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1 Introduction 

Single-spin correlations have been the subject of theoretical [1-15] and experimen
tal [16-20] study since the seventies. Earlier theoretical work paid attention mainly 
to time-reversal invariance violation in hadron-scattering processes. No such effect 
was found whereas C-odd single-spin correlation asymmetries had been observed 
at the level of ~10% in SLAC experiments with 10-12 GeV electrons and positrons 
scattering off polarised protons, with, however, large error bars and later in Fermi
lab experiments at higher energies. The capabilities of modern CERN and DESY 
experiments permit the reduction of these errors due to much improved statistics. 
We argue here that, at small momentum transfer, large effects may be understood 
in the framework of pomeron and odderon exchange models and may thus pro
vide an independent method of studying the characteristics of such exchanges in 
high-energy pheripheral hadron scattering. 

The appearance of single-spin correlations and associated asymmetries in dif
ferential cross-sections is due to a quantum effect of interference between real and 
imaginary parts of different amplitudes. In phenomenological approaches, the am
plitudes have been used in a Breit-Wigner form and the asymmetries turn out to 
be proportional to the width-to-mass ratio of the resonance [4, 5]. For the case of 
polarised proton-proton collisions, with the production of pions through some in
termediate nucleon resonance state in peripheral kinematics (PK), the asymmetry 
may be as large as 20-40% [6]. Another mechanism for the generation of imagi
nary parts in scattering amplitudes is due to initial- or final-state interactions. In 
lowest-order perturbation theory such contributions can arise from the interference 
between the Born amplitude and one-loop amplitudes with a non-zero s-channel 

imaginary part [1]. 
A similar phenomena has been found for the case of large-angle production: 

for the kinematics of large PT and large xp of the detected hadron, single-spin 
asymmetries are generated by twist-3 parton correlation functions constructed from 
quark and gluon fields. For this case, the theoretical approach within the framework 
of perturbative QCD has been recently discussed by several authors [2, 3, 7, 12, 15]. 

Here we consider peripheral kinematics, when the unpolarised proton produces a 
jet moving along the initial direction of motion, which is then not detected, whereas 
the jet produced by the polarised proton contains a detected pion. The asymmetry 
originates from a term ic;.PIP2la = ~s[f.t. aJz, where P1 and P2 are the 4-momenta. of the 
initial protons, l is the momentum of the pion in the center-of mass system ( CMS) 

and a is the spin 4-vector of the proton with momentum ]J2, which is es~entially a 
2-component vector located in the plane transverse to the beam axis ( z-direction of 
the initial-state proton with momentum p1 ), and s = 4F? is the square of the total 
CMS energy. 

For high enough energies, the description in terms of Regge trajectories is more 
convenient since, for small enough momentum transfer, the contribution of oper-
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ators of all twists will be of the same order of magnitude. Here the even (spin
independent) part of the differential cross-section is determined by pomeron ex
change, whereas the spin-dependent part, arising from interference between one
and two-gluon exchange amplitudes, should be described by the odderon trajec
tory. Note that quark exchange in the t-channel only gives a small contribution, 
suppressed by a factor of m2 J s, where m is the proton mass. Thus, the study of 
single-spin asymmetries in PK may provide information on the odderon intercept. 
In this paper, using a QED-like framework, with the point-like hadrons, we calculate 
the asymmetry, defined as follows: 

A = du( a, I) - du( -a, I) 
du( a, I) + du( -a, l) 

(a A lj, 
= "'QEo--A(r,x), 

m 
(I) 

where "'QED = 1/137 is the QED coupling constant and the resolving power, A( r, x ), 
is a function of r = l~fm (the transverse momentum of pion in units of the proton 
mass, m) and x = 21o/fi (its energy fraction, x ~ 0(1)). We shall show that 
A(r,x) is a smooth rising function of x of order unity. Thus, naively replacing the 
QED coupling constant by that of QCD or by the pomeron or odderon coupling 
with the proton, we find that the asymmetry may be large for large enough values 
of l1., in qualitative agreement with experimental data [16-18,20]. 

