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1 introduction 

The process of electron-positron scattering is common1y used for luminosity mea­

surements at e+ e- colliders. It has almost pure electrodynamic nature and could 

therefore be described to any desired precision within a framework of perturbative 

QED. Nevertheless the accuracy of modern experiments is ahead of that provided 

by theory. A lot of work ha.s recently been done to uplift the theoretical uncer­

tainty to about one per mille under conditions of small-angle Bhabha scattering at 

LEPI [!]. 
The large-angle kinematics of Bha.bha. scattering process is extensively used for 

calibration purposes at e+e- colliders of moderately high energies, such a.s </>, Jf.p, 

B, and cfr factories and LEP2. At the Born a.nd one-loop levels the process wa.s 

investigated in detail in [2, 3, 4, 5, 6], taking into account both QED and electroweak 

effects. 
In paper [7] we considered Bhabha scattering to O(a) order exactly improved 

by the structure function method. The latter based on the renormalization group 

approach allows to evaluate the leading radiative corrections to higher orders, in­

cluding all the terms~ (aL,)", n = 2,3, ... , where L, = ln(s/m') is a large 

logarithm, s is the total center-<>f-ma.ss (ems) energy of incoming particles squared 

and m is the mass of fermion. 

To reach the one per mille accuracy it is required to take into account radia­

tive corrections (RC) up to third order within the leading logarithmic approxima­

tion (LLA) and up to second order in the next-to-leading approximation (NLA). 

In a series of papers several sources of these corrections were considered in de­

tail [8, 9, 10, 11]. 
In a recent publication [11] the contribution due to virtual and soft photon 

corrections to large-angle radiative Bhabha scattering wa.s calculated for the general 

case of hard photon emission at large angle with respect to a.ll charged particles 

momenta. In the present work we are going to consider the complementary specific 

kinematics, in which the photon moves within a narrow cone of small opening angle 

9o « I together with one of the incoming or outgoing charged particles. Thus 

the result obtained here may be used in experiments with the tagging of scattered 

electron (positron) in detectors of small aperture Oo « I. 

Our paper is organized a.s follows. In Sec. 2 the Born level cross section of 

radiative Bha.bha scattering is revised in the collinear kinematics of photon emission 

along initial (scattered) electron. We introduce here the physical gauge of real 

photon that is extensively used in the next sections. In Sec. 3 a set of crossing 

transformations which enables us to consider in some detail only the scattering 

type amplitudes of loop corrections to the process is described. Besides we restrict 

ourselves to the kinematics of hard photon emission along initial electron. In Sec. 4 

the corrections due to virtual and soft real photon emission in the ca.se lot II p 1 are 

considered. The general expression for correction in the case of hard photon emission 
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along scattered electron is given in Sec. 5. In Sec. 6 we consider a contribution 
(in LLA) coming from two hard photon emission and derive a general expression 
for radiative corredion. In conclusion we discuss the relation with structure function 
approach and the acc:uracy of the results obtained. Some useful expressions for loop 
integrals are given in tb.e Appendix and the results of numeric estimates are given 
in graphs. 

2 Born expressions in collinear kinematics 

Let us begin with revising the radiative Bhabha scattering process 

e·(p1 ) + e+(p,) -+ e·(p;) + e+(p~) + "f(ki) ( 1) 

at the tree level. We define the collinear kinematical domains as those in which 
the hard photon is emitted close (within a narrow cone with opening angle Oo «:I) 
to the incident (91(>) = PI(>)k1 < Oo) or the outgoing electron (positron) (O;(') = 
p~(:z)k 1 < 90 ) direction of motion. Because of the symmetry between electron and 
positron we may restrict ourselves to a consideration of only two collinear regions, 
which correspond to the emission of a photon along the electron mOmenta. The 
two remaining contributions to the differential cross section of the process ( 1) can 
be obtained by the substitution Q 

du'"u = [ 1 + Q ( ~ :: ~ ) ] { du'(lo, II p,) + du'(lo, II p;) }· (2) 

To begin with, le~ us recall the known expression [12] in Born approximation for the 
general kinematics, i.e. assuming all the squares of the momenta transfers among 
fennions to be large compared to electron mass squared: 

duJ 
Q3 d3p~d3p~d3k1 4 I I -

8 2 
Tdf, df = , , 6 (p1 + p,- p1 - p2 - k1), 

11' s E"tC:zWt 
(3) 

T = _S_ [ssi(s2 + si) + tt,(t' + ti) + uu,(u' + uil] 
itt SSt 

16m
2 

( s t1 )' 16m
2 (s t I) 

2 
16m

2 (s1 t 1 1) 
2 

-.,- -+-+1 --,,- -+-+ --,- -+-+ 
X:z t1 s Xl t s X2 t1 St 

16m
2 
('' t )' -,- -+-+1 ' 

