky || p,. .In the case of
photon emission along p| one can get the desired expression by using the lefi-to-
right permutation

o -
1Mk yp, = © ( 2; o —-p’; ) IMlk,p, (12)
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Figure 1: Some representatives of FD for radiative Bhabha scattering up to second
order:(1) is the vertex insertion; (2) is the vacuum polarization insertion; grafphs
denoted by (3),(4) are of the L-type, (5) is of Gi-type, (6) is of Gi-type, (7] is of
B-type and (8} is of P-type.

From now on we deal with scattering type amplitudes (FD) with the emission
of hard photon by initial electron. This is possible due to the properties of.tht'
physical gauge. The contribution of annihilation type amplitudes may be derived



by applying the momenta replacement operation as follows: .
A'|All:rmihiln.icm = {Q(p’l —Pz)} AlMlmnermg - {Ql} AlMllcntenng (13)

In considering FD with two photons in the scattering channel {box FD) one may
examine only those with uncrossed photons because a contribution of the others may
be obtained by the permutation p; &+ ~p). Thus the general answer becomes

1
|M|;¢1||pl = Re{(l + Q)[G + L] + EF(I + Q)1+ Q){sit(B+ P},  (14)
with the permutation operators acting as

@iF(s1,ty,8,8) = F(t,5,t,8), QiF(s,u,s,u,)= Flu,s,up, ).

4 Virtual and soft photon emission in k; || p, kine-
matics
One-loop QED RC (which are described by seventy two Feynman diagrams) can
be classified out into the two gauge invariant subsets (see Fig.1):
o single photon exchange between electron and positron lines (G,L-type);
e double photon exchange between electron and positron lines {B,P-type).

For L-type FD (see Fig. 1{3,4)) the initial spinor u(p,) is replaced by the structure
(ef(27m))Azkyéu(py) with

1 200 —3p 42 1 ) 2
A2=—{— L ./ Lp-i-;[—le(l—pJ-i-%]},

xil 2(p—1)  20p-1p
X
L,=Inp, = m—;.

The relevant contribution to the matrix element squared and summed over spin
states reads

Ay st —u? 2(2—1z)
2 _ 99,2 47127 1 _
A|M|L-—?1raXl o [y — | (15)

z
Y = 4{P1 8)2 -7 Icnxh W= (ple)ﬂ.

The contribution of vertex insertion, vacuum polarization! and Gi-type (see
Fig. 1(1,2,5)}) has the following form

AMPirr. = 29 [11 4T, 4+ r] S - uy (16)
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'For realistic applications one should also add to II the contributions due to p and 7 leptons
and hadrons.
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z

m —t . dr
Ly = b2, L=l L= —!?ln(l —z).
Here X is as usual the IR cut-off parameter to be cancelled at the end of calculus
against a soft photon contribution.

For the contrlhutlon of Go-type FD (see Fig. 1(6)) with four denominators we
obtain
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It turns out that only the scalar integral and the coeflicients before p; in the vector
and tensor integrals give non-vanishing contribution in the limit 8, — 0

d*k (1, k*, k2k¥) s )
——— = ([, 1p} + ik}, J ¥ 4+ JokPkY 4+ J, ky ),
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(0) = K2 — X2, (1) = k2 —2pk, (2) = ¥* ~ 29k, (q) = ? — 2k(p: — k1) — x1,
(ab)* = o"b" + a*¥",
and the terms having no p; momentum in the decomposition ha.ve been omitted for

their unimportance.
The B-type FD shown in Fig. 1(7) with uncrossed legs gives
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where the coefficients are associated with scalar, vector and tensor integrals over
the loop momentum

atk (1, k*, k*k* d'k 1
[ i = BB, = [
bp = k% — X%, b1=k2+2p'lk, bz=k2—2p'2k, by = k% — 2gk + ¢,
B* = (ap| +bpy + ep2), q=p— Pz
B* = g, + ayupl'p;’ + anaph p +azaps'}
+ ara(Pip2)™ + arp(pipa)"™ + a2 (p2py)™.



For P-type FD (see Fig- 1{8)) with uncrossed photon legs the contribution is
found to be

(2

3
AIMP = gs,raa*_&____)[yw E)+2

n W(En - B (19)
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Here we are using the definition (with tensor structures contributing no in the limit
85 — 0 dropped) -
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Collecting all the contributions (for the explicit expressions of all the coefficients

see Appendix) given above one arrives at the general expression for the virtual
corrections with p = z[1 + (¢#/m)?] <« s/m?
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After integration over y; one gets additional large logs of the form Ly = £, +
In(02/4). Terms conlaining the last factor have to be cancelled against a contribu-
tion coming from the emission of hard photon outside a narrow cone § < 5 < 1
(and supplied by the same set of virtual and soft corrections), which was considered
in [11]. In the case of two hard photon emission it is necessary to consider four
kinematical regions, namely when both are emitted inside/outside a cone and one
inside/another outside.