We should perhaps recall before proceeding that, although the diagrams we 
consider (see Fig. I) would be excluded in purely perturbative QCD by naive colour 
conservation, they represent precisely the two-gluon exchange topology generally 
held responsible for the pomeron contribution, e.g., to the total cross-section [21,22]. 

The paper is organised as follows. In Section 2 we calculate the expressions for 
the squared matrix elements summed over spin states for processes of neutral- and 
charged-pion production in the framework of our QED-like approach. The corre
sponding charge-odd interferences for these channels are considered in Section 3, 
where first we obtain the expressions for asymmetries in an exclusive set-up (when 
both the nucleon and pion from the jet developing along the direction of polarised 
proton are fixed in the experiment) _and then the ratio of odd and even parts of 
the cross-section averaged over final proton momenta are estimated. In conclu
sion, we discuss the situation when a hadron is detected in the opposite direction 
and also discuss the role of higher-order perturbation theory contributions and the 
relationship to odderon exchange. 

2 Calculation of the Cross-Section 
Consider first the process 

P(p1 ) + P(P2) -+ P(p;) + P(~) + "o(l), (2) 
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for which the relevant Born-approximation diagrams are show in fig. 1. P•rP• 
k1 I 

P2 P2 
' ' 'l 

P• ------:? P1 

~~ P2 ', P2 

',l 

Figure 1: The amplitudes for the process pp -+ pp-;r in the Born approximation; the 
proton with momentum P2 is polarised. 

We shall use the Sudakov expansion for the momenta of the problem, introducing 
the almost light-like vectors 

-· ~ mz ~ 
P1 = P1- -)l2, 

s 

-· m2 
P2 = P,--p';. (3) 

s 

With these we define the following parametrisation of the momenta in the prob
lem: 

q" Pi-p{'= a~+ fJPi + qi_, 
P'r = (!- x)P, + ,B'ftr + p';_, 

l" = xp~ + f3tPi + li_, 
qj_ = Pi+ lj_, 

The transverse parts, v ~, obey 

vrP1 = 0 = v~ ·p2, 

v}. = -iP <0. 

(4) 

(5) 

We have also used the specific properties of PK: the sum of energy fractions of pion 
and proton from the jet moving along initial polarised proton is equal to unity, 
x ~ 0(1); moreover, the reality conditions for final particles permits the neglect of 
the "small" components of momenta: 

s,B' = 
m2+~ 

(6) 
1-x 

, 

p 
s,B, = -. 

X 
(7) 

Here and in what follows we neglect the pion mass squared compared to that of 
the proton. The intermediate fermion denominators in the Born graphs (see Fig. 1) 
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are then given by 

d1 = k: -m2 ~ 

d2 = ki -m2 ~ 

m2x2 + (xq -lj' 
x(1- x) 

m 2x 2 +P 
X 

(8) 

(9) 

Note that k~ is just the invaxiant-mass squared of the jet moving along~- We shall 
show that the dominant contribution arises when this quantity is of the order of 
some nucleon mass squared. 

In the Born approximation, the matrix element has the following form: 

M,o = 4,-~g Ji'l(p,)D""(q)J!'l(p,), 
q 

(10) 

where o: = O:QED, g is the pion-nucleon coupling constant and Dp.v is the exchange 
photon polarisation tensor. The current vectors introduced are 

where 

o. 

J!'l(p,) = u(p\)1'"u(p1), 

J!'l(p,) = u(p~)O,u(p,), 

1 1 
r,rs(l,+ / + m)'l', + d, "f,(P,- / + m)'l's 

= "/S [ hu _ "/u 'l· d, d, 

(11) 

{12) 

In the last step of (12) we have used the Dirac equation for free protons. For PK, 
only the so-called "nonsense" components of the decomposition of photon polarisa
tion tensor give a non-vanishing contribution in the high-energy limit: 

D"" = g't + 2(prp~ + p~pnf. 
"" 2p~p!lf s. (13) 

Further simplifications may be made using the current conservation condition~ 
q·J(') = 0, which implies p,·J(2) ::e -qJ.·J(2) J/3. 