Xt t St 

[ 

S St t1 t Ut U l s = 4 --+-,-, ---,---. +--, +--, , 
X1X2 X1X2 XtXt X2X2 X>X1 XtX2 

s = (1'1 + p,) 2, ., ; (p; + 14)2 , t = (p, -14)', t, = (p,- p;)', 
u = (Pt- ~)2 , Ut = (P2- p~)2 , Xi= 2pikh X~.2 = 2p~.2kl. 
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In the collinear kinematical domain in which 11: 1 II p 1 the above formula takes the 

form 

Mti(lo, II p,) 
d ..... d' ' ' ') _ :!.._d'A:,~TF ": ,P264((1-x)Pl+P2-Pl-p2 

- 7r2.S Wt Xt E"tE:z 

= dW,,duo((l- x)p,p,), 
1 +(I - x)' _2m' 

T = x(l-x) X1 
F= ...!.+-+1 (

s t )' 
t s, 

where 

s 1 = s(1- x), 
e~ 1- x 

Y1 =- =2--
~ 2-2x+x2 +cx(2-x) 

y, = -= 
e a 

(4) 

e a ' 

a= 2- x +ex, w1 =c:x, s=4e2
, 

s 
X1 = 2x(l- c,(3), 

~ 
(3 = v 1- 7'' 

1=1
1
(1-x) = -s(1 -x)'(I-c), 

a 

dW, =~1-xTd•A:,. 
I 211'2 Xt Wt 

c = cos(p,p'J), c1 = cos(p1k 1 ), 

(5) 

Here y; are the energy fractions of the scattered leptons and duo(l'!(l- x),p,) is 
the cross section of the elastic Bhabha scattering process. 

Throughout the paper we use the following relations among invariants 

St + t + U:t =4m2 
-XI R:: 0, s + 11 + u = 4m2 + Xt "" 0. 

In the case 11: 1 II p; one gets 

duJ(A:, II P~) a I - d
3
k, ( )d ( ) = --T-1-x O"oPt,P2, 

271'2 X't Wt 
(6) 

I+ (I- x)' _2m2 

x; i = 
X 

These expressions could also be inferred by using the method of quasi-real elec­
trons [13] and starting from the non-radiative Bhabha cross section. 

After integration over a hard collinear (A:, II p 1 ) photon angular phase space the 
cross section of radiative Bhabha scattering in the Born approximation is found to 
be 

duJ I 
dxdc ••liP, 

X 

4a'[I+(1-x)'Lo_ 2I-x] (7) 
s X X 

(
3 _ 3x + x' + 2cx(2- x) + c'(!- x(l- x)))' (I+ 0(8~)), 

(1- x)(l c)a' 

3 



where Lo = ln(e9o/m)2
• And in the case k, II Pi it reads 

da;j I 
dxdc ko!IP\ 

<X' [I+ (I- x)' L' _ 21- xl (3 + "')' (1 + 0(9~)), 
4s X 0 X } - C 

(8) 

L' - I (";9•)' o-n--, 
m 

~:; = e(l- x). 

The simplest way to reproduce these results is to use the physical gauge for 
.the real photon which in the beam ems sets the photon polarization vector to be a 
space-like 3-vector e..\ having density matrix 

{ 
0, J. .\•-E e11 e11 - 5~v- n~'n"' > 

ifporv=O 
JJ=V=1 1 2,3 

k, 
n=-, w, 

with the properties 

L ie>l' 
> 

L lp;e,l' = 

' 

-2, L lp,e,l' = £
2 (1 - c:J, 

' t1u1 

s 
L(p,e,)(p;e,r 'z" 9. 

A 

(9) 

These properties enable us to omit mass terms in the calculations of traces and, 
besides, to restrict ourselves to consideration of singular terms (see Eq. (10)) only 
both at the Born and one-loop level. As shown in [14], this gauge is proved useful 
for a description of jet production in quantum chromodynamics; it is also very well 
suited to our case because it allows to simplify a lot the calculation with respect, for 
instance, to the Feynman gauge. What is more it possesses another very attractive 
feature related with the structure of the correction to be mentioned below (see 
Appendix). 

With these tools at our disposal let us turn now to the main point. The contri­
butions, which survive the limit fJ0 -+ 0, arise from the terms containing 

(p,e)' e2 

--,-, -
X! XI 

(p;e)' 
XI 

{10) 

Other omitted terms (in particular those which do not contain a factor xt1
) can be 

safely neglected since they give a contribution of the order of 9~ which determines 
the accuracy of our calculations 

I+ 0 (6~L,), m 
- «6o «I. 

" 
(11) 

In the realistic case this corresponds to an accuracy of the order of per mille. 
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3 Crossing relations 
In this and the next section we shall consider the case k1 II p 1• In the case of 
photon emission along ,1,. one can get the desired expression by using the left·to­
right permutation 

IMIL,np; = Q ( ~ ::: =~ ) IMIL, 11p,. ( 12) 

P• v; 

k 

-rl, -p, 

(I) (2) (7) (8) 

(3) (4) (5) (6) 

Figure 1: Some representatives of FD for radiative Bhabha scattering up to second 
order:(lJ is the vertex insertion; (2) is the vacuum polarization insertion; graphs 
denoted by (3),(4) a.re of the L-type, (5) is of G1-type, (6) is of G2-type, (7) is of 
B-type and (8) is of P-type. 