Fortunately enough, the w-structure, which obviously violates factorization fea-
ture, does not contribute in LLA due to a cancellaiion of large logs in . What
for a correction to the above structure coming from P-type graph it vanishes in
the sum of FD with crossed and uncrossed photon legs (for a more comprehensive
account see Appendix).

The total expression can be obtained by summing virtual photon emission cor-
rections and those arising from the emission of additional scft photon with energy
exceeding no Az € £.

The emission of a soft photon is seen as a process factored out of a hard sub-
process (in our case the latter is exactly a hard cellinear photon emission) so this
is seemingly come into an evident conflict with a hard collinear emission. Never-
theless the arguments similar to those given in the paper devoted to the problem of
DIS with tagged photon [15] may be applied in the present paper: the factorization
of the two in the differential cross section is present and we are hence allowed to
consider a soft photon emission restricted as usual by

% < 1. (21)

Thus the soft correction can be written as

Y IM o = 2|M|2wan(k, || 1) {22)
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where Mp denotes the matrix element of the hard photon emission at the Born
level and in the kinematics ky || p; it reads

1,33
YIMp =22 rr (23)
X1
Now let us check the cancellation of the terms containing L. Indeed it takes place

in the sum of contributions arising from emission of virtnal and soft real photons.
To show that we bring the soft correction into the form

Ae
wanlhr | p) = {2 (ln—+Lx)( 24 Lo+ Ly + Lo+ Ly = Lu~ L)
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where ¢; are the cosines of emission angles of i-th particle with respect to the beam
direction (p, in cms), ¢ is the cosine of the angle between scattered fermions

in cms of the colliding particles and y; are their energy fractions and in the case
k, || p, we have

1+C[f2l l—2 1—(4 yl(l-l-c)
q = ¢ —_— =1 , = .
-2 iy 2 2p(1 - 7}
Then the cancellation of infrared singularities in the sum is evident from com-

parison of Eqs. (20,24). The terms with In{A¢/¢} should be cancelled when adding a

contribution of a second hard photon having energy above the registration threshold
A,

The complete expression for the correction in the case k, || p, reads
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5 Kinematics k; || p}

We put here a set of replacements one can use in order to obiain the modulus of
matrix element squared and summed over spin states for the case k, || p} starting

10

from the analogous expression for k, || p, (Eq. (14)) and using the replacement

of momenta py ¢ —pi,p; & —ph.
substitutions:

T

X1

3

u
t>t

The last operation results in the following

x

1-z'
_x’ls
51, (27)
ty,

, ty = 1.

T

Then under these permutations the expression for virtual corrections presented in
Eq. (20) gets transformed giving the following result for the collinear domain k; |} p)
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and @, J derived upon applying a set of replacements from Eq. (27) on the quantities

®, 9.

The contribution from the soft photon emission is described by
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and cannot be obtained from the corresponding expression given above for the case

kil Py
The total correction for the case k, || p| has the following form
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1 -
do(ky || p1) = g, Al

Performing the integration over a hard photon angular phase space (inside nar-
row comes) we pub the RC to the cross section coming from virtual and soft real
additional photons valid to a logarithmic accuracy in the form

dgmV+5) _daj @ Ae

“dede dzder Cln +L:E-L+:—]- (31)

&
In the Fig. 2,3 given are the ratio of /(L= } versus z for the two collinear kinemat-
ics considered above ( in numeric estimates we take parameterstobefp = 0.1, e = 1

GeV ).

6 Two hard photon emission and results in LLA

Turning o the structure of the result obtained it should be noted that all the terms
guadratic in large logarithms L, ~ L, ~ L, » L, are mutually cancelled out as
it must be.

From the formula {26) it immediately follows that (upon doing an integration
over a hard photon angular (within a narrow cone) phase space) the w-term that is
not proportional to T, which is in fact the kernel of splitting fuction for non-singlet
electron structure function, is not dangerous in a sense of a [easible violation of
the expected Drell-Yan form of the cross section because it does contribute only at
next-to-leading order.
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Figure 2: The ratio i= (see Eq. (31)) versus z = 2 for the kinematics k; }} p,.
(1=F A € !