As a result, the matrix element in the Born approximation becomes 

M,o =-
8

13
'"'f u(p;) P,u(p1) u(){,)Ou(p,), 
sq 

(14) 

where 0 = q~Ov. Here the exchange denominator is cf =-(if+ q!), with q! = 

m2 (sjs)2 and s = (m'x+~)/(1-x)+Pfx. However, in order to regulate the 
infrared divergences, we shall use a massive vector-particle propagator: q2 = -(if+ 

4 

1P). For the modulus squared of the Born matrix element, summed over spin states, 
we thus obtain 

s2x2if 
L 1M,, I'= (!6rrga)' d,(-d,)(q'+p')'. 

spins 

(15) 

Note that here we consider the hadrons as point-like particles and so the high
frequency contributions are not negligible (unrealistically so). Thus, although all 
integrals are in fact convergent, we introduce a form-factor of the form exp( -bq-41.), 
with b '""J 1 GeV-2 • As is well known, single-spin correlation effects are absent in 
the Born approximation, as a consequence of the reality of Born amplitudes and 
the form of the proton spin-density matrix: 

u(p,,a)u(p,,a) = (p,+m)(l+"'s fl.), 
trbs ¢ Ill¢] = 4i,•'"- (16) 

It is also well known that in the case of elastic small-angle charged-particle scat
tering, the Born amplitude acquires a Coulomb phase factor, exp[ia1l" In( -q2f JL2 )J, 
when multiphoton exchange is taken into account. A similar factor appears in the 
case of inelastic processes in PK, such as those we are considering here. 

3 Calculation of the Spin Dependence 

For the spin-dependent part of the interference between single- and double-photon 
exchange amplitudes (see Fig. 2), a calculation similar to that performed above 

Plq-if~ if~ ~ ~ 
P2 ' ]1, 

' ' 'l 
Figure 2: An example higher-order contribution to the process pp -4 pp1l", as con
sidered in the text. 

gives 

L .6.IM.,I' 
spins 

211"2"3g's (lqj') ----:::;-;-::;7-ln -S'lqj• I'' 

x~tr[-"'s ¢0(/,+m)O(p~+m) ]1.(]12 +m)J, 
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where again 0 = qj_ 0.,. After calculating the trace we obtain. for the exclusive 
set-up, 

A = ~L:IM.,I2 

L:IM.,I2 

= 4adn(.f/p2 )mliillqJsint/>, 

[xs- 2q. nrxf + (!- x)2q· n 
X -d ;;-, ' s 2 q 

(18) 

where ~9 is the azimuthal angle between the transverse 2-vectors a and ij. We note 
that the asymmetry is finite in the small-q' limit. 

The differential cross-section in the Born approximation is 

duB ; 2aQED<>w• r [In (I + p )
2 

_ !] 
dxdr m 2 x(l + p)2 u ' 

(!9) 

where a,,= g2 /(47r)."" 3, p = r2 fx2 and u = (p2 + q;,.)/M2
• The Born cross

section is a monotonically rising function of x ( ~x3) for small x. It falls rapidly 
as 1/f.3 for large pion transverse momentum T and reaches the maximum value for 
lJ. "'mxf.J3. The asymmetry in the inclusive set-up, defined as a ratio of even and 
odd parts of the cross-section averaged over transverse momenta, may be written, 
for small u, in form: 

with 

A = f d'lfL:~IMI2 

Jd'lfL:IMI 2 

4aq~;;oR 
= I iii sin t/>1 r [In (l~J' _ rj ' 

l+p 
R = xln(1+p)ln--+x(l-x) 

u 

x [2(l:p)ln
2
u+f,(p,x)lnu+j,(p,x)], 

(20) 

(21) 

where j 1 .;2 are rather fiat functions; the complete expression for R is given in the 
Appendix. The results of a numerical calculation of the asymmetry in the inclusive 
set-up as a function off for a various of values of the Feynman variable, x, and as 
a function of x for various values of Tare presented in Fig. 3. While the detailed 
dependence on x and lJ. is not entirely reproduced, the general trends are seen to 
be correct. 