From now on we deal with scattering type amplitudes (FD) with the emission 
of hard photon by initial electron. This is possible due to the properties of thr 
physical gauge. The contribution of annihilation type amplitudes may be derived 

5 



by applying the momenta replacement operation as follows: 

l>.[M[!.,,;•;,.,.,. = { Q(p; <-+ -p,)} l>.[MI~ .. ri•• = {Q,} l>.[M[!,.,,.ri••· (13) 

In considering FD with two photons in the scattering channel (box FD) one may 
examine only those with uncrossed photons because a contribution of the others may 
be obtained by the permutation P2 B -p;. Thus the general answer becomes 

1 
[M[j, liP = !Re{(1 + Q.)[G + L] + -(1 + Q,)(1 + Q,)[s1t(B + P))}, (14) 

I 1 Stt 

with the permutation operators acting as 

QtF(shtl,s,t)= F(t,s,t~,sl), Q2F(s,u,st,ut) = F(u,.s,u11 st). 

4 Virtual and soft photon emission in k 1 II p 1 kine­
matics 

One-loop QED RC (which are described by seventy two Feynman diagrams) can 
be classified out into the two gauge invariant subsets (see Fig.l ): 

• single photon exchange between electron and positron lines (G,L-type); 

o double photon exchange between electron and positron lines {B,P-type). 

For L-type FD {see Fig. 1{3,4)) the initial spinor u(p1 ) is replaced by the structure 
{a/(2,.))A2k1eu(p,) with 

A,= 2_{ 
X• 

p 2p
2 

- 3p + 2 1 [ . .-'] } 
2{p-1) + 2(p-1)' L,+P -L•,(1-p)+6 , 

L, = Inp, XI 
p=-,. 

m 

The relevant contribution to the matrix element squared and summed over spin 
states reads 

~IMIJ. =2",.'a'A,s~-u~ [y- 2{2-x)w]' 
XI Stf2 1 -X 

{15) 

2 x, ()' Y = 4(p,e) - --e X1o W = p,e . 
1-x 

The contribution of vertex insertion, vacuum polarization1 and G 1-type (see 
Fig. 1 (I ,2,5)) has the following form 

2 1024[ 1 Js~-u~ l>.[Minrr = 2 "a II,+f1 +-r. -
2
--2 Y, . . • 4 t s,x, (16) 

1 For realistic applications one should also add &o n the contributions due to p and T leptons 
and hadrons. 
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1 5 1 1, ... n, = 3L,- g' r, = (L, -1)(1- L,)- 4L,- 4L, + 
12 , 

2 

r. = -3Li + 4L,L, + 3L, + 4L,- 2ln(1- p)- ~ + 2Li,(1- p)- 4, 

m -t j' dx 
L, = ln-:1", L1 =lnm'' Li2(z)=- -;-ln{1-x). 

0 

Here A is as usual the IR cut-off parameter to be cancelled at the end of calculus 
against a soft photon contribution. 

For the contribution of G2-type FD (see Fig. 1(6)) with four denominators we 
obtain 

t>.[MI~ = z•.,•.-• 8~- u~ [(J- J.)Y + 2(2 - x) W(J11 - J, 
ts,x,(1- x) 1- x 

{17) 

+ xJ,.-xJ•)]. 

It turns out that only the scalar integral and the coefficients before p, in the vector 
and tensor integrals give non-vanishing contribution in the limit 00 -+- 0 

J d'k {1, k", k"k") (J J-" J k" J ..!' v J k"k" J ( k "'") i,.' {0)(1)(2)(q) = , "'' + > 1, liY1P1 + » , 1 + 1> p, 11 , 

{0) = k2 - A2
, {1) = k2 - 2p1k, (2) = k'- 2,{,_k, (q) = k2

- 2k(p,- k,)- X1> 
( ab )"" = a"b" + a"b", 

and the terms having no p1 momentum in the decomposition have been omitted for 
their unimportance. 

The B-type FD shown in Fig. 1(7) with uncrossed legs gives 

t>.[MI~ • , 'Y 1 [ 3 3) b) 3 ( 2 ) = 2 11" a --2 (u1 - s 1 s1(B +a- - u 1st c + at'2' + at'2 + -a11 

··~· ., 
+ s~{c[t- u,] + 2Jo)], {18) 

where the coefficients are associated with scalar, vector and tensor integrals over 
the loop momentum 

J d
4
k {1, k", k"k") - " "" - J d'k 1 i.-' b,b,b,b, - (B,B ,B ), Jo- i,.' b,b,b,' 

bo=k'-A', b,=k'+Z,{,_k, b,=k'-2p;k, b,=k'-2qk+t, 

B" = (ap; + b[l, + cp,)", q = J4- p,, 
B""- -"" + '• 'v+ _...!'.,..+ '• '• - B11y Bt'l'PI p1 a211'2 n al'2'P2 P2 

+ a,.,(,{,_p,)"" + a,.,.(,{,_p!,) .. + a22•(p,p!,)"". 
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For P-type FD (see Fig. 1(8)) with uncrossed photon legs the contribution is 
found to be 