Performing the above mentioned integration and confining ourselves to LLA we
get for the sum of virtual and soft photons

dg(5+V)

_dod a Ac 11 1
L ] (32)

Tdde  deden [T T3 7 g - 2) - lnlny)

The LLA contribution coming from the emission of second hard photon with
total energy exceeding Ac consists of a part corresponding to the case in which
both hard photons (with total energy c) are emitted by initial electron i8]

do?” doj o :i:’P(e2 )(1 - z) 1 As 3
drde = drdew 414 (1—-2)%) + §hl(1 —7) = = T]' (33)

1422 3 z
(2ln(] —z)~—|nz+§) +1—‘-;--—Eu:— 1 +:],

P{Nz) = 2[ :

—Zz

and the remaining part which describes the emission of second hard photon along
scattered electron and positrons. The latter upon combining with the part of con-
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tributions of soft and virtual photons to our process

dey 3a Ae 3
dxdc?L [ln & 4—]
may be represented via electron structure function in the spirit of the Drell-Yan
approach
day _ al+{l-z)
Ty, I — 5 f dzadzsdzgD(z)D(z3)D(ze)  (34)
dag(pi(1 - 2), z2p3; 1, 1)
de !

with the non-singlet structure function D(z) [16]

D(z) = §(1—z2)+ %LP‘”(:) + (%L)z-él-"Pm(z) +..., (35)
PUA(z) = fimld - 2)P8P +0(1 - A~ 2P (a)},
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3

2 3\?  9x?
B = 2matl, PO =TEE P"’:(zlnA+—2-) -

T,

The cross section of the hard sub-process e(p;z;) + E(ngg) —+ e(q1) + €(gz) entering

Eq. (34) has the form

doo(z1p1, zapas i, @2) _ 8me? [2f + 28 + 2122 + 2c(2d — 20) + (2 + 2] — 2122)]
de 8 zi{1 —e)(z1 + z2 + {23 — 2))?

The momenta of scattered electron q; and positron ga are completely determined
by the energy-momentum conservation law

' 22429
0 0 0
=€ , +g9; = &(z1 4 73),
% stz =) G +9; (21 4 z2)
¢ =cosq,,p,, 2 sin q,Pp, =2 sinq,,pl.

In general their energies differ from those detected in experiment &}, £}, namely
€1 = q1%3, £y = 324,

whereas the emission angles are the same in LLA.

Collecting the two expressions presented in Egs. (32,33) one can rewrite the
result in LLA as

do”

( dog ) (1+6}
- —_ 1},
dzxde kl"P: dzdec knllpl

dey

{ )) o [2 z'Pm

P = 1 + ZL|S —in(yy) + 2P (1=3) (36)
doJ T

( e ip [3 1+0= )]

For the case k) || p} the correction is found to be
i
- () q+a,
ke.iip! T ki,

_ (@R e 2, PP0-2)
o (??ﬂ?;)knp' v L[ 4(1+(1_I)2)

do”
dzde

dog al+(1-2)",
= —L dz;dzd
(d:r,dc kg, I f z1d23d 24 D( 2 ) D(22 YD 24) (37)
dao(z1p1, 2225 1, ¢2)
de ’

with L = Lo + 2In(l — z).
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Figure 4: The z-dependence of §; (see Eq. (36)).

For the case when the energies of scattered fermions are not det.ec(tied th: ex(—E
pressions (34,37) may be simplified due to JdzD(2) = 1 and z3, zy-independenc
of the integrand in k, || p, kinematics (zq—mdt?pendencg in ke || 7 ca\.'sef).t e cosine

The z-dependence of §; are shown in the F_'1g. 4 for deferex}t valul;:s o etc.:o p
of scattering angle ¢. For a hard photon emi.ss.)lon by fina.ll particles t_ e (?o:;ec jon &)
strongly depends on the experimental COI'ldlthIlS.Of particles detectgo?. e Enezgr);
thresholds of detection of scattered fermions. This dependence for &; is much m

1y about 1%. o

wea;(: rC,OI;lat;lrl?lzif)n let us recapitulate the results.' The results given in Eqs.tgi‘%ﬁ,i'g
respect the Drell-Yan form for a cross section in LL}?. Neverthe-less(.1 a c:;r d.(l)}’; prf
viation away from RG structure function representatlofl at a second or ;ras oL
in k; || p, kinematics is observed. T%le tFrm destroying expecta:tn?ns based on
RG approach comes from definite cont.mbut_lon of 2 soft photon emlssmnl,lence erm
with In(y,y;) in Eq. (36). Its appearance is presuinably a mer.efconseqh ence of &
complicate kinematics of 2 — 3 type hard subprocess (see [1‘1]), or suct  Kind of
processes the validity of the Drell-Yan form for a cross SECtl'Dll was not p ved so
far. Another possible way out is a careful analysis of a conflict between a so

16

hard collinear photon emission. We have used the factorized form of a soft photon
emission {22) under the condition (21). But, to the moment, this representation in
the peculiar case at hand is not rigorously proved as well.