A similar calculation for the case of 1r+ production in the small-? limit yields 

x
2 2::IM.+I2 = (1-x)2 2::IM.,I2

, 

x2 I:;~IM.+f = (1- x)2 I:.<::.IM.,I2
, (22) 
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} 

A(%) A(%) 

" ~ 

+P+p-~o:rr++X[18] 
+ (3) - :r=0.6~ 

P+P-trCI+X 

j ~ + (2) -=0.40 
[17j n oP+p-+.,..O+X [17] ¢ {1)- -=0.20 

" (3) - qc=l.4 GeV I 3 

~ 
(2) - qc=l-2 GeV 
(1)- 9c=l.O GeV " m 

(1) " " 'l (2) 

" 
' . t • f • ? (1) 

' ' ' ' 02 .., ... ., .. .. G.2S 11.5 0.75 ' '-" ,. '·" i 

X !1. (GeV) 
(a) (b) 

Figure 3: The model calculations for the asymmetry plotted as a function of (a) x 
and (b) lJ.· 

where E ~JM ]2 stands for the spin-weighted sum. Thus, the asymmetries for 1r+ 
production roughly coincide with those for the 1r0 case. 

4 . Conclusions 

We see that asymmetry effects due to single transverse polarisation are not sup
pressed in the limit of large total CMS energy, .,JS, in the case when the produced 
hadron belongs to the jet of the polarised proton. 

The overall normalisation depends on the detailed mechanism of vector meson 
(photon, pomeron or gluon) interaction with nucleons and is ·bound to the choice 
of the parameters a and J.L· In inclusive measurements, when the momentum of the 
pion is measured and the jets escape detection for relatively large t (but -t « s ), 
the interference between graphs with one and two exchange gluons (in the same 
colour state) will dominate. In the case when protons are in the final state it 
is natural then to interpret ate the exchange as a pomeron (leading-order) or an 
odderon (higher-order interference terms). In both these cases the asymmetry is 
expected to be of the same order and with the same (qualitative) dependence on XF 
and transverse momentum. However, the overall normalisation factor will change, 
so we consider it as a fitting parameter. Thus, the naive replacements a -t a., and 
!' --+ AQcD lead to asymmetries of the same order as those found experimentally 
and which grow with transverse momentum for small values. 

Numerical analysis shows that model constructed agrees qualitatively with the 
existing data for"+ and 1r

0 (!6-18,20], using an overall normalisation factor ~0.3. 
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The asymmetry for 1r- can also be considered within this scheme; however, 2 -7 4 

processes have to be considered instead of 2 -7 3. In this case the role of interme

diate Delta resonances would also have to be evaluated carefully. This subject, as 

well as a more exact description of 1r+•0 cases, will be investigated elsewhere. 
It should be noted that in the case when the pion is detected in the direction of 

the jet moving in the opposite direction (i.e., along p1) the asymmetry effect will be 

suppressed in the s -+ oo limit. In fact, information on the transverse polarisation 

of proton P2 cannot be transmitted to jet components developing from proton p1 

unless at least one "sense" component of the virtual photon polarisation tensor is 

used, gi_11
; consequently, it will be suppressed by powers of m2 / s.1 

In particular, for elastic proton-proton scattering where an unpolarised scattered 

proton with momentum f4 is detected we obtain: 

A , _ 5mif(ii A Vz 
P(Pd - 0: 252 • (23) 