LI.IMI~ = 29.-'a' ·~- u~ [Y(E- E,) + 2(
2

- x)W(E11- E, (19) 
tx,(l-x) 1-x 

+ xE,.- xE•)]. 
Here we are using the definition (with tensor structures contributing no in the limit 
e;, -+ 0 dropped) 

/
d'k(l,k',k"k") (E E _,. E k' _,. E k'k" E ( k )"") ~ = , IYI+ lr. 1,Euy1p'{+ lr.k t 1+ llr.PI 1 , 
nr aoata:~:aaa• 

ao = k2
- ~·, a 1 = k'- 2p1k, a, = k2

- 2k(p, - k,)- X~> 

a3 = k2 + 2P>k, a4 = k2 
- 2qk + t. 

Collecting o.ll the contributions (for the explicit expressions of o.ll the coefficients 
see Appendix) given above one arrives at the general expression for the virtual 
corrections with p = x[l + (c8/m)'] « sfm' 

211a 4
7r

2 
{ 2- x w 

2Re 2: { M~ M)!0 liP = FT -- ;;;4> + 2L,(2 - L, - L,, - L, 
l I XI 1- X .1 

) ,., . 101 I p I 2 2 L., + L, + L,, +a+ L12(x) -[8 +In 
1 

_ P + L,, - L, 

2 11 2 St 1 [ t
3 

- ul s1 L., + L, In(!- x) + -
3 

L, -11 +In - + -F TI + 3-2-ln-
I s 1t -t 

(20) 

2u1 (u~ + si)- Is~ I 2 u1 2u1(ui + 12
)- 12s, I 2 -u s, I u, + n -+ n -+- n-

4t2s, t 4tsl s 21 t 

+ -In- - -1r - + - , t -u 3 '(•• I)]} 
2s1 s 4 t St 

where we have used the following definitions 

X [ 1T2 l 11 = -- Li2(1- p)-- + Li2(x) + L,ln(l- x) , 
p- X 6 

ll=-1
--

1
- ---1 --L,+-s

3 
- u

3 
[" ( I ) I 5] 

s,t2 a 1-TI, 3 9 

1
3

- u~ [" ( 1 ) 1 5] + ----;v- ~~e 1 - ll~~, - 1 - J LtJ + 9 , 

n., = ~ (L,, - i1r)- ~· 4? = x,A, + t,x,(JH- J, + xJa- xJ•), 

., 
L = ln-,, 

" m 

-u 
L =ln2, • m 

-u, 
L =In~-,' ., m 

8 

-t 
L, = ln-,, 

m 

I 1 
w =-;- P' 

-I, 
L,1 =In m1' 

After intrgration over \ 1 one gets additional large logs of the form L0 = L6 + 
ln(O~j.1). Terms cout.aining the last factor have to be cancelled against a contribu­
tion coming from the emission of hard photon outside a narrow cone 6 < Oo << 1 
{and supplied by the same set of virtual and soft corrections). which was considered 
in [11]. In the case of two hard photon emission it is necessary to consider four 
kinematical regions. namely when both are emitted inside/outside a cone and one 
inside/another outside. 

Fortunately enough, the tv-structure, which obviously .violates factorization fea­
ture, dCX'S not contribute in LLA due to a cancellation of large logs in ft. What 
for a corrPCtion to the abovt> structure coming from P-type graph it vanishes in 
the sum of FD with crossed and uncrossed phot.on legs (for a more comprehensive 
account S('C' Appendix). 

The total expr<'ssion can be obtained by summing virtual photon emission cor­
rections and those arising from the emission of additional soft photon with energy 
exceeding no Lle « e. 

The emission of a soft photon is seen as a process factored out of a hard sub­
process (in our case the latter is exactly a hard collinear photon emission) so this 
is seemingly come into an evident conflict with a hard collinear emission. Never­
thelt>ss the arguments similar to those given in the paper devoted to the problem of 
DIS with tagged photon [15] may be applied in the present paper: the factorization 
of the two in the di.ffrrential cross section is present and we are hPnfe allowt>d t.o 
consider a soft photon emission restricted as usual by 

.::I.e 
-«I. 

£ 

Thus the soft correction can be written as 

L IMI~.nl+~" = L IMI1wwn(kr II Pr ), 

Wwn(k, II P1) 
d3k ( I I )

2 
a PtPtP2P'l 

- 41T2 f ,;, .. .j. .1' - p,k + p',k + P>k - ll,k 
w<de 

(21) 

(22) 

where MB denotes the matrix element of the hard photon emission at. thf" Born 
level and in the kinematics k, II p 1 it reads 

211 3 3 

L IMI1 = Q " T F. 
\"I 

(23) 

Now let us check the cancellation of the terms containing L,. lnd<"t"d it takes place 
in the sum or contributions arising from emission of virtual and soft real photons. 
To show that we bring the soft correction into the form 

w~n(k, II p 1 ) = ;{ 2 (In~< + L,) ( -2 + L, + L., + L, + L,, - f,, - L.,) 
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+ ~(L! + L!, + L~ + L:, - L!- L!,) + lny1(L., - L,, - L,,) (24) 