The accuracy of our calculations of virtual and soft photon corrections is deter-
mined by the omitted terms of the order of

] 2
1+0 (eggL,,"‘TgL.) : (38)

which corresponds to a per mille level. The accuracy of the correction coming from
two hard photon emission is determined by O((a/r) In{4/82)) and at 1% level.
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Appendix

Here we give the expressions for the quantities associated with G-type integrals:

1 . 2
J = “';‘I“a [—QL.\Lll+2Lt|Lp—L3—2L12($)—E].
1 f d: Inz A T A+9d
Jo= =——t1 = —
! hxid 1-2z1-Az 4y ( +P—1') tivy
2
Jo = — 1 z ‘.lnz'
!]Xipo 1—z1~Az
»
1 dz zlnz
o= - 1+ , Al
" fov (1-2)(1-,\2)( 1h;) (A1)
P
1 zdz zln:z
Iy = / (1+ )
T el 0= U T TS
. Trz . xr LY |
A = Lis(l —p)— =+ Lig(z)+ L,In{1 —x), A=2, p=2L
6 p m?
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In the limit p 3> 1 we have
1 -1
& = xads +hixi(Jn—h +zhie —zh) = —§+O(p )

and this is the reason why w-structure does contribute only to next-to-leading terms.

In general the expression for S-denominator one-loop scala_x.r, vect_or a.nd tffl’lsot‘
integrals are some complicate functions of five independ_ent kmematlcal‘ J.l].Wll'lI;.ntS
(in deriving we extensively use the technique developed in [17]}.‘ In the limit m* «
Xi € 5 ~ —t they may be considerably simplified because of singular 1/x1 terms
only kept:

1 1
E = —Dpu+ Do,
L3 t

E, = —zE, = 2—:(—(1'.)0134 — (1 - z)DMM_xDI‘J:M‘l"XlE} ’
1
1 x x 2x?
Dgizq = P [Li +2L,1n =2 —In? Tz 3|’ (A.2)
2

| T )

aeDoum = ;; le - 2L.1LP - 2L.L,\ + —6‘ + 2].:]2(1)] ’
L g2 L, 426 Li—

ReDozay = ;_E L,l +2L,1L)—2 aligy + 2Ly Ly 61
1

2
1 m
ReDpiay = p [Lf + 28,05 — 2Ly, +In{2)) Ly + 20,0 + —6—] N

Tn?

! [—Lf + 2L (L, +In(z))+ 2L, Ly — —

s1aty

ReDu:u = = 6 ’

The structure £1; + zEw has the form 1/(sx1)f(z, x1) and_ will vanish 'a.ftef per-
forming the operation (1 + Q3)s:¢P given in (14) which yields a contribution of
P-type graphs with crossed and uncrossed photon legs. ‘ .

The following coefficient for the scalar integral is obtained in the calculation
B-type FD:

"2
B= ;-l-t [Lfl 420, Ly — 2Ly L, + 2L, L+ F] . (A.3)
1

For the vector integral coefficients we get

a = - [~%s1 + 2uiLia(1 - p) — ;1L + L], — 2L, L),
23]111‘
2
b = |2 aLi(1 - p) — 242 +4L,, L, —2L,, L,] , (A.4)
231t 3
1

2
[2u,1,i,(1 - p)+ Tt +60) + (t— 2w L, — L]

o
|

2-5]01t
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&

+ 4u1Lll [‘0 + 231 L.ll L!] .

The relevant quantities for tensor B-type integrals are:

1 P 1
Qpgr = ;t- (pTLp - Ll) . ﬂg = —E[(L,I — Lg):z + 1r2l,
s = —oal(Le— Lo 4184 (L — L) — (21, L
12 2!&? ? Ll tu1 L] t sit p—l [4 LI ]
1[3,, . 47¥
Ju = :;l- [§L,I - 2L,le d L}z(l - p) — —3— - {AS)

As has been mentioned in the text the physical gauge exploited provides a direct
extraction of the kernel of splitting function out of the traces both in the tree- and
loop-level amplitudes. The pattern emerging

(ﬁl - ’:7] + nl)é(ﬁl + nl)é(ﬁl — i:fl + m) = 4(}9[3)2(151 _ fﬁ) _ 82\‘1’%]

(1—2)¥p, (A.6)
(1 «—x}(??:iW—}")ﬁl

&2

a

kré(py + m)e(py — ky + m)

shows this clearly.
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