Higher-order QCD effects may be taken into account by introducing a factor 

(sfso)"0 into the odd part of the elastic proton-proton scattering zero-angle am

plitude, where ao is the odderon intercept. Thus, the asymmetry considered here, 
associated with twice the imaginary part, acquires a factor a2 (s/s0 yz.o-ap, where 

ap is the pomeron intercept. Given that ao < ap, such a factor will eventually 

suppress the asymmetry in the ultra-high energy limit 2 • However, our interest lies 

in the lower energy region, accessible experimentally at present. Moreover, the lack 

of knowledge on the precise value of ao leaves the entire question of asymptotics 

uncertain. Finally, we note that for small-angle scattering of electrons off polarised 

protons, the odderon contribution manifests itself in higher orders of PT due to 

conversion of photons into gluons through the "1"1 -+ 99 and "19 -+ 99 kernels, which 

may also be investigated at DESY. 
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Appendix 

After some simple operations, the odd part of the cross-section, averaged over q, 
may be put into the following form; 

J ~q L J).[MI' 

_ 210(7r9)2a~Eoxs2 [ii[sino/>1 
- cP, r 

J d'q ln(if I p 2 )1i· T 
X -

,. (if+p')'d,s 

x[x'q';;- 4(/j· ij'- 2xd2q· ij, 

where we have used another equivalent form of the numerator in Eq. (18): 

[.Ts- 2/j· ij [xif + (1- x)2q· q 
= x2i/'s- 4(/j· ii'- 2xd,q· r 

(24) 

(25) 

We write the integrals of the three terms in square brackets in Eq. (24) as J
1

,2,3 

respectively. The quantity R introduced in Eq. (21) may then be re-expressed in 
terms of the Ji: 

R = I;f_, J; . (26) 
x(1- x) 

For the first term we have 

J,=x(1-x) f d'ij_ l-q· 
7r 

ln(l/u) +ln(Q"/m2 ) 

if( if- 2q· T;x + (1 + p)m2)' 
(27) 

where p = 'Pj(m2
x

2
). To use the Feynman trick of combining the denominators~ 

we adopt the following representation for the logarithm: 

(m') ln (if) = _.!._ (if) -g, 
q'2 m 2 dg m 2 

g=l 

The denominators may be combined using the identity 

1 r(g +h) 1' (1- z)'-lzh-J 

UgVh = f(9)f{h) 0 dz [(1- z)u + zvjg+h. (28) 

The further standard procedure of performing the r.Pif integration, subsequent dif
ferentiation with respect to g and integration over z yields 

2 1 +p 
J1 =x (1-x)ln(1+p)ln--. 

(T 
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In the evaluation of J2 we may set a = 0 in the denominator. Jpining the first 
two denominators we have 

1 

dl.S 
(1- x)'1I dy [q"- 2q· t!- + qm'(l + p)t', 

X 0 X 
(30) 

where '1 = x + y(1 - x ). And following a procedure similar to that given above we 

obtain 

J 2 = -4[x(1-x)p]'l dyqldzz2(1-z) 

[
pq2z2 3L ] 

x l)3(2L -I)+ 2D' ' (31) 

where L =In 1-=;l• and D = q(1 + p)z- q2z2p + (1- z)u. We note that we may 
set a = 0 in t~e expression for D although in evaluating J3 we cannot omit a in 
the denominator. Nevertheless, using the identity 

( f ) (q" /m2 
+ u) ( um') In --

2 
=In -In 1+-:;;-- , 

am a q 
(32) 

we may apply the procedure of differentiation to the first term. The second is 
important in the region if rv am2 and may be evaluated explicitly: 

- J( •m') 
2 j d'q - -, n 1 + 7 

- 2x (1+ p) -;- (q ·I) (q"/m2 + u)2d
1
s 

= x2(1- x)2p r~ dz z 1n(1 + ~) 
l+p lo (l+z)2 

- --1 . _ x
2
(1- x)

2
p ("' ) 

1 +p 6 
(33) 

The total answer for J3 is then 

J3 = --1 x
2
(1- x)

2
p ("' ) 

1 +p 6 

+ 2x3(1- x)2p(1 + p) l dy l dzz(1- z) 

[
pz2q2 (2L- 1) L ] 

X D3 +2D2 " 
(34) 
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