27r2 
1 2 yt . (1 +ct'2') + lny2(L.- L,- L,,) + ln(y,y,)- -

3 
--In - + L12 ----'--:-.-'-'-

2 y, 2 

+ Li, (-1 +_2_c_,,) + Li, (-1_-2_c_,,) - Li, (-1-~_c_l')- Li, (-1_+2_c_,,) }, 

where Ci are the cosines of emission angles of i-th particle with respect to the beam 
direction (p1 in ems), Ct'l' is the cosine of the angle between scattered fermions 
in ems of the colliding particles and Yi are their energy fractions and in the case 
k1 II p 1 we have 

c4 = c, 
1+ci'2' 1-r 
-~-=1---, 

2 YIY2 

1-.; y1(1+c) 
-2- = 2y2(1- x)" (25) 

Then the cancellation of infrared singularities in the sum is evident from com­
parison of Eqs. (20,24). The terms with In( Ll.o/ 1:) should be cancelled when adding a 
contribution of a second hard photon having energy above the registration threshold 
Ll.£. 

The complete expression for the correction in the case k 1 II p 1 reads 

2
11

<>'11"
2 {2-xw (Ll.£) [ R=2~e1)M;"M)+IMI!,"= FT ---T<I>+4ln - -l+L,, 

XI 1- X 1: 

1 ( • )] 11 +2" -ln(1-x)+2ln~ + 3 L,+(L,-L1)ln(1-x)-L1 ln(y1y2) 

+ lny1ln(1- x) +ln(YIY2) (1 +In ~u) + ln2 ~~- ~
2 

+ Li2(x)-
1
1
°; -d 

+In-- --In -+ln(1-x)ln-+LI2 +L12 --I p I 1 2 y, -u . (1+c1''') • (1+c1') 
1-p 2 y, s 2 2 

(
1-c2') . (1-c,) (1+c2') 1 [ t'-u~ s1 +Li2 -- -L12 -- -Li2 -- +- 11+3-2-ln-2 2 2 F s1t -1 

2ul(ul + •l)- tsf I 2 u, 2u,(ul + 12
)- !2s1

1 2 -u s1 I U1 I I -u + n-+ n-+-n-+-n-4!2s1 t 41sl s 21 I 2s1 s 

3 2 ('I I )] } ( - 4" t + .I ' 26) 
1 

du(k, II p 1) = 
2
1l>Rdr. 

" s 

5 Kinematics k1 II p~ 
We put here a set of replacements one can use in order to obtain the modulus of 
matrix element squared and summed over spin states for the case A: 1 II p~ starting 

10 

) 

) 

from the analogous expression for k 1 II p 1 (Eq. (14)) and using the replacement 
of momenta PI H -p~, P2 ++ -p'2. The last operation results in the following 
substitutions: 

X 
X .... 

1-x ' 

XI .... -x~, 
s .... ., (27) 
u .... u, 

I .... I 
' tl -+ tl. 

Then under these permutations the expression for virtual corrections presented in 
Eq. (20) gets transformed giving the following result for the collinear domain k1 II p; 

2ua411"2 - - { 2- x W-
2~e L: (M;M)k 

11
., = , FT --~<!> + 2L,(2- L,- L,- L, 

I,..! Xt 1-xT 

"' . ( -x ) 101 ( { ) 2 L" + L. + L.,) + J + L12 1 _ x - lS + In { + 1 + L. 

2 2 11 2 s 1 r- t
3

- u
3 

s L,-L,-L<1n(1-x)+-Lt+ln -+~ 11+3-2-ln-3 -1 F s I -1 
2u(u2 +s2)-ts2 

2 u 2u(u2 +12)-12s 2 -u s ·u -+ In-+ In -+-ln--d 4t2s t 41s2 s 21 I 

t -u 3 2 (' I)]} + -In - - _,. - + - , (28) 2s s 4 I s 

with 
3 1 )-~L,+~] 1 ~] 

_ s

3 

- u [.":. ( ·- -
1 

3 
9 

3 ,. ( 1 _ 1) - - L, + 9 ' 11 = 2 a 1 -
11

• t" - u [-~e --11 3 st + -- 1- • 
s2t a 

(
• I )' F= ~+~+1 , 

l- X 1 
w=--x-+(' e = x: 

m' 
and 4>, J derived upon applying a set of replacements from Eq. (27) on the quantities 
4>, d. 

The contribution from the soft photon emission is described by 

w .... (k, "[ Ll.e ( l-c 1 ) II p;)=-4(ln-+L,) -1+L,+ln-
1
-+-ln(1-x) +L! 

,. £ +c 2 
1-c 1 2 2 1-c 2 1+c + 2L ln---ln(1-x)+ln(1-x)+ln --In- {29) ' 1+c 2 2 2 

211"
2 

(1 +c) (1- c)] J + 2Li2 -
2

- - 2Li2 -
2

-
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and cannot be obtained from the corresponding expression given above for the case 

k, II p,. 
The total correction for the case k 1 II p'1 has the following form 

2"a
4
1r'--{2-xtii- (~')( 2!ReL;(M~M)+IMI!.,= , FT --~41+4ln - -1 

Xt 1 -X T 1': 
il 

+ L,+-ln(1-x)+ln-- +-+Li, -- --+In --1 1 - c) ,., ( -x ) 101 ( ( ) 
2 l+c 3 1-x 18 (+1 

2 11 2s 22 -
2ln(l-x)+-L,-Leln(l-x)+ln ---rr +ln(l-x)-11 

3 -t 3 

(
l+c) (1-c) 1 [- t

3
-u

3 
s + 2Li, -- -2Li, -- +~ II+3--ln-

2 2 F s't -t 

+ +In'(~) (2u(u2 + s 2
)- ts2

) +~In'(~) (2u(u2 + t')- t 2s) 
4t s t 4ts s 

s u t -u 3 2 (s t )] } + -ln-+-ln---11" -+- , (30) 
2tt2s s 4 ts 

' 1 -d<Y(k, II p,) = -
211 5 Rdr. 

" s 

Performing the integration over a hard photon angular phase space (inside nar­
row cones) we put the RC to the cross section coming from virtual and soft real 
additional photons valid to a logarithmic accuracy in the form 

da'Y(V+S) 

dxdc 
--- Gin-+ t"L +" · d,.J a [ ~E L _ -] 
dxdc" < 

(31) 

In the Fig. 2,3 given are the ratio of '2/(Lt'2L) versus x for the two collinear kinemat­
ics considered above ( in numeric estimates we take parameters to be 80 = 0.1, e: = 1 
GeV ). 

6 Two hard photon emission and results in LLA 

Turning to the structure of the result obtained it should be noted that all the terms 

quadratic in large logarithms L11 "" L.1 ""' Lu >> Lp are mutually cancelled out as 
it must be. 

From the formula (26) it immediately follows that (upon doing an integration 
over a hard photon angular (within a narrow cone) phase space) thew-term that is 

not proportional to T, which is in fact the kernel of splitting fuction for non-singlet 
electron structure function, is not dangerous in a sense of a feasible violation of 
the expected Drel1-Van form of the cross section because it does contribute only at 

next-to-leading order. 
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Performing the above mentioned integration and confining ourselves to LLA W(' 

get for the sum of virtual and soft photons 

du'l(S+V) duJ' o [ ~f 11 1 ] 
-dc-x""""'d_c_ = -&r_d_c;L 4ln-,- + 3- 2In(I- .r) -ln(y1y2 ) . (32) 

The LLA contribution coming from the emission of second hard photon with 

total energy exceeding 6.e consists of a part corresponding to the cas{' in which 

both hard photons (with total energy ex) are emitted by initial electron {8) 

duh 

dxdc 

pJ''(z) 

= d,.;: ~L[ xP/:'(1-x) +~ln(l-:r)-ln~€ -~]. 
dxdc>r 4(1 + (1- :r)2 ) 2 € 4 (33) 

[
l+z'( 3) 1+- l 2-- 2ln(I-z)-lnz+- +---lnz-l+z, 
I- z 2 2 

and the remaining part which describes the emission of second hard photon along 

scattered electron and positrons. The latter upon combining with the part of con-

13 
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Figure 3: The ratio L:. versus x = w, in the k1 II JY, case. 
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tributions of soft and virtual photons to our process 

cluJ 3o L [1n ~e + ~] 
dxdc 1r t 4 

may be represented via electron structure function in the spirit of the Drell-Yan 
approach 

cluJ )I = 
( dxdc k, liP, 

<> 1 + (
1

- x)' Lo j dz2dz3dz.-V(z,)'V(z,)'V(z,) 
211' X 

duo(p1{1- x), z2p,;q.,q2) 
x de 

with the non-singlet structure function 'V(z) [16] 

'V(z) = 5(1- z) + 
2
: L'P('l(z) + c: L) 2 

~ pl'l(z) + ... , 

p(I,>l(z) = ~~{o(l-zJP1'·'1 +9(1-~-z)P~1·'1(z)}, 
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(34) 

(35) 

P
(l) 3 1 2 
a = 2ln~+- P.(')()- +z 

2
' ez---1- z , 

p(2)- (21 A 3)' 211'2 a - nu+- __ 
2 3 ' ... 

The cross section of the hard sub-process e(p1z1 ) + e(p,z2 ) -+ e(qJ) + e(q2) entering 
Eq. (34) has the form 

duo(z,p,, z,p,; q,, q,) = 811'<>2 r·: + z~ + z,z, + 2c(z~- z:J + c'(zi + z~ - z,z,)l' 

de • z1(1- c)(z1 + z2 + c(z2 - z.))' 

The momenta. of scattered electron q1 and positron '12 are completely determined 
by the energy-momentum conservation law 

O 2ZtZ2 

q1 =t:z1 +zz+c(z2-;~)' q~ + q~ = t(z1 + z,), 

c = cosq-;:-pl, Zt sin q-;,-p1 = Z2 sinq;,-p1• 

In general their energies differ from those detected in experiment~~£~, namely 

e~ = q~z3, 0 c:; = 'liz., 

whereas the emission angles are the same in LLA. 

Collecting the two expressions presented in Eqs. (32,33) one can rewrite the 
result in LLA as 

du' I 
dxdc k,l)p, 

_ (d"J) {1+o,}, 
- dxdc k>))p, 

(~) -1 £1 = du"'' 
eft k,upl 

x'P(')(1 - x) ] 
+ <::L[~ -ln(y,y,) + 411 1 (1- xl'l . 

" 3 

For the case k, II Pi the correction is found to be 

du' I _ ( duJ) {1 +ol'}, 
dxdc k,fiP\ - dxdc k,fiP\ 

((d.')) . a [2 x'Pg)(l- x) ] 
o,. = if.~' - 1 + ;L 3 + 4(1 + (1- x)') ' 

eft kd[P\ 

a 1 + (1- x)' L~ J dz,dz,dz,'V(z.)'V(z,)'V(z,) 
2.- X 

cluJ )I 
(dxdc k,fiP\ 

= 

duo(z,p,, z,p,; q.,q,) 
x de 

with L~ = Lo + 2ln(1- x). 
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(36) 

(37) 
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Figure 4: The x-dependence of J, (see Eq. (36)). 

For the case when the energies of scattered fermions are not detected the ex­

pressions (34,37) may he simplified due to J dz'D(z) = 1 and z3 , z4-independence 

of the integrand ink, 1\ p 1 kinematics (z,-independence ink, II,.; case). 

The x-dependence of h1 are shown in the Fig. 4 for different values of the cosine 

of scattering angle c. For a hard photon emission by final particles the correction J~ 

strongly depends on the experimental conditions of particles detection: the energy 

thresholds of detection of scattered fermions. This dependence for b't is much more 

weaker, namely a.hout 1%. 
In conclusion let us recapitulate the results. The results given in Eqs. (36,37) 

respect the Drell-Yan form for a cross section in LLA. Nevertheless a certain de­

viation away from RG structure function representation at a second order of PT 

in lc 1 II p 1 kinematics is observed. The term destroying expectations based on 

RG approach comes from definite contribution of a soft photon emission, the term 

with ln(y1y2 ) in Eq. (36). Its appearance is presumably a mere consequence of a. 

complicate kinematics of 2-+ 3 type hard subprocess (see [ll]); for such a kind of 

processes the validity of the Drell-Yan form for a cross section was not proved so 

far. Another possible way out is a careful analysis of a conflict between a soft and 
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hard collinear photon emission. We have used the factorized form of a soft photon 

Pmission (22) under the condition (21 ). But, to the moment, this representation in 

the peculiar case at hand is not rigorously proved as well. 

The accuracy of our calculations of virtual and soft photon corrections is deter­

mined by the omitted terms of the order of 

l + 0 8~-L., ---L, , ( 
o m

2
o ) 

" s " 
(38) 

which corresponds to a per mille level. The accuracy of the correction coming from 

two hard photon emission is determined by O((aj1r) ln(4/85)) and at 1% level. 
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Appendix 

Here we give the expressions for the quantities associated with G-type integrals: 

J = --
1
- [-2L_,L,. + 2L,, L,- L;- 2Li,(x)- "']. ,,t, 6 

J, = _1_/' ..i:_~ = _i_ (I+ _x_) = A+ 11, 
t,x, 1-zl-.b t1x, p-x t

1
y

1 0 
p 

J• = __ 1_/ dz ~. 
t,x,p 

0 
I - z I - Az 

J I dz 
1 

zlnz 
p ( ) 

II - --- +--
- t 1y 1 [(I- z)(! Az) I - z ' 

I ' zdz ( zlnz) 
-- 1+--
t,x,pf(!-z)(I-Az) 1-z' 

0 

J,. 

A "' Li2(1- p)- 6 + Li,(r) + L,ln(l- x), 
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A- r 
p 

\I 
p= m2' 

(A.l) 



In the limit p » I we have 

cJ> = x,A, + t,x,(Jn- J, + xJ,,- xJ,) = -~ + O(p- 1
) 

and this is the reason why w-structure does contribute only to next-to-leading terms. 

In general the expression for &-denominator one-loop scalar, vector and tensor 

integrals are some complicate functions of five independent kinematical invariants 

(in deriving we extensively use the technique developed in (17)). In the limit m 2 « 
x1· « s ~ -t they may be considerably simplified because of singular 1/\1 terms 

only kept: 

E = 
l I 
-Dot24 + "iDot:zJ, ,, 

E, = 
I 

-xE, = 2 (Dot><- {l- x)D0234- xDm• + x,E), 
Xt 

Dm:z4 = -- L + 2L In-- -In -- - -1 [ 2 X 2 X 27r
2 l 

XttXt P P 1 -X 1 -X 3 ' 
(A.2) 

~eDou3 = I [ "' l 'X• L!, - 2L,,L,- 2L,L; + 6 + 2Li2 (x) , 

ReDo234 = I [ 5"'] ;;i L;, + 2L$1 L>.- 2LpL$, + 2Ls1 L, - 6 , 

~eDot34. = 1 [ 7"'] - L! + 2L,L;- 2(L,, + ln(x))L, + 2L,L, +- , 
~ 6 

ReD,"" = 1 [ 7"'] --- -L! + 2L,(L,, + ln(x)) + 2L,,L;- 6 , 
St:ttt 

The structure £ 11 + xE1, has the form 1/(sxt)f(x, Xt) and will vanish after per­

forming the operation (I + Q,)s1tP given in (14) which yields a contribution of 

P-type graphs with crossed and uncrossed photon legs. 
The following coefficient for the scalar integral is obtained in the calculation 

B-type FD: 

I [ "'] B = 
811 

L!, + 2L,, L, - 2L,, L, + 2L,, L, + 6 . (A.3) 

For the vector integral coefficients we get 

a = --
2 

1 [->r2s,+2u,Li,(1-p)-s1L;+tL! -2tL,,L,j, 
s1u1t 

1 

b = --
1
-[

2
"

2 

+2Li,(1-p)-2L! +4L,,L,-2L.,L,], (A.4) 
2s,t 3 ' 

1 ( . ( ) ,.( ) ' ' c = -- 2u1 L•• 1- p + -
6 

4u1 + 61 +(I- 2ut)L.,- s1L, 
2.S]Ulf 
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• 
+ 4u1L.1L,+2s1L.,L1]. 

Thf' relf'vant quantities for tensor B-type integrals are: 

I ( p ) I ( 2 'J al'2' = - 1 --Lp- Lt , ali'=-- (L.
1 

- Lt) + rr 
1 s, p-I 4u1 

a1•2 = - 2
1

2 ((L,-L,,)'+,'J+-
1

1 
(L., -L,)-_!__

1 
(_f!.._

1
L,-L.,), 

U 1 Ut St p-

I [3 2 4w'] Jo =; 2L,,-2L,,L,-Li2(1-p)-3. (A.5) 

As has hcen mentioned in the text the physical gauge exploited provides a direct 

extraction of the kernel of splitting function out of the traces both in the tree- and 

loop-level amplitudC's. The pattern emerging 

(fit - k, + m)e(p1 + m)e(p1 - k, + m) 

k,e(p, + m)e(p,- k, + m) 

shows this clearly. 
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AHToHerum B., Kypaes 3.A., UiaiixaTJieHoB E.r. 
PaJ~HamtOHHoe 3JieKTpoH-n03JITPOHHoe pacce>!HHe 
Ha 6oJILII1He YfJibl B KOJIJIHHeapHoii KHHeMaTHKe 

E2-99-139 

PaccMmpeH npouecc MeKTpoH-nmHTpoHHoro pacce>!HH>l ua 6oJJLume yrmo1 c 
H3.JiytleHHCM O.li.HOfO XeC'TKOfO ~TOHa KOMHHeapHO HaTipaB.lleHHIO .llBHXeHIUI Oll­
HOH H3 JaplllKeHHbiX '!acruu. IlpeJICT3BlleHo Bblpruo<euue llflll JlH.p.j>epeuuuarrLuoro 
CeqeHHJI C )"'eTOM p3.1Ut3UHOHHblX nonpaBOK. CBXJa.HHbiX C HJJlyqCHHCM BHJITYaJib­
HOffi " M>IIXOro peaJJLHoro <!JmoHOB. B IIHJlHPYJOlllCM llorapH<jJMH'IecKoM npH611H­
xeuuu .ll,allbl BblpaJKeHWI ,llJUI cnyqag H3JI)"'eHIDI Jl,Byx xeCTKHX cpoTOHOB H nOJIHIDI 
OOOpaBKa. IJOCJJC)lHH HJJJJIOCTpHpyeTC>l 'IHCIICHHbiM paC'IeTOM. 06CYJK.11aeTC>l 
co>~JL nonyqeHHbiX pe3YJJLTaTOB c <jJopMarrHJMOM CTPYKTYPHbiX <jJyuKUHii. 

Pa6oTa Bblnonueua o Jla6opaTopHH TeopeTH'IecKoii <jJHJHKH HM. H.H.Eoro­
mo6ooa QHj!H_ 

npenpHHT Ofh.emtHeHHOro HHCTHT)'Ta uepHLIX HCCJle.!IOBaHHii. lly6ua, 1999 

Antonelli V.A., Kuraev E.A., Shaikhatdenov B.G. E2-99-139 
Radiative Large-Angle Bhabha Scattering in Collinear Kinematics 

The process of large-angle high energy electron-positron scattering with 
emission of one hard photon almost collinear to one of the charged particles mo­
menta is considered. The differential cross section with radiative corrections due 
to emission of virtual and soft real photons calculated to a power accuracy is pre­
sented. Emission of two hard photons and total expressions for radiative correc­
tion are given in leading logarithmical approximation. The latter are illustrated by 
numeric estimates. Relation between results and structure function approach is 
discussed. 

The investigation has been performed at the Bogoliubov Laboratory of Theo­
retical Physics, JINR. 